МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра высшей математики

ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ

ЧАСТЬ II

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

УДК 517.9

В практикуме содержатся краткие теоретические сведения и основные формулы по всем темам разделов "Введение в математический анализ. Дифференциальное исчисление функции одной переменной" учебной программы по высшей математике для технических специальностей, а также задания для аудиторных и домашних работ к каждому практическому занятию. Приведены решения типовых задач.

DOWN MARKS STOLD IN REPORT OF THE STOLE OF THE SAME

Составители: Р.А. Гоголинская, ассистент Л.Т. Мороз, доцент Т.И. Русина, ст. преподаватель М.М. Юхимук, ассистент

Рецензент: Заведующий кафедрой алгебры и геометрии Брестского государственного университета им. А.С. Пушкина, к.ф.-м.н., доцент Савчук В.Ф.

Содержание

1. Предел последовательности	4
2. Предел функции	5
3. Первый и второй замечательные пределы	10
4. Сравнение бесконечно малых и их приложения	12
5. Непрерывность функции	14
6. Нахождение производных	18
7. Логарифмическое дифференцирование	22
8. Производные функций, заданных неявно и параметрически	23
9. Производные высщих порядков	25
10. Приложения производной	29
11. Дифференциал функции. Приложения дифференциала.	
Дифференциалы высших порядков	34
12. Правило Лопиталя	38
13. Представление элементарных функций по формуле Маклорена	41
14. Исследование функций с помощью производной	42
15. Исследование функций с помощью производных	46
16. Общая схема исследования поведения функции	49
Литература	

- Hattage in High

Предел последовательности.

Число A называется npedenom числовой последовательности $\{x_n\}$, если для любого $\varepsilon > 0$ существует номер $N = N(\varepsilon) > 0$, такой, что для всех n > N, где n — натуральное, выполняется неравенство $|x_n - A| < \varepsilon$. Если A — предел последовательности $\{x_n\}$, то это записывают так:

$$\lim_{n\to\infty}x_n=A.$$

Последовательность, имеющая предел, называется сходящейся, в противном случае — pacxodящейся. Если последовательности $\{a_n\}$ и $\{b_n\}$ имеют пределы, то пределы их суммы, разности, произведения и частного существуют и находятся по формулам:

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n;$$

$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n;$$

$$\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n;$$

$$\lim_{n\to\infty} (\frac{a_n}{b_n}) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n \neq 0.$$

<u>Пример</u>. Дана последовательность $\{x_n\} = \left\{\frac{2n+3}{n+1}\right\}$. Доказать, что её предел A = 2.

Решение: Докажем, что для любого $\varepsilon > 0$ существует номер $N = N(\varepsilon) > 0$, такой, что для всех n > N будет выполняться неравенство:

$$|x_n - A| = \frac{|2n+3|}{|n+1|} - 2 = \frac{|2n+3-2n-2|}{|n+1|} = \frac{1}{|n+1|} < \varepsilon.$$

Решив последнее неравенство, получим: $n > \frac{1}{\varepsilon} - 1$, откуда $N = \left[\frac{I}{\varepsilon} - 1\right] + 1$, где $[\alpha]$ обозначает целую часть числа α . Таким образом, существует N, такое, что для любого n > N выполняется неравенство $|x_n - 2| < \varepsilon$.

Пример. Найти
$$\lim_{n\to\infty} \frac{2n^2 - 3n + 5}{6n^2 + 4n - 9}$$
.

Решение: Разделим числитель и знаменатель дроби на n^2 , и воспользуемся свойствами предела последовательности:

$$\lim_{n\to\infty} \frac{2n^2 - 3n + 5}{6n^2 + 4n - 9} = \lim_{n\to\infty} \frac{2 - \frac{3}{n} + \frac{5}{n^2}}{6 + \frac{4}{n} - \frac{9}{n^2}} = \lim_{n\to\infty} \left(2 - \frac{3}{n} + \frac{5}{n^2}\right) = \frac{1}{3}.$$

Задания.

1. Доказать, что предел последовательности $x_n = \frac{n}{n+1}$ при $n \to \infty$ равен 1.

При каких значениях n > N будет выполнено неравенство $|x_n - I| < \varepsilon$?

- 2. Доказать, что предел последовательности $y_n = 4 \frac{1}{3^n}$ равен 4.
- 3. Найти пределы:

a)
$$\lim_{n\to\infty} \frac{3n^2 + 3n - 5}{1 - n^2}$$
;

6)
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n-1}{n^2} \right);$$

B)
$$\lim_{n\to\infty} \frac{(n+1)(n+2)(n+3)}{n^3}$$
;

$$\Gamma) \lim_{n \to \infty} \left[\frac{1+3+5+7+...+(2n-1)}{n+1} - \frac{2n+1}{2} \right].$$

Домашние задания.

- 1. Доказать, что $\lim_{n\to\infty} \frac{2n+1}{n+1} = 2$;
- 2. Доказать, что $\lim_{n\to\infty} \left(2 \frac{1}{4^n}\right) = 2$;
- 3. Найти пределы:

a)
$$\lim_{n\to\infty} \frac{9n^2+4n-6}{2n^2+2}$$
; 6) $\lim_{n\to\infty} \left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}\right)$; B) $\lim_{n\to\infty} \left(\sqrt{n+1}-\sqrt{n}\right)$.

Предел функции.

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Число A называется пределом функции y = f(x) при $x \to x_0$ (в точке $x = x_0$), если для любого $\varepsilon > 0$ существует $\delta = \delta(\varepsilon) > 0$, такое, что при $0 < x - x_0 < \delta$ справедливо неравенство: $|f(x) - A| < \varepsilon$. Если A – предел функции f(x) при $x \to x_0$, то пишут:

$$\lim_{x\to x_1} f(x) = A.$$

В самой точке x_0 функция f(x) может и не существовать ($f(x_0)$ – не определено). Аналогично, запись $\lim_{x\to\pm\infty}f(x)=A$ обозначает, что для любого

 $\varepsilon > 0$ существует $N = N(\varepsilon) > 0$, такое, что при |x| > N выполняется неравенство $|f(x) - A| < \varepsilon$.

Если существует предел вида $\lim_{\substack{x\to x\\x<x_i}} f(x)$, который обозначают также

 $\lim_{x\to x\to 0} f(x)$ или $f(x_0-0)$, то он называется пределом слева функции f(x) в точке x_0 . Аналогично, если существует предел вида $\lim_{x\to x} f(x)$ (в другой

записи $\lim_{x\to x_1+0} f(x)$ или $f(x_0+0)$, то он называется пределом справа функции f(x) в точке x_0 . Пределы слева и справа называются односторонними. Для существования предела функции f(x) в точке x_0 необходимо и достаточно, чтобы оба односторонних предела в точке x_0 существовали и были равны, т.е $f(x_0-0)=f(x_0+0)$.

Справедливы следующие основные теоремы о пределах: <u>Теорема 1</u>. Пусть существуют $\lim_{x\to 1} f_i(x)$ $(i = \overline{I,n})$. Тогда:

$$\lim_{x \to x_{i}} \sum_{i=1}^{n} f_{i}(x) = \sum_{i=1}^{n} \lim_{x \to x_{i}} f_{i}(x);$$

$$\lim_{x \to x_{i}} \prod_{i=1}^{n} f_{i}(x) = \prod_{i=1}^{n} \lim_{x \to x_{i}} f_{i}(x).$$

<u>Теорема 2</u>. Пусть существуют $\lim_{x \to x_0} f(x)$ и $\lim_{x \to x} \varphi(x) \neq 0$.

Тогда
$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} \varphi(x)}.$$

(Все записи верны и при $x_0 = \pm \infty$).

Если условия этих теорем не выполняются, то могут возникнуть неопределённости вида $\left[\infty-\infty\right], \left[\frac{\infty}{\infty}\right], \left[\frac{\theta}{\theta}\right]$ и др., которые в простейших случаях раскрываются с помощью алгебраических преобразований.

Справедливы также следующие формулы:

$$\lim_{x \to x} [c \cdot f(x)] = c \cdot \lim_{x \to x} f(x) \quad (c = const);$$

$$\lim_{x \to x} [f(x)]^n = \left[\lim_{x \to x_0} f(x)\right]^n \quad (n \in N);$$

$$\lim_{x \to x} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to x_0} f(x)};$$

$$\lim_{r \to r} c = c \quad (c = const).$$

Если c – постоянная величина, причём c > 0, то

$$\lim_{x \to \infty} cx = \infty; \qquad \lim_{x \to \infty} \frac{c}{c} = \infty;$$

$$\lim_{x \to \infty} \frac{c}{x} = -\infty; \qquad \lim_{x \to \infty} \frac{c}{x} = +\infty;$$

$$\lim_{x \to \infty} \frac{c}{x} = \infty; \qquad \lim_{x \to \infty} \frac{c}{x} = 0;$$

$$\lim_{x \to \infty} c^{x} = \begin{cases} 0, e c \pi u & 0 < c < 1 \\ + \infty, e c \pi u & c > 1 \end{cases};$$

$$\lim_{x \to \infty} c^{x} = \begin{cases} + \infty, e c \pi u & 0 < c < 1 \\ 0, e c \pi u & c > 1 \end{cases}$$

<u>Пример</u>. Найти $\lim_{x\to 2} (4x^2 - 6x + 3)$.

