a)
$$Ax_n \to \Pi(A)y$$
, $||Ax_n - y|| \to I(A, y) = \inf_{x \in H} ||Ax - y||$

b) последовательность x_n сходится тогда и только тогда, когда уравнение $Ax_n = \Pi(A)y$ разрешимо. В последнем случае

$$x_n \to P(A)x_0 + x^*$$

 $rde \ x^*$ – минимальное решение уравнения (1).

Замечание. В рассматриваемом случае $x_0 = 0$, поэтому $x_n \to x^*$, m. е. процесс (2) сходится к нормальному решению, m. е. к решению с минимальной нормой.

УДК 004.942:519.218

П. А. МЕРКУШЕВИЧ, И. Ю. СВЕРБА, Л. П. МАХНИСТ, Т. И. КАРИМОВА

Беларусь, Брест, БрГТУ

ПРИМЕНЕНИЕ СТЕПЕННЫХ РЯДОВ ДЛЯ РЕШЕНИЯ ОДНОЙ ИЗ ЗАДАЧ ГИДРОЛОГИИ

Рассмотрим дифференциальное уравнение для описания колебаний речного стока, используемое в стохастической гидрологии (например, в [1] и [2]):

$$\frac{d^2\theta_1}{d\xi^2} - \xi \frac{d\theta_1}{d\xi} = -1, \frac{d\theta_1}{d\xi} \Big|_{\xi=\infty} = 0, \quad \theta_1(\xi)|_{\xi=\xi_*} = 0$$
 (1)

Уравнение (1) при решении некоторых прикладных задач, интегрировалось различными методами, например, в [3], а в работах [4], [5] исследовалась сходимость решения таких уравнений. В работах [6] и [7] для решения уравнения (1) использовалась система компьютерной алгебры.

Приведем решение этого уравнения, используя степенные ряды.

Введем обозначение $\frac{d\theta_1}{d\xi} = f_1(\xi)$. Тогда, учитывая, что $\frac{d^2\theta_1}{d\xi^2} = \frac{df_1}{d\xi}$, приходим к линейному дифференциальному уравнению первого порядка $\frac{df_1}{d\xi} - \xi f_1 = -1$, с начальным условием $f_1(\xi)|_{\xi=\infty} = 0$.

Решение последнего уравнения будем искать в виде $f_1(\xi) = u(\xi)v(\xi)$. Тогда, учитывая, что $f'_1(\xi) = u'(\xi)v(\xi) + u(\xi)v'(\xi)$, получим уравнение

$$u'v + u(v' - \xi v) = -1 \tag{2}.$$

Найдем одно из ненулевых решений уравнения $v'-\xi v=0$. Разделяя переменные в уравнении $\frac{dv}{d\xi}=\xi v$, решением которого, очевидно, является v=0, получим $\frac{dv}{v}=\xi d\xi$. Интегрируя последнее уравнение, получим $\int \frac{dv}{v}=\int \xi d\xi + C_2$. Откуда $\ln |v|=\frac{\xi^2}{2}+\ln C_1$ или $v=\pm C_1 e^{\frac{\xi^2}{2}}$.

Следовательно, $v = Ce^{\frac{\xi^2}{2}}$ – общее решение дифференциального уравнения $v' - \xi v = 0$.

Выберем одно из ненулевых решений этого уравнения, например, $v=e^{\frac{\xi^2}{2}},$ при C=1. Подставляя его в уравнение (2), имеем $u'e^{\frac{\xi^2}{2}}=-1$ или $u'=-e^{-\frac{\xi^2}{2}}.$ Откуда $u=-\int e^{-\frac{\xi^2}{2}}d\xi+C.$

Следовательно, $f_1(\xi) = u(\xi)v(\xi) = \left(-\int e^{-\frac{\xi^2}{2}}d\xi + C\right)e^{\frac{\xi^2}{2}}$ или $f_1(\xi) = \left(C - \int_{-\infty}^{\xi} e^{-\frac{t^2}{2}}dt\right)e^{\frac{\xi^2}{2}}.$

Заметим, что $\sqrt{\frac{2}{\pi}} \int_0^{+\infty} e^{-\frac{t^2}{2}} dt = 1$. Тогда, учитывая начальное условие $f_1(\xi)|_{\xi=\infty}=0$, имеем $f_1(\xi)=\left(\sqrt{2\pi}-\int_{-\infty}^{\xi}e^{-\frac{t^2}{2}} dt\right)e^{\frac{\xi^2}{2}}$ или $f_1(\xi)=\left(\sqrt{\frac{\pi}{2}}-\int_0^{\xi}e^{-\frac{t^2}{2}} dt\right)e^{\frac{\xi^2}{2}}$, что можно проверить, используя правило Лопиталя.