Решение: Используя теорему 1 и свойства пределов, последовательно найдём: $\lim_{x\to 2} (4x^2-6x+3) = \lim_{x\to 2} 4x^2 - \lim_{x\to 2} 6x + \lim_{x\to 2} 3 = 4\lim_{x\to 2} x^2 - 6\lim_{x\to 2} x + \lim_{x\to 2} 3 = 4(\lim_{x\to 2} x)^2 - 6\lim_{x\to 2} x + \lim_{x\to 2} 3 = 4\cdot 2^2 - 6\cdot 2 + 3 = 16 - 12 + 3 = 7$.

<u>Пример</u>. Найти $\lim_{x\to 1} \frac{3x^2 - 4x + 7}{2x^2 - 5x + 6}$.

Решение: Используя теоремы 1 и 2, а также свойства пределов,

последовательно получим:
$$\lim_{x \to 1} \frac{3x^2 - 4x + 7}{2x^2 - 5x + 6} = \frac{\lim_{x \to 1} (3x^2 - 4x + 7)}{\lim_{x \to 1} (2x^2 - 5x + 6)} =$$

$$= \frac{\lim_{x \to l} 3x^2 - \lim_{x \to l} 4x + \lim_{x \to l} 7}{\lim_{x \to l} 2x^2 - \lim_{x \to l} 5x + \lim_{x \to l} 6} = \frac{3 \lim_{x \to l} x^2 - 4 \lim_{x \to l} x + \lim_{x \to l} 7}{2 \lim_{x \to l} 2x^2 - 5 \lim_{x \to l} x + \lim_{x \to l} 6} = \frac{3 \cdot 1^2 - 4 \cdot 1 + 7}{2 \cdot 1^2 - 5 \cdot 1 + 6} = \frac{6}{3} = 2.$$

 $\underline{3 a m e v a n u e}$. Предел элементарной функции f(x) при $x \to x_0$, где x_0 принадлежит области её определения, равен значению функции при $x = x_0$, т.е. $\lim_{x \to x_0} f(x) = f(x_0)$.

<u>Пример.</u> Найти $\lim_{x\to 1} \frac{3x^2 - x - 2}{4x^2 - 5x + 1}$.

Решение: При x=1 числитель и знаменатель дроби обращаются в нуль. Получается неопределённость вида $\left[\frac{0}{\theta}\right]$. Преобразуем данную функцию,

разлагая числитель и знаменатель на множители по формуле:

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$

где x_1 и x_2 — корни уравнения $ax^2 + bx + c = 0$. Подставляя соответствующие выражения и сокращая на общий множитель $(x-1) \neq 0$, получим:

$$\lim_{x\to 1} \frac{3x^2-x-2}{4x^2-5x+1} = \lim_{x\to 1} \frac{3(x-1)(x+\frac{2}{3})}{4(x-1)(x-\frac{1}{4})} = \lim_{x\to 1} \frac{3(x+\frac{2}{3})}{4(x-\frac{1}{4})} = \frac{3(1+\frac{2}{3})}{4(1-\frac{1}{4})} = \frac{5}{3}.$$

Замечание. Чтобы раскрыть неопределённость вида $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$, заданную

отношением двух многочленов, надо числитель и знаменатель разделить на самую высокую входящую в них степень х, а затем перейти к пределу.

Легко доказать, что если
$$R(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0}$$
, то

$$\lim_{x \to \infty} R(x) = \begin{cases} \infty, ecnu \ n > m \\ \frac{a_n}{b_m}, ecnu \ n = m \\ 0, ecnu \ n < m \end{cases}$$

<u>Пример</u>. Найти $\lim_{x\to 3} \frac{x^2-9}{\sqrt{x+1}-2}$.

Решение: При x=3 числитель и знаменатель дроби обращаются в нуль. Знаменатель содержит иррациональное выражение $\sqrt{x+1}$. Избавимся от иррациональности в знаменателе, умножая числитель и знаменатель на $\sqrt{x+1}+2$. Получим:

$$\lim_{x \to 3} \frac{x^2 - 9}{\sqrt{x + 1} - 2} = \lim_{x \to 3} \frac{(x^2 - 9)(\sqrt{x + 1} + 2)}{(\sqrt{x + 1} - 2)(\sqrt{x + 1} - 2)} = \lim_{x \to 3} \frac{(x - 3)(x + 3)(\sqrt{x + 1} + 2)}{(\sqrt{x + 1})^2 - 2^2} =$$

$$= \lim_{x \to 3} \frac{(x-3)(x+3)(\sqrt{x+1}+2)}{x-3} = \lim_{x \to 3} (x+3)(\sqrt{x+1}+2) = 6(\sqrt{4}+2) = 24.$$

Замечание. Чтобы раскрыть неопределённость вида содержит иррациональность, числитель соответствующим образом избавиться от иррациональности.

<u>Пример</u>. Найти $\lim_{x\to 2} \left(\frac{4}{x^2-4} - \frac{1}{x-2} \right)$.

Решение: Имеем неопределённость вида $[\infty-\infty]$. Чтобы раскрыть её, приведём выражение в скобках к общему знаменателю. Получим $\lim_{x\to 2} \frac{2-x}{x^2-4}$, т.е. неопределённость вида $\left|\frac{\theta}{\theta}\right|$, которая легко раскрывается,

если сократить дробь под знаком предела на общий множитель $(x-2) \neq 0$.

В итоге исходный предел сводится к $\lim_{x\to 0} \left(-\frac{1}{x+2}\right) = -\frac{1}{4}$.

Задания. Найти пределы указанных функций:

1.
$$\lim_{x \to \pm \infty} \frac{3x^3 + 4x^2 + 2}{x^3 - 7x - 10}$$
;

1.
$$\lim_{x \to \pm \infty} \frac{3x^3 + 4x^2 + 2}{x^3 - 7x - 10}$$
; 2. $\lim_{x \to \pm \infty} \frac{7x^2 + 10x + 20}{x^3 - 10x^2 - 1}$; 3. $\lim_{x \to 2} \frac{x^3 - 3x^2 + 3}{x^2 - 3}$;

3.
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 3}{x^2 - 3}$$
;

4.
$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{8 - x^3}$$
; 5. $\lim_{x \to 1} \frac{x^3 - 3x^2 + 2}{x^2 - 7x + 6}$; 6. $\lim_{x \to 2} \frac{\sqrt{x + 7} - 3}{\sqrt{x + 2} - 2}$;

5.
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 2}{x^2 - 7x + 6}$$
;

6.
$$\lim_{x\to 2} \frac{\sqrt{x+7}-3}{\sqrt{x+2}-2}$$

7.
$$\lim_{x\to\infty} \left(x\left(\sqrt{x^2+4}-x\right)\right)$$

7.
$$\lim_{x\to\infty} \left(x\left(\sqrt{x^2+4}-x\right)\right);$$
 8. $\lim_{x\to 1} \left(\frac{1}{1-x}-\frac{3}{1-x^3}\right);$ 9. $\lim_{x\to 2} \frac{x^2-5x+6}{x^2-12x+20};$

9.
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 12x + 20}$$

10.
$$\lim_{x\to\infty} \frac{3x^3 - 5x^2 + 2}{2x^3 - 5x^2 - x}$$
; 11. $\lim_{x\to2} \frac{x^3 - 8}{2x^2 + x - 6}$; 12. $\lim_{x\to-1} \frac{5x^2 + 4x - 1}{3x^2 + x - 2}$;

11.
$$\lim_{x \to 2} \frac{x^3 - 8}{2x^2 + x = 6}$$

12.
$$\lim_{x \to -1} \frac{5x^2 + 4x - 1}{3x^2 + x - 2}$$

13.
$$\lim_{x \to -3} \frac{2x^2 + 11x + 15}{3x^2 + 5x - 12}$$
; 14. $\lim_{x \to -\infty} \frac{x^5 - 2x + 4}{2x^4 + 3x^2 + 1}$;

14.
$$\lim_{x \to +\infty} \frac{x^5 - 2x + 4}{2x^4 + 3x^2 + 1}$$

15.
$$\lim_{x\to\infty} \frac{2x^2+3x-5}{7x^3-2x^2+1}$$
;

16.
$$\lim_{x \to 3} \frac{x^2 + x - 12}{\sqrt{x - 2} - \sqrt{4 - x}}$$
; 17. $\lim_{x \to 1/6} \frac{8x^3 - 1}{6x^2 - 5x + 1}$; 18. $\lim_{x \to 3} \frac{\sqrt{x + 13} - 4}{x^2 - 9}$;

7.
$$\lim_{x \to \frac{1}{2}} \frac{8x^3 - 1}{6x^2 - 5x + 1}$$

18.
$$\lim_{x\to 3} \frac{\sqrt{x+13-4}}{x^2-9}$$
;

19.
$$\lim_{x\to 2} \frac{x^2 - 7x + 10}{x^2 - 5x + 6}$$

20.
$$\lim_{x\to 5} \frac{x^2-25}{\sqrt{x-1}-2}$$

19.
$$\lim_{x\to 2} \frac{x^2 - 7x + 10}{x^2 - 5x + 6}$$
; 20. $\lim_{x\to 3} \frac{x^2 - 25}{\sqrt{x - 1} - 2}$; 21. $\lim_{x\to 1} \frac{x^3 - x^2 + x - 1}{x^2 - 4x + 3}$;

22.
$$\lim_{x \to \infty} \left(x \left(\sqrt{x^2 + 5} - \sqrt{x^2 + 1} \right) \right)$$

Помашние задания. Найти пределы указанных функций: 1. $\lim_{x \to 0} (2x^2 - 7x + 6)$; 2. $\lim_{x \to 0} (3x^4 - 5x^3 + 6x^2 - 4x + 6)$

1.
$$lim(2x^2-7x+6)$$

2.
$$\lim(3x^4-5x^3+6x^2-4x+7)$$
;

3.
$$\lim_{x\to 2} \frac{4x^2 - 5x + 2}{3x^2 - 6x + 4}$$
;

4.
$$\lim_{x\to 1} \frac{x^2-5x+4}{x^2-7x+6}$$
;

5.
$$\lim_{x\to 3} \frac{x^2 - 7x + 12}{x^2 - 6x + 5}$$
;

7.
$$\lim_{x\to 2} \frac{3x^2 - 7x + 2}{4x^2 - 5x - 6}$$
;

9.
$$\lim_{x\to\infty} \frac{10x^3-6x^2+7x+5}{8-4x+3x^2-2x^3}$$
;

11.
$$\lim_{x\to 5} \frac{x^2-25}{2-\sqrt{x-1}}$$
;

13.
$$\lim_{x\to 1} \frac{\sqrt[4]{x-1}}{\sqrt[3]{x-1}};$$

15.
$$\lim_{x \to x} \frac{\sqrt{l - tg x} - \sqrt{l + tg x}}{\sin 2x}$$

6.
$$\lim_{x\to 6} \frac{x^2 - 8x + 12}{x^2 - 7x + 6}$$
;

8.
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$
;

10.
$$\lim_{x \to \infty} \frac{2x^4 - 5x^3 + 7x^2 + 8x - 9}{3x^5 - 6x^3 + 4x^2 - 2x + 11}$$
;

12.
$$\lim_{x \to \infty} \frac{x^7 + 8x^6 + 5x^4 - 3x^2 - 12}{10x^6 + 7x^5 - 6x^3 - 4x + 17}$$

14.
$$\lim_{x \to \infty} \frac{6x-5}{1+\sqrt{x^2+3}}$$
;

Первый и второй замечательные пределы.

Широко используются следующие два замечательных предела:

1)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
;

2)
$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{\alpha \to 0} (1 + \alpha)^{1/\alpha} = e \approx 2,71828$$
.

Число e бывает полезным при раскрытии неопределённостей вида $\left[I^{\infty}
ight]$

При нахождении пределов вида $\lim_{x\to a} [\varphi(x)]^{\psi(x)} = C$ нужно иметь ввиду следующее:

- 1) Если существуют конечные пределы $\lim_{x\to a} \varphi(x) = A$ и $\lim_{t\to a} \psi(x) = B$, то $C = A^B$;
- 2) Если $\lim_{x\to a} \varphi(x) = A \neq 1$ и $\lim_{x\to a} \psi(x) = \infty$, то предел находится с помощью преобразований, рассмотренных в предыдущем параграфе;

3) $\lim_{x\to a} \varphi(x) = 1$ и $\lim_{x\to a} \psi(x) = \infty$, то полагают $\varphi(x) = 1 + \alpha(x)$, где $\alpha(x) \to 0$

при
$$x \to a$$
 и, следовательно, $C = \lim_{x \to a} \left[[1 + \alpha(x)]^{\frac{1}{\alpha(x)}} \right]^{a(x)f(x)} = e^{\lim_{x \to a} a(x)f(x)}$

<u>Пример</u>. Найти $\lim_{x\to 0} \frac{\sin 7x}{\sin 3x}$.

Решение: Так как $x \neq 0$ под знаком предела, то

$$\lim_{x\to 0} \frac{\sin 7x}{\sin 3x} = \lim_{x\to 0} \frac{7x}{\sin 3x} \cdot \frac{7x}{3x} = \lim_{x\to 0} \left(\frac{7x}{3x}\right) \cdot \lim_{x\to 0} \frac{\sin 7x}{\sin 3x} = \lim_{x\to 0} \left(\frac{7}{3}\right) \cdot \frac{\lim_{x\to 0} \sin 7x}{\lim_{x\to 0} \sin 3x} = \frac{7}{3} \cdot \frac{1}{1} = \frac{7}{3}.$$
Other: $\frac{7}{3}$.

Пример. Найти lim(cos x)'x.

Прибавляя и вычитая I из cosx и применяя соответствующую формулу второго замечательного предела, получаем:

$$\lim_{x \to 0} (\cos x)^{t_{x}} = \lim_{x \to 0} (1 - (1 - \cos x))^{t_{x}} = \lim_{x \to 0} (1 - 2\sin^{2} \frac{x}{2})^{t_{x}} =$$

$$= \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x \to 0} \left(1 - 2\sin^{2} \frac{x}{2} \right)^{-t_{x}} = \lim_{x$$

Задания. Найти пределы указанных функций:

1.
$$\lim_{x \to 0} \frac{tg3x}{\sin 3x}$$
;

$$2. \lim_{x\to 0} \frac{1-\cos 6x}{x\sin 3x};$$

3.
$$\lim_{x \to 1} \frac{\sin(2(x-1))}{x^2 - 7x + 6}$$
;

4.
$$\lim_{x\to +\infty} \left(\frac{x+3}{2x-1}\right)^x$$
;

5.
$$\lim_{x \to \infty} \left(\frac{3x+2}{3x-1} \right)^{4x-1}$$

4.
$$\lim_{x \to +\infty} \left(\frac{x+3}{2x-1} \right)^x$$
; 5. $\lim_{x \to +\infty} \left(\frac{3x+2}{3x-1} \right)^{4x-1}$; 6. $\lim_{x \to +\infty} \left(\frac{2x+1}{2x-1} \right)^{3x+1}$;

7.
$$\lim_{x\to 0}\frac{\ln(1+x)}{x}$$
;

8.
$$\lim_{x\to x} \left(\frac{x+2}{x-3}\right)^x$$
;

9.
$$\lim_{x\to 0}\frac{tgx}{x}$$
;

10.
$$\lim_{x\to 0} \frac{\sin 8x}{\sin 3x}$$

10.
$$\lim_{x\to 0} \frac{\sin 8x}{\sin 3x}$$
; 11. $\lim_{x\to 0} x \cdot \operatorname{ctg} \frac{x}{3}$;

12.
$$\lim_{x\to 0} \frac{\sin^2 \frac{x}{3}}{x^2};$$

13.
$$\lim_{x \to x} \left(1 + \frac{2}{x}\right)^x$$
; 14. $\lim_{x \to 0} \frac{\sin x}{\sqrt{x+9} - 3}$;

$$14. \lim_{x\to 0} \frac{\sin x}{\sqrt{x+9}-3}$$

15.
$$\lim_{x \to 0} (1 + \sin x)^{l_x};$$

16.
$$\lim_{x\to 0} \left(\frac{\sin 3x}{x}\right)^{x+2}$$
; 17. $\lim_{x\to 0} (1-3x)^{l_x}$.

17.
$$\lim_{x\to 0} (1-3x)^{l_x}$$

Домашние задания. Найти пределы указанных функций:

$$1. \lim_{x\to 0}\frac{\ln(1+4x)}{x};$$

1.
$$\lim_{x\to 0} \frac{\ln(1+4x)}{x}$$
; 2. $\lim_{x\to \infty} x[\ln(x+1)-\ln x]$;

3.
$$\lim_{x\to\infty} \left(\frac{x+1}{x-3}\right)^x$$
;

4.
$$\lim_{x\to 0} \frac{\sin^{x}}{x}$$

4.
$$\lim_{x\to 0} \frac{\sin \frac{x}{5}}{x}$$
; 5. $\lim_{x\to \infty} \left(x \cdot \sin \frac{1}{x}\right)$;

6.
$$\lim_{x\to 0}\frac{\operatorname{arctg} x}{x}$$
;

7.
$$\lim_{x\to 0} \frac{\sin 3x}{tg4x};$$

$$8. \lim_{x\to 0} \frac{\sin^3 \frac{x}{2}}{x^3};$$

9.
$$\lim_{x\to 0} \frac{\sin x}{\sqrt{x+4}-2};$$

10.
$$\lim_{x\to 1} \frac{\sin(x-1)}{x^3-1}$$

10.
$$\lim_{x \to 1} \frac{\sin(x-1)}{x^3 - 1}$$
; 11. $\lim_{x \to 0} \frac{1 - \cos x - tg^2 x}{x \sin x}$;

12.
$$\lim_{x\to 0} \left(\frac{\sin\frac{x}{2}}{x}\right)^{x+3}$$
;

13.
$$\lim_{x\to x} \left(\frac{2x+1}{4x-3}\right)^x$$
; 14. $\lim_{x\to 0} (\cos x)_{x^2}$;

14.
$$\lim_{x\to 0} (\cos x)_{x^2}^{1/2}$$
;

15.
$$\lim_{x\to \frac{\pi}{s}} (\sin x)^{x^2x}$$
.