Далее решение дифференциального уравнения $\frac{df_1}{d\xi} - \xi f_1 = -1$ будем искать в виде степенного ряда $f_1(\xi) = \sum_{n=0}^{\infty} c_n \xi^n$. Тогда $f_1'(\xi) = \sum_{n=1}^{\infty} n c_n \xi^{n-1}$. Подставляя $f_1(\xi)$ и $f_1'(\xi)$ в уравнение $\frac{df_1}{d\xi} - \xi f_1 = -1$, получим

$$\sum_{n=1}^{\infty} n c_n \xi^{n-1} - \sum_{n=0}^{\infty} c_n \xi^{n+1} = -1.$$

Введя замены n-1=k и n+1=m в первой и второй сумме, соответственно, получим уравнение $\sum_{k=0}^{\infty}(k+1)c_{k+1}\xi^k-\sum_{m=1}^{\infty}c_{m-1}\xi^m=-1$ или, полагая k=n и m=n в первой и второй сумме, соответственно, получим уравнение $c_1+\sum_{n=1}^{\infty}(n+1)c_{n+1}\xi^n-\sum_{n=1}^{\infty}c_{n-1}\xi^n=-1$ или уравнение $c_1+\sum_{n=1}^{\infty}\left((n+1)c_{n+1}-c_{n-1}\right)\xi^n=-1$ для любого ξ . Следовательно, $(n+1)c_{n+1}-c_{n-1}=0$ или $c_{n+1}=\frac{c_{n-1}}{n+1}$, если n – натуральное число, и $c_1=-1$.

При n=2k-1 — нечетное число $(k\in\mathbb{N})$, получим $c_{2k}=\frac{c_{2k-2}}{2k}=\frac{c_0}{(2k)!!}$, где $(2k)!!=2\cdot 4\cdot ...\cdot (2k)$ — двойной факториал четного числа 2k.

При n=2k-1 – четное число $(k\in\mathbb{N})$, получим $c_{2k+1}=\frac{c_{2k-1}}{2k+1}=\frac{c_1}{(2k+1)!!}$, где $(2k+1)!!=1\cdot 3\cdot\ldots\cdot (2k+1)$ – двойной факториал нечетного числа 2k+1.

Следовательно,

$$f_1(\xi) = \sum_{n=0}^{\infty} c_n \xi^n = c_0 + c_1 \xi + \sum_{n=2}^{\infty} c_n \xi^n = c_0 + c_1 \xi + \sum_{k=1}^{\infty} c_{2k} \xi^{2k} + \sum_{k=1}^{\infty} c_{2k+1} \xi^{2k+1} = c_0 + c_1 \xi + \sum_{k=1}^{\infty} c_{2k} \xi^{2k} + \sum_{k=1}^{\infty} c_{2k+1} \xi^{2k+1} = c_0 + c_1 \xi + \sum_{k=1}^{\infty} c_{2k} \xi^{2k} + \sum_{k=1}^{\infty} c_{2k} \xi^{2k} + \sum_{k=1}^{\infty} c_{2k+1} \xi^{2k+1} = c_0 + c_1 \xi + \sum_{k=1}^{\infty} c_2 \xi^{2k} + \sum_{k=1}^{\infty} c$$

$$=c_0+c_1\xi+c_0\sum_{k=1}^{\infty}\frac{\xi^{2k}}{(2k)!!}+c_1\sum_{k=1}^{\infty}\frac{\xi^{2k+1}}{(2k+1)!!}=c_0\sum_{k=1}^{\infty}\frac{\xi^{2k}}{(2k)!!}+c_1\sum_{k=1}^{\infty}\frac{\xi^{2k+1}}{(2k+1)!!},$$

полагая, что 0!! = 1.