Сравнение бесконечно малых и их приложения к нахождению пределов.

Если $\lim \alpha(x) = 0$ (т.е для любого $\varepsilon > 0$ существует $\delta > 0$, такое, что $0 < |x - x_{\mu}| < \delta$ справедливо неравенство $|\alpha(x)| < \varepsilon$), то $\alpha(x)$ называется бесконечно малой функцией при $x \to x_0$. Для сравнения двух бесконечно малых $\alpha(x)$ и $\beta(x)$ при $x \to x_0$ находят предел их отношения:

$$\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=C.$$

Если $C \neq 0$, то $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного и того же порядка. Если C = 0, то $\alpha(x)$ называется бесконечно малой более высокого порядка по сравнению с $\beta(x)$, а $\beta(x)$ – бесконечно малой более низкого порядка по сравнению с $\alpha(x)$.

Если $\lim_{x\to x_0} \frac{\alpha(x)}{(\beta(x))^k} = C$ (0 < | C | < \infty), то $\alpha(x)$ называется бесконечно малой порядка k по сравнению с $\beta(x)$ при $x \to x_0$.

Если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 1$, то бесконечно малые $\alpha(x)$ и $\beta(x)$ при $x \to x_0$

называются эквивалентными (равносильными) величинами: $\alpha(x) \sim \beta(x)$. Например, при $x \to 0$

$$sin ax \sim ax$$
, $tgx \sim x$, $ln(1+x) \sim x$, $e^{ax} - 1 \sim ax$.

Легко доказать, что предел отношения бесконечно малых функций $\alpha(x)$ и $\beta(x)$ при $x \to x_0$ равен пределу отношения эквивалентных им бесконечно малых функций $\alpha^*(x)$ и $\beta^*(x)$ при $x \to x_0$, т.е. верны предельные равенства $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha^*(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\beta^*(x)} = \lim_{x \to x_0} \frac{\alpha^*(x)}{\beta^*(x)}$.

<u>Пример</u>. Найти предел $\lim_{x\to 0} \frac{\sin 5x}{\ln(1+x)}$.

Поскольку sin 5x - 5x, ln(1+x) - x при $x \to 0$, то Решение: $\lim_{x\to 0} \frac{\sin 5x}{\ln(1+x)} = \lim_{x\to 0} \frac{5x}{x} = 5.$

Задания.

- 1. Если $x \to 0$, то какие из бесконечно малых 3x, x^2 , \sqrt{x} , x^3 , $\frac{1}{2}x$ являются величинами одного порядка с х, величинами высшего порядка и величинами низшего порядка по сравнению с х?
- бесконечно малой функции $y = \frac{7x^n}{x^n}$ 2. Определить порядок относительно бесконечно малой x при $x \to 0$.
- 3. Дана бесконечно малая x. Сравнить её с бесконечно малой ln(1+x).
- 4. Доказать, что при $x \to 0$ бесконечно малые sincx и cx являются эквивалентными (c = const).
- Вычислить пределы:

a)
$$\lim_{x\to 0} \frac{e^{5x}-1}{\sin 10x}$$
;

6)
$$\lim_{x\to 2} \frac{\sin 3(x-2)}{x^2-3x+2}$$
;

B)
$$\lim_{x\to 0} \frac{x \sin 6x}{(\arctan 2x)^2}$$

a)
$$\lim_{x\to 0} \frac{e^{5x}-1}{\sin 10x}$$
; 6) $\lim_{x\to 0} \frac{\sin 3(x-2)}{x^2-3x+2}$; B) $\lim_{x\to 0} \frac{x\sin 6x}{(\arctan 2x)^2}$;
r) $\lim_{x\to 0} \frac{\ln(x^2-5x+7)}{x-3}$; D) $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$; e) $\lim_{x\to 1} \frac{\sin 3(x+1)}{x^2+4x-5}$;

$$\text{II} \lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$$

e)
$$\lim_{x \to 1} \frac{\sin 3(x+1)}{x^2 + 4x - 5}$$

$$\text{ж) } \lim_{x\to 0}\frac{e^{\sin^7x}-1}{x^2+3x}$$

$$\text{**} \lim_{x \to 0} \frac{e^{\sin^2 x} - 1}{x^2 + 3x}; \qquad \text{3) } \lim_{x \to 2} \frac{tg(x^2 - 3x + 2)}{x^2 - 4}.$$

Домашние задания.

- 1. Доказать, что функции f(x) = tg2x и $\varphi(x) = arcsinx$ при $x \to 0$ являются бесконечно малыми одного порядка малости.
- 2. Доказать, что функции $f(x) = l \cos x$ и $\varphi(x) = 3x^2$ при $x \to 0$ являются бесконечно малыми одного порядка малости.
- 3. Найти пределы указанных функций:

a)
$$\lim_{x\to 0} \frac{\arcsin 8x}{\ln(1+4x)};$$
 6) $\lim_{x\to 0} \frac{tg3x}{tg8x};$ B) $\lim_{x\to 0} \frac{tg^34x}{\sin^3 10x};$ c) $\lim_{x\to 0} \frac{\sqrt[5]{1+x}-1}{x};$ d) $\lim_{x\to 0} \frac{\sqrt[3]{1+x}-1}{x};$ e) $\lim_{x\to 0} \frac{\ln(3x^2+5x-21)}{x^2-6x+8}.$

Непрерывность функции.

Функция y = f(x) называется непрерывной в точке x_0 , если:

- 1) функция f(x) определена в точке x_{η} и её окрестности;
- 2) существует конечный предел функции f(x) в точке x_0 ;
- 3) этот предел равен значению функции в точке x_0 , т.е. $\lim_{x\to x_0} f(x) = f(x_0)$.

Если положить $x = x_0 + \Delta x$, то условие непрерывности будет равносильно условию $\lim_{\Delta x \to 0} \Delta f(x_0) = \lim_{\Delta x \to 0} (f(x_0) - f(x)) = 0$, т.е. функция y = f(x) непрерывна в точке x_0 тогда и только тогда, когда бесконечно малому приращению Δx аргумента соответствует бесконечно малое приращение $\Delta f(x_0)$ функции. Функция, непрерывная во всех точках некоторой области, называется непрерывной в этой области.

<u>Пример.</u> Доказать непрерывность функции y = sin5x для любого $x \in R$. Решение: Для любого приращения Δx независимой переменной приращение функции $\Delta y = sin5(x + \Delta x) - sin5x = 2cos(5x + \frac{5}{2}\Delta x) \cdot sin\frac{5}{2}\Delta x$. Тогда $\lim_{\Delta x \to 0} \Delta y = 2\lim_{\Delta x \to 0} \left(cos(5x + \frac{5}{2}\Delta x) \right) \cdot \lim_{\Delta x \to 0} \left(sin\frac{5}{2}\Delta x \right) = 0$, так как cos5x ограниченная функция для любого $x \in R$. Следовательно, функция y = sin5x непрерывна на всей числовой прямой.

Точка x_0 , в которой нарушено хотя бы одно из трёх условий непрерывности функции, называется точкой разрыва функции. Если в точке x_0 существуют конечные пределы $f(x_0-0)$ или $f(x_0+0)$, такие, что $f(x_0-0)\neq f(x_0+0)$, то x_0 называется точкой разрыва первого рода. Если хотя бы один из пределов $f(x_0-0)$ или $f(x_0+0)$ не существует или равен бесконечности, то точку x_0 называют точкой разрыва второго рода. Если $f(x_0-0)=f(x_0+0)$, но функция f(x) не определена в точке x_0 или нарушено условие $\lim_{x\to x_0} f(x)=f(x_0)$, то точку x_0 называют

устранимой точкой разрыва функции. Например, для функции $y = \frac{\sin x}{x}$ точка x = 0 является устранимой точкой разрыва.

<u>Пример</u>. Исследовать данную функцию на непрерывность и построить её

график:
$$f(x) = \begin{cases} x^2, -\infty < x \le 0 \\ (x-1)^2, 0 < x \le 2. \\ 5-x, 2 < x < +\infty \end{cases}$$

Решение: Функция f(x) определена и непрерывна на интервалах $(-\infty;0)$, (0,2) и $(2;+\infty)$, где она задана непрерывными элементарными функциями. Следовательно, разрыв возможен только в точках $x_1=0$ и $x_2=2$. Для точки $x_1=0$ имеем:

$$\lim_{x \to 0-0} f(x) = \lim_{x \to 0-0} x^2 = 0,$$

 $\lim_{x\to 0+0} f(x) = \lim_{x\to 0+0} (x-1)^2 = 1,$

$$f(0)=x^2\Big|_{x=0}=0,$$

т.е. функция f(x) в точке $x_i = 0$ имеет разрыв

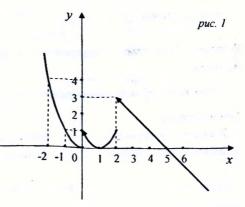
первого рода.

Для точки $x_2 = 2$ находим: $\lim_{x \to 2-0} f(x) = \lim_{x \to 2-0} (x-1)^2 = 1$,

 $\lim_{\substack{x \to 2+0 \\ x \to 2+0}} f(x) = \lim_{\substack{x \to 2+0 \\ x \to 2+0}} (5-x) = 3, \quad f(2) = (x-1)^2 \Big|_{x=2} = 1, \text{ откуда следует, что в}$

точке $x_2 = 2$ функция также имеет разрыв первого рода.

График данной функции изображён на рис. 1.



Пример. Исследовать функцию $f(x) = 8^{\frac{1}{x-3}} + 1$ на непрерывность в точках $x_1 = 3$, $x_2 = 4$.

Решение: Для точки
$$x_1 = 3$$
 имеем: $\lim_{x \to 3-0} f(x) = \lim_{x \to 3-0} \left(8^{\frac{1}{x-3}} + 1 \right) = 8^{-\kappa} + 1 = 1$,

$$\lim_{x \to 3+0} f(x) = \lim_{x \to 3+0} \left(8^{\frac{1}{x-3}} + 1 \right) = 8^{\infty} + 1 = \infty, \text{ т.е. в точке } x_1 = 3 \text{ функция } f(x)$$

терпит бесконечный разрыв ($x_1 = 3$ – точка разрыва второго рода).

Для точки
$$x_2 = 4$$
 имеем: $\lim_{x \to l \to 0} f(x) = \lim_{x \to l \to 0} \left(8^{\frac{l}{x-3}} + 1 \right) = 8^l + l = 9$,

$$\lim_{x \to t+0} f(x) = \lim_{x \to t+0} \left(8^{\frac{t}{x-3}} + 1 \right) = 8^t + 1 = 9, \ f(4) = 8^{\frac{t}{t-3}} + 1 = 9.$$
 Следовательно, в точке $x_2 = 4$ функция $f(x)$ — непрерывна.

Задания.

1. Дана функция $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & ecnu \ x \neq 3 \end{cases}$. При каких значениях A

функция f(x) будет непрерывной в точке x=3? Построить график функции.

- 2. Установить область непрерывности функции $y = \frac{3x+3}{2x+4}$ и найти её точки разрыва.
- 3. Доказать, что функция $y = x^3$ непрерывна при всех x.
- 4. Доказать, что функция y = cos x непрерывна на всей числовой оси.

5. Дана функция
$$f(x) = \begin{cases} x^2 + 1, \ ecnu \ x < 0 \\ sin x, \ ecnu \ 0 \le x < \frac{\pi}{2}; \ haйти точки разрыва \\ x - \frac{\pi}{2} + 1, \ ecnu \ x \ge \frac{\pi}{2} \end{cases}$$

функции и построить её график.

6. Исследовать на непрерывность данную функцию и построить её график:

$$f(x) = \begin{cases} x + 4, & ecnu \ x < -1 \\ x^2 + 2, & ecnu - 1 \le x < 1. \\ 2x, & ecnu \ x \ge 1 \end{cases}$$

- 7. Исследовать на непрерывность функцию $y = 3^{\frac{1}{x-1}} + 1$ в точках $x_i = 1$ и $x_2 = -1$.
- 8. Исследовать на непрерывность функцию $f(x) = \frac{2x+4}{3x+9}$ в точках $x_i = -1$ и $x_i = -3$. Сделать схематический чертёж.
- 9. Дана функция $f(x) = \begin{cases} l, \ ecnu \ x < 0 \\ cos \ x, \ ecnu \ 0 \le x < \frac{\pi}{2} \end{cases}$. Исследовать её на $l-x, \ ecnu \ x \ge \frac{\pi}{2}$

непрерывность. Сделать схематический чертёж.

10. Исследовать на непрерывность функцию $f(x) = \frac{3x-2}{x+2}$ в точках $x_i = 0$ и $x_2 = -2$. Сделать схематический чертёж.

Домашние задания.

- 1. Доказать, что функция $y = \cos x^2$ непрерывна при любом x.
- 2. Показать, что для функции $f(x) = \frac{x-2}{|x-2|}$ точка x=2 является точкой разрыва 1-го рода.
- 3. Показать, что для функции $f(x) = \frac{6}{(x-3)^2}$ имеет разрыв в точке x = 3.
- 4. Найти точку разрыва функции $f(x) = \frac{8}{x+4}$.
- 5. Показать, что функция $y = \frac{x^2 9}{x 3}$ имеет устранимый разрыв в точке x = 3.
- 6. Исследовать данную функцию на непрерывность и построить ей график:

$$f(x) = \begin{cases} x + 1, & ecnu \ x \le 0 \\ (x + 1)^2, & ecnu \ 0 < x \le 2 \\ -x + 4, & ecnu \ x > 2 \end{cases}$$

7. Исследовать данную функцию на непрерывность в указанных точках:

$$f(x) = 6^{\frac{1}{x-3}} + 3$$
; $x_1 = 3$, $x_2 = 4$.

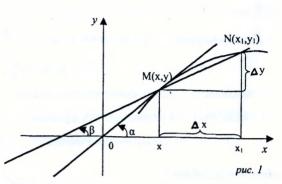
8. Исследовать данную функцию на непрерывность в указанных точках:

$$f(x) = \frac{x+5}{x-2}$$
; $x_1 = 3$, $x_2 = 2$.

Нахождение производных.

Приращением функции y = f(x) называется разность $\Delta y = f(x + \Delta x) - f(x)$, где Δx — приращение аргумента x. Из рис. 1 видно, что $\frac{\Delta y}{\Delta x} = tg\beta$.

Предел отношения приращения функции Δy к приращению аргумента Δx при произвольном стремлении Δx к нулю называется производной функции y = f(x) в точке x и обозначается одним



из символов: y', f'(x), $\frac{dy}{dx}$. Таким образом, по определению,

$$y' = f'(x) = \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Если указанный предел существует, то функцию f(x) называют $\partial u \phi \phi$ еренцируемой в точке x, а операцию нахождения производной $y' - \partial u \phi \phi$ еренцированием. Из рис. 1 и определения производной следует, что производная в точке x равна тангенсу угла α наклона касательной, проведённой в точке M(x;y) к графику функции y = f(x).

Легко показать, что с физической точки зрения производная y' = f'(x) определяет скорость изменения функции в точке x относительно аргумента x.

Если C — постоянное число и u = u(x), v = v(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

- 1) C' = 0;
- 2) x' = 1;
- 3) $(u \pm v)' = u' \pm v'$;
- 4) (Cu)' = Cu';
- 5) $(uv)' = u'v \pm uv'$;

6)
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \quad (v \neq 0);$$

7)
$$\left(\frac{C}{v}\right)' = \frac{-Cv'}{v^2} \quad (v \neq 0);$$

- 8) если y = f(u), $u = \varphi(x)$, т.е. $y = f(\varphi(x))$ сложная функция, составленная из дифференцируемых функций, то $y'_{\tau} = y'_{u} \cdot u'_{x}$, или $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$;
- 9) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y) и $\frac{dg}{dy} = g'(y) \neq 0$, то $f'(x) = \frac{1}{g'(y)}$.

Таблица производных основных элементарных функций:

1)
$$(u^{\alpha})' = \alpha u^{\alpha-1} \cdot u' \ (\alpha \in R);$$

$$2) \left(a^{u}\right)' = a^{u} \ln a \cdot u';$$

$$3) \left(e^{u}\right)' = e^{u} \cdot u';$$

4)
$$(\log_a u)' = \frac{1}{u \ln a} \cdot u';$$

5)
$$(\ln u)' = \frac{1}{u} \cdot u';$$

6)
$$(\sin u)' = \cos u \cdot u'$$
;

7)
$$(\cos u)' = -\sin u \cdot u';$$

8)
$$(tgu)' = \frac{1}{\cos^2 u} \cdot u';$$

9)
$$\left(ctgu\right)' = -\frac{1}{\sin^2 u} \cdot u';$$

$$10) \left(\arcsin u\right)' = \frac{1}{\sqrt{1-u^2}} \cdot u';$$

11)
$$\left(arccos u\right)' = -\frac{1}{\sqrt{1-u^2}} \cdot u';$$

12)
$$\left(\operatorname{arctg} u\right)' = \frac{1}{1+u^2} \cdot u';$$

13)
$$\left(\operatorname{arcctg} u\right)' = -\frac{1}{1+u^2} \cdot u';$$

14)
$$(sh u)' = ch u \cdot u';$$

$$15) (ch u)' = sh u \cdot u';$$

$$16) \left(th \, u\right)' = \frac{1}{ch^2 u} \cdot u';$$

$$17) \left(cth \, u \right)' = -\frac{1}{sh^2 u} \cdot u'.$$

<u>Пример.</u> Найти производную функции $y = \frac{2x}{3x+1}$, воспользовавшись определением производной.