Так как $c_0 = f_1(0) = \sqrt{\frac{\pi}{2}}$ и $c_1 = -1$, то

$$f_1(\xi) = \sqrt{\frac{\pi}{2}} \sum_{k=0}^{\infty} \frac{\xi^{2k}}{(2k)!!} - \sum_{k=0}^{\infty} \frac{\xi^{2k+1}}{(2k+1)!!}.$$

Так как $\frac{d\theta_1}{d\xi} = f_1(\xi)$, то

$$\theta_1(\xi) = \sqrt{\frac{\pi}{2}} \sum_{k=0}^{\infty} \frac{\xi^{2k+2}}{(2k)!!(2k+1)} - \sum_{k=0}^{\infty} \frac{\xi^{2k+2}}{(2k+1)!!(2k+2)} + C.$$

Учитывая начальное условие, $\theta_1(\xi)|_{\xi=\xi_*}=0$, получаем, что $\theta_1(\xi)=S_1(\xi)-S_1(\xi_*)$, где

$$S_1(\xi) = \sqrt{\frac{\pi}{2}} \sum_{k=0}^{\infty} \frac{\xi^{2k+2}}{(2k)!!(2k+1)} - \sum_{k=0}^{\infty} \frac{\xi^{2k+2}}{(2k+1)!!(2k+2)}$$

или

$$S_1(\xi) = \sum_{n=1}^{+\infty} \left(\frac{\pi}{2}\right)^{\left\{\frac{n}{2}\right\}} \frac{(-1)^{n-1} \xi^n}{(n-1)!!n},$$

где $\{t\}$ – дробная часть числа t соответственно.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Волчек, А. А. О сходимости решения одной малопараметрической модели многолетних колебаний речного стока / А. А. Волчек, Л. П. Махнист, В. С. Рубанов // Вестник Брестского государственного технического университета. Серия: Физика, математика, информатика. − 2009. – № 5. – С. 2–5.

- 2. Волчек, А. А. Об асимптотическом поведении параметра одного из распределений вероятностей речного стока / А. А. Волчек, Л. П. Махнист, В. С. Рубанов // Проблемы водоснабжения, водоотведения и энергосбережения в западном регионе Республики Беларусь : сб. материалов междунар. науч.-техн. конф., Брест, 22–23 апр. 2010 г. / Брест. гос. техн. ун-т ; редкол.: С. В. Басов [и др.]. Брест, 2010. С. 45–49.
- 3. Волчек, А. А. О решении системы дифференциальных уравнений, одной из моделей многолетних колебаний речного стока / А. А. Волчек, Л. П. Махнист, В. С. Рубанов // Веснік Брэсцкага ўніверсітэта. Серыя 4, Фізіка. Матэматыка. 2010. № 1. С. 68—77.
- 4. Волчек, А. А. О параметрах распределения вероятностей диффузионной модели стохастической гидрологии / А. А. Волчек, И. И. Гладкий, Л. П. Махнист // Вестник Брестского государственного технического университета. Серия: Физика, математика, информатика. 2010. N 5. С. 48—53.
- 5. Волчек, А. А. О моментах распределения вероятностей модели диффузионного типа в практике гидрологии / А. А. Волчек, И. И. Глад-кий, Л. П. Махнист // Математика и ее приложения : межвуз. сб. науч. тр. / Ассоциация математиков вузов северо-запада ; под ред. Д. П. Голоскокова, А. Р. Шкадовой. СПб, 2011. Вып. 3. С. 139—148.
- 6. Махнист, Л. П. Применение систем компьютерной алгебры для решения модели стохастической гидрологии / Л. П. Махнист, Е. Н. Защук, И. И. Гладкий // Математические и физические методы исследований: научный и методический аспекты : сб. материалов Респ. науч.-практ. конф., Брест, 22–23 апр. 2021 г. / Брест. гос. ун-т им. А. С. Пушкина ; под общ. ред. Н. Н. Сендера. Брест, 2021. С. 96–98.
- 7. Махнист, Л. П. К решению задачи гидрологии с использованием систем компьютерной алгебры / Л. П. Махнист, Е. Н. Защук, И. И. Глад-кий // Математическое моделирование и новые образовательные технологии в математике : сб. материалов Респ. науч.-практ. конф., Брест, 28–29 апр. 2022 г. / Брест. гос. ун-т им. А. С. Пушкина ; под общ. ред. А. И. Басика. Брест, 2022. С. 17–19.