Решение: При любом приращении
$$\Delta x$$
 имеем: $\Delta y = \frac{2(x + \Delta x)}{3(x + \Delta x) + 1} - \frac{2x}{3x + 1} = \frac{6x^2 + 2x + 6x\Delta x + 2\Delta x - 6x^2 - 6x\Delta x - 2x}{(3(x + \Delta x) + 1)(3x + 1)} = \frac{2\Delta x}{(3x + 3\Delta x + 1)(3x + 1)}.$
Тогда $y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{2}{(3x + 3\Delta x + 1)(3x + 1)} = \frac{2}{(3x + 1)^2}.$

В следующих примерах требуется продифференцировать указанные функции.

Пример.
$$y = 9x^{5} - \frac{4}{x^{3}} + \sqrt[3]{x^{7}} - 3x + 4$$
.
 $y' = 9 \cdot 5x^{4} - 4 \cdot (-3) \cdot x^{-4} + \frac{7}{3}x^{\frac{4}{3}} - 3 = 45x^{4} + \frac{12}{x^{4}} + \frac{7}{3}\sqrt[3]{x^{4}} - 3$.

Пример.
$$y = \sqrt[4]{(2x^2 - 3x + 1)^3} - \frac{6}{(x + 1)^3}$$
.
 $y' = \frac{3}{4}(2x^2 - 3x + 1)^{\frac{1}{4}}(4x - 3) - 6(-3)(x + 1)^{-4} = \frac{3}{4}\frac{4x - 3}{\sqrt[4]{2x^2 - 3x + 1}} + \frac{18}{(x + 1)^4}$.

$$\underline{\Pi pumep}. \ \ y = cth^2 3x \cdot arctg\sqrt{x}.$$

$$y' = 2cth 3x \cdot \left(-\frac{1}{sh^2 3x}\right) \cdot 3arctg\sqrt{x} + cth^2 3x \cdot \frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}} = \frac{-6cth 3x \cdot arctg\sqrt{x}}{sh^2 3x} + \frac{cth^2 3x}{(1+x) \cdot 2\sqrt{x}}.$$

$$\frac{\Pi_{DUMED}}{y' = 3 \frac{1}{x^2 - 5} \cdot 2x(x+3)^7 - 7(x+3)^6 \cdot \ln(x^2 - 5)}{(x+3)^{16}} = 3 \frac{\frac{2x(x+3)}{x^2 - 5} - 7\ln(x^2 - 5)}{(x+3)^8}.$$

Задания. Найти производные указанных функций:

1.
$$y = 5x^4 - 3\sqrt[3]{x^3} + \frac{7}{x^5} + 4$$
; 2. $y = 2x^5 - \frac{4}{x^3} + \frac{1}{x} + 3\sqrt{x}$;
3. $y = \sqrt[3]{3x^4 + 2x - 5} + \frac{4}{(x - 2)^5}$; 4. $y = (x^5 + 3x - 1)^4$;

5.
$$y = x^3 \sin x$$
;

6.
$$y = \frac{x^4 + 1}{x^4 - 1}$$
;

6.
$$y = \frac{x^4 + 1}{x^4 - 1}$$
; 7. $y = \sqrt[3]{\left(\frac{x^3 + 1}{x^3 - 1}\right)^2}$;

8.
$$y = x^3 \sin 3x$$
;

9.
$$y = e^{x} tg 4x$$
;

10.
$$y = \sqrt[3]{x^4 + \sin^4 x}$$

11.
$$y = x \cdot ctg^2 7x$$
;

12.
$$v = 2^{-\cos^4 5x}$$
:

13.
$$v = e^{arctg\sqrt{x}}$$
:

14.
$$y = (2^{x^4} - tg^4x)^3$$
; 15. $y = \ln^5(x - 2^{-x})$; 16. $y = \sin(tg\sqrt{x})$;

15.
$$y = ln^{5}(x-2^{-x});$$

16.
$$v = \sin(tg\sqrt{x})$$
:

17.
$$y = \sin^2 x \cdot 2^{x^2}$$
; 18. $y = 2^{\frac{x}{\ln x}}$;

18.
$$y = 2^{\frac{1}{\ln x}}$$

19.
$$v = arctg\sqrt{I + x^2}$$

20.
$$y = e^{-\sqrt{x^2+3x+2}}$$
:

21.
$$y = (2^{ig \, 3x} + tg \, 3x)^2$$
; 22. $y = 3^{ig^3 \, 5x}$;

19.
$$y = arcigvi$$

23.
$$y = \frac{e^{arccos^3 x}}{\sqrt{x+5}}$$

24.
$$y = sh^3x^2$$

23.
$$y = \frac{e^{arccst^3 x}}{\sqrt{x+5}}$$
; 24. $y = sh^3 x^2$; 25. $y = \frac{arcctg^4 5x}{sh\sqrt{x}}$;

26.
$$y = \sin^3 2x \cdot \cos 8x^5$$
;

26.
$$y = \sin^3 2x \cdot \cos 8x^5$$
; 27. $y = \operatorname{arcctg}^2 5x \cdot \ln(x-4)$;

28.
$$y = \frac{\log_5(3x-7)}{\cot 7x^3}$$

28.
$$y = \frac{\log_3(3x-7)}{\cot^2(7x^3)}$$
; 29. $y = \sqrt{\frac{2x+1}{2x-1}} \cdot \log_2(x-3x^2)$.

Домашние задания. Найти производные следующих функций:

$$\sqrt{1. \ y = \frac{3}{x} + \sqrt[5]{x^2 - 4x^3} + \frac{2}{x^4}}; \qquad \sqrt{2. \ y = 3x^4 + \sqrt[3]{x^5} - \frac{2}{x} - \frac{4}{x^2}};$$

$$\sqrt{2}. \ \ y = 3x^4 + \sqrt[3]{x^5} - \frac{2}{x} - \frac{4}{x^2}$$

$$\sqrt{3}. \ \ y = \sqrt[3]{(x-3)^4} - \frac{3}{2x^3 - 3x + 1}$$

$$\sqrt{5}. \ y = \cos^5 3x \cdot tg(4x+1)^3;$$

6.
$$y = tg^4 x \cdot \arcsin 4x^5$$

7.
$$y = arctg^3 2x \cdot ln(x+5)$$
;

8.
$$y = \arccos^4 x \cdot \ln(x^2 + x - 1);$$

9.
$$y = (x-2)^4 \cdot \arcsin 5x^4$$
;

$$v = 10. \ y = 2^{-x^3} - arctg \ 7x^4;$$

11.
$$y = (3x - 4)^3 \cdot \arccos 3x^2$$
;

12.
$$y = sh^3 4x \cdot \arccos \sqrt{x}$$
;

$$\sqrt{13}. \ y = \frac{(x-4)^3}{e^{arccig x}};$$

14.
$$y = \frac{e^{-x^3}}{\sqrt{x^2 + 5x - 1}}$$
;

15.
$$y = \frac{\ln(5x-3)}{4tg \ 3x^4}$$
;

16.
$$y = \frac{\ln(7x+2)}{5\cos 42x}$$
;

17.
$$y = \frac{arctg^3 2x}{ch\left(\frac{1}{x}\right)}$$
;

$$18. \ y = \frac{\arccos 3x^4}{th^2x};$$

19.
$$y = \frac{8arctg(2x+3)}{(x+1)^3}$$

19.
$$y = \frac{8arctg(2x+3)}{(x+1)^3}$$
; 20. $y = \frac{7arccos(4x-1)}{(x+2)^4}$;

21.
$$y = \sqrt{\frac{3x-1}{3x+1}} \cdot \log_3(7x^2-4);$$
 22. $y = \sqrt[3]{\frac{2x-5}{2x+3}} \cdot \lg(4x+7).$

22.
$$y = \sqrt[3]{\frac{2x-5}{2x+3}} \cdot \lg(4x+7)$$
.

Логарифмическое дифференцирование.

Логарифмической производной функции y = f(x) называется производная от логарифма этой функции, т.е. $(\ln y)' = \frac{y'}{y'} = \frac{f'(x)}{f(x)}$. Применение предварительного логарифмирования функции упрощает нахождение её производной.

<u>Пример</u>. Найти производную степенно-показательной функции $y = u^{r}$, где $u = \varphi(x), v = f(x).$

Решение: Логарифмируя, получим: ln y = v ln u. Дифференцируем обе части последнего равенства по x: $(\ln y)' = v' \ln u + v (\ln u)'$, или $\frac{1}{v}y' = v' \ln u + v \frac{1}{u}u'$, откуда $y' = y \left(v' \ln u + v \frac{1}{u} u' \right)$, или $y' = u' \left(v' \ln u + \frac{v}{u} u' \right)$.

<u>Пример</u>. Найти производную функции $y = (\sin 2x)^{x^3}$.

Решение: Логарифмируя данную функцию, получаем: $ln y = x^3 ln sin 2x$. Дифференцируем обе части последнего равенства по х:

$$(\ln y)' = (x^3)' \ln \sin 2x + x^3 (\ln \sin 2x)', \text{ откуда } \frac{y'}{y} = 3x^2 \ln \sin 2x + \frac{x^3}{\sin 2x} 2\cos 2x.$$

Далее,
$$y' = y \left(3x^2 \ln \sin 2x + \frac{x^3}{\sin 2x} 2\cos 2x \right)$$
. Окончательно имеем:

$$y' = (\sin 2x)^{x^3} \left(3x^2 \ln \sin 2x + \frac{x^3}{\sin 2x} 2\cos 2x \right).$$

Задания. Найти производные указанных функций:

1.
$$y = (\sin 3x)^{\cos 5x}$$
; 2. $y = (x^3 + 1)^{(g - 3x)}$; 3. $y = (\arccos(x + 2))^{(g - 3x)}$

4.
$$y = (arcsin 2x)^{clg(x+1)}$$
; 5. $y = \frac{\sqrt{x+7}(x-3)^4}{(x+2)^5}$; 6. $y = (arctg(x+7))^{cos 2x}$;

7.
$$y = (tg 3x)^{x^4}$$
; 8. $y = (cos 5x)^{arctg \sqrt{x}}$; 9. $y = (arcctg(x-3))^{sin 4x}$; 10. $y = (1+x^4)^{tg/x}$; 11. $y = (\sqrt{3x+2})^{atcctg 3x}$; 12. $y = (ctg(3x-2))^{arcsin 3x}$;

10.
$$y = (1 + x^4)^{lg/x}$$
; 11. $y = (\sqrt{3x + 2})^{alcelg/3x}$; 12. $y = (ctg(3x - 2))^{arcsin/3x}$;

13.
$$y = (ctg \, 5x)^{x^3-l}$$
; 14. $y = (ln(x+3))^{\sin\sqrt{x}}$; 15. $y = (tg(4x-3))^{\arccos 2x}$;

16.
$$y = \frac{(x-3)^5(x+2)^3}{\sqrt{(x-1)^3}}$$
; 17. $y = \frac{(x-2)^3\sqrt{(x+1)^5}}{(x-4)^2}$.

Домашние задания. Найти производные следующих функций:

1.
$$y = (\log_{2}(x+4))^{\log_{2} 7x}$$
;

2.
$$y = (sh 3x)^{arctg(x+2)}$$
;

3.
$$y = (\cos(2x-5))^{\arcsin 5x}$$
; 4. $y = (\sin(7x+4))^{-1}$

4.
$$v = (\sin(7x + 4))^{\arcsin x}$$
;

5.
$$y = \frac{(x-3)^2 \sqrt{x+4}}{(x+2)^7}$$

5.
$$y = \frac{(x-3)^2 \sqrt{x+4}}{(x+2)^7}$$
; 6. $y = \frac{(x-7)^{10} \sqrt{3x-1}}{(x+3)^3}$.

Производные функций, заданных неявно и параметрически.

Если для функции y = f(x) производная $y' \neq 0$, то производная обратной функции $x = f^{-1}(y)$ есть $x'_y = \frac{1}{y'_x}$, или $\frac{dx}{dy} = \frac{1}{\left(\frac{dy}{dy}\right)}$.

Пример. Найти x'_y , если y = x + lnx.

Решение: Имеем
$$y'_x = l + \frac{l}{x} = \frac{x+1}{x}$$
; следовательно, $x'_y = \frac{x}{x+1}$.

Если зависимость между x и y задана в неявной форме F(x;y) = 0, то для нахождения $y'_{x} = y'$ в простейших случаях достаточно:

- 1) вычислить производную по x от левой части уравнения F(x;y) = 0, считая у функцией от х;
- 2) приравнять эту производную к нулю, т.е. положить $\frac{d}{dx}F(x;y)=0$;
- 3) решить полученное уравнение относительно y'.

Пример. Найти производную функции у, если $x^3 + y^3 - 3xy = 0$. Решение: Дифференцируем обе части данного уравнения, считая у

функцией от x: $3x^2 + 3y^2y' - 3y - 3xy' = 0$. Отсюда находим: $y' = \frac{x^2 - y}{x^2 - y^2}$.

Если зависимость между функцией у и аргументом х задана посредством некоторого *параметра* t: $\begin{cases} x = \varphi(t) \\ v = w(t) \end{cases}$, то $y'_x = \frac{y'_t}{x'_t}$, или, в других

обозначениях,
$$\frac{dy}{dx} = \frac{\begin{pmatrix} dy \\ dt \end{pmatrix}}{\begin{pmatrix} dx \\ dt \end{pmatrix}}$$
.

<u>Пример.</u> Найти $\frac{dy}{dx}$, если $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$

Решение: Имеем $\frac{dx}{dt} = -2 \sin t$ и $\frac{dy}{dt} = 2 \cos t$, откуда $\frac{dy}{dx} = \frac{2 \cos t}{-2 \sin t} = -ctgt$.

Задания.

- 1. Найти производную x'_{v} , если
 - a) $y = 3x + x^2$; 6) $y = x \frac{1}{2}sinx$; b) $y = 0.1x + e^{\frac{x}{2}}$.
- 2. Найти производную $y' = \frac{dy}{dx}$ от неявных функций y:
 - a) $y^2 = x + ln\left(\frac{y}{x}\right)$; 6) $xy^2 y^3 = 4x 5$; B) $x^2y^2 + x = 5y$;
 - r) $x^4 + x^2y^2 + y = 4$; n) $\sin y = xy^2 + 5$.
- 3. Определить $y' = \frac{dy}{dx}$ для функций y, заданных параметрически:
 - a) $\begin{cases} x = \frac{\ln t}{t}; \\ y = t^2 \ln t \end{cases}$ 6) $\begin{cases} x = \arccos t \\ y = \sqrt{1 t^2}; \end{cases}$ B) $\begin{cases} x = \frac{1}{t + 1} \\ y = \left(\frac{t}{t + 1}\right)^2; \end{cases}$
 - r) $\begin{cases} x = 5 \sin^3 t \\ y = 3 \cos^3 t \end{cases}$ n) $\begin{cases} x = e^{-3t} \\ y = e^{8t} \end{cases}$
- 4. Найти производную функции y, заданной неявно: $e^{x^2y^2} x^4 + y^4 = 5$.
- 5. Определить производную $y' = \frac{dy}{dx}$ для функции y, заданной

параметрически: $\begin{cases} x = t^3 + 3t + 1 \\ y = 3t^5 + 5t^3 + 1 \end{cases}$

- 6. Найти производную функции y, заданной неявно уравнением $y^2 + x^2 sin(x^2y^2) = 5$.
- 7. Определить производную $y' = \frac{dy}{dx}$ для функции y, заданной параметрически: $\begin{cases} x = e' \cos t \\ y = e' \sin t \end{cases}$
- 8. Найти производную функции y, заданной неявно: $2^x + 2^y = 2^{x+y}$.

9. Определить производную $y' = \frac{dy}{dx}$ для функции y, заданной параметрически: $\begin{cases} x = 2(t - \sin t) \\ y = 2(1 - \cos t) \end{cases}$

Домашние задания.

Найти производную $y' = \frac{dy}{dx}$ от неявных функций y:

a)
$$x^3 + y^3 = 5x$$
; 6) $\sqrt{x} + \sqrt{y} = \sqrt{7}$; b) $y^2 = \frac{x - y}{x + y}$;

r)
$$sin^2(3x + y^2) = 5$$
; A) $ctg^2(x + y) = 5x$.

Производные высших порядков.

Производной второго порядка, или второй производной функции y = f(x) называется производная от её первой производной, т.е. (y')'. Обозначается вторая производная одним из следующих символов: y'', f''(x), $\frac{d^2y}{dx^2}$. Если зависимость функции y от аргумента x задана в параметрическом виде уравнениями $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$, то $\frac{dy}{dx} = \frac{y'(t)}{x'}$, $\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{y'}{x'}\right) \cdot \frac{1}{x'}$, где штрих обозначает производную по t.

Производной *п-го* порядка функции y = f(x) называется производная от производной (*n-1*)-го порядка данной функции. Для *n*-ой производной употребляются следующие обозначения: $y^{(n)}$, $f^{(n)}(x)$, $\frac{d^n y}{dx^n}$.

Таким образом,
$$y^{(n)} = (y^{(n-1)}) = \frac{dy^{(n-1)}}{dx}$$
.

Если функции $u = \varphi(x)$ и $v = \psi(x)$ имеют производные до n-го порядка включительно, то для вычисления n-ой производной произведения этих функций можно пользоваться ϕ ормулой Лейбница:

$$(uv)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{1 \cdot 2}u^{(n-2)}v'' + \dots + uv^{(n)}.$$

Пример. Найти вторую производную функции $y = ln(x + \sqrt{x^2 + a^2})$.

Решение:
$$y' = \frac{1}{x + \sqrt{x^2 + a^2}} \left(1 + \frac{x}{\sqrt{x^2 + a^2}} \right) = \frac{\sqrt{x^2 + a^2} + x}{(x + \sqrt{x^2 + a^2})\sqrt{x^2 + a^2}} = \frac{1}{\sqrt{x^2 + a^2}}; \quad y'' = -\frac{1}{2} (x^2 + a^2)^{\frac{3}{2}} \cdot 2x = -\frac{x}{\sqrt{(x^2 + a^2)^3}}.$$

<u>Пример</u>. Найти производную n-го порядка функции y = sin x.

Решение: Дифференцируя последовательно п раз данную функцию,

находим:
$$y' = cos x = sin(x + \frac{\pi}{2});$$

 $y'' = cos(x + \frac{\pi}{2}) = sin(x + 2 \cdot \frac{\pi}{2});$
 $y''' = cos(x + 2 \cdot \frac{\pi}{2}) = sin(x + 3 \cdot \frac{\pi}{2});$
 $y^{(n)} = cos(x + (n - 1) \cdot \frac{\pi}{2}) = sin(x + n \cdot \frac{\pi}{2}).$

Решение:
$$\frac{dy}{dx} = \frac{3t^2 + 2}{\frac{1}{t}} = 3t^3 + 2t$$
; $\frac{d^2y}{dx^2} = \frac{9t^2 + 2}{\frac{1}{t}} = 9t^3 + 2t$.

<u>Пример</u>. Найти вторую производную функции, заданной неявно: $x^2 + y^2 = 1$.

Решение: На основании правила дифференцирования сложной функции

имеем:
$$2x + 2yy' = 0$$
; отсюда $y' = -\frac{x}{y}$ и $y'' = -\left(\frac{x}{y}\right)x = -\frac{y - xy'}{y^2}$. Подставляя

вместо y' его значения, окончательно получим: $y'' = -\frac{y^2 + x^2}{y^3} = -\frac{1}{y^3}$.

Задания.

- 1. Найти вторую производную функции $y = (1 + 4x^2) \cdot arctg \ 2x$.
- 2. Для данной функции y и аргумента x_o вычислить $y'''(x_o)$:

- a) $y = \sin^2 x$, $x_0 = \frac{\pi}{2}$;
- 6) $y = ln(2 + x^2), x_0 = 0$;
- B) y = arctg x, $x_0 = 1$;
- r) $y = e^x \cos x$, $x_0 = 0$;
- д) $y = e^x \sin 2x$, $x_0 = 0$;
- c) $y = e^{-x} \cos x$, $x_0 = 0$;
- \mathbf{x}) $y = \sin 2x$, $x_0 = \pi$;
- 3) $y = (2x+1)^3$, $x_0 = 1$;
- $y = ln(1+x), x_0 = 2.$
- 3. Записать формулу для производной п-го порядка указанной функции:
 - a) $y = \ln x$; 6) $y = \frac{1}{x}$; B) $y = 2^x$; $y = \cos x$; $y = \frac{1}{x+5}$;
 - e) $y = e^{-2x}$; x) $y = \sqrt{x}$; 3) $y = xe^{3x}$; $y = \ln(3+x)$.
- 4. Найти у' и у"

a)
$$\begin{cases} x = (2t+3), \\ y = 3t^3 \end{cases}$$

$$6) \begin{cases} x = 2\cos^2 t \\ y = 3\sin^2 t \end{cases}$$

a)
$$\begin{cases} x = (2t+3) \\ y = 3t^3 \end{cases}$$
; 6) $\begin{cases} x = 2\cos^2 t \\ y = 3\sin^2 t \end{cases}$; B) $\begin{cases} x = 6\cos^3 t \\ y = 2\sin^3 t \end{cases}$

r)
$$\begin{cases} x = \frac{1}{t+2} \\ y = \left(\frac{t}{t+2}\right)^2; & \text{n} \end{cases} \begin{cases} x = e^{-2t} \\ y = e^{4t}; \end{cases}$$
 e)
$$\begin{cases} x = \sqrt{t} \\ y = \sqrt[4]{t}; \end{cases}$$

$$\mathbb{A}) \begin{cases} x = e^{-2t} \\ y = e^{4t} \end{cases}$$

e)
$$\begin{cases} x = \sqrt{t} \\ y = \sqrt[5]{t} \end{cases}$$

$$\mathbf{x} = \frac{2t}{1+t^3};$$

$$\mathbf{y} = \frac{t^2}{1+t^2};$$

$$\begin{array}{l}
\mathbf{x} = \frac{2t}{1+t^{3}}; \\
y = \frac{t^{2}}{1+t^{2}};
\end{array}$$

$$\mathbf{y} = \frac{t+1}{\sqrt{t^{2}-1}}; \quad \mathbf{y} = \frac{\ln t}{t}.$$

Найти у' и у":

a)
$$y^2 = 8x$$
;

a)
$$y^2 = 8x$$
; 6) $\frac{x^2}{5} + \frac{y^2}{7} = I$; B) $y = x + arctg y$;

$$\mathbf{B}) \ y = x + \operatorname{arctg} y$$

r)
$$\frac{x^2}{5} + \frac{y^2}{3} = 1$$
; a) $y^2 = 5x - 4$; e) $arctg \ y = 4x + 5y$;

$$д) y^2 = 5x - 4$$

e)
$$arctg y = 4x + 5y$$
;

$$\mathbf{x}$$
) $y^2 - x$

3)
$$3x + \sin y = 5y$$

ж)
$$y^2 - x = \cos y$$
; 3) $3x + \sin y = 5y$; и) $tg y = 3x + 5y$;

- K) xy = ctg y.
- 6. Найти производную второго порядка функции $y = (x^2 + 1) \cdot \ln(1 + x^2)$.
- 7. Найти вторую производную функции, заданной уравнениями: $\int y = t^3 + t$ $x = t^2 - 2t$
- 8. Вычислить значение второй производной функции у, уравнением $e^y + y - x = 0$, в точке $M_1(1;0)$.
- 9. Найти производную второго порядка функции $y = e^{-3x} (\cos 2x + \sin 2x)$.

- 10. Найти вторую производную функции, заданной уравнениями: $y = t^3 + t^2 + 1$ $\begin{cases} x = \frac{I}{x} \end{cases}$
- 11. Вычислить значение второй производной функции у, заданной уравнением $x^3 + y^3 - xy = 1$, в точке $M_1(1;1)$.
- 12. Найти вторую производную функции $v = \sqrt{1-4x^2} \cdot arcsin 2x$.
- 13. Найти производную второго порядка функции, заданной уравнениями: $y = (2t+1)\cos t$ x = lnt
- 14. Вычислить значение второй производной функции у, заданной уравнением $x^2 + 2y^2 - xy + x + y = 4$, в точке $M_1(1;1)$.

Домашние задания.

1. Для данной функции y и аргумента x_0 вычислить $y'''(x_0)$:

a)
$$y = \frac{1}{2}x^2e^x$$
, $x_0 = 0$;

$$6) y = \arcsin x, x_0 = 0;$$

B)
$$y = (5x - 4)^5$$
, $x_0 = 2$; $y = x \sin x$, $x_0 = \frac{\pi}{2}$;

$$\Gamma) \ y = x \sin x, \ x_0 = \frac{\pi}{2}$$

д)
$$y = x^2 \ln x$$
, $x_0 = \frac{1}{3}$

a)
$$y = x^2 \ln x$$
, $x_0 = \frac{1}{3}$; e) $y = x \sin 2x$, $x_0 = -\frac{\pi}{4}$;

ж)
$$y = x\cos 2x$$
, $x_0 = \frac{\pi}{12}$; 3) $y = x^4 \ln x$, $x_0 = 1$;

3)
$$y = x^4 \ln x$$
, $x_0 = 1$

u)
$$y = x + arctg x$$
, $x_0 = 1$; x) $y = cos^2 x$, $x_0 = \frac{\pi}{4}$.

$$(x) y = \cos^2 x, x_0 = \frac{\pi}{4}.$$

2. Записать формулу для производной n-го порядка указанной функции:

a)
$$y = ln(5 + x)$$

$$6) y = e^{4x};$$

a)
$$y = \ln(5 + x^2)$$
; 6) $y = e^{4x}$; B) $y = \frac{1}{x - 7}$;

r)
$$v = 5^x$$
:

д)
$$y = e^{-5x}$$
;

r)
$$y = 5^x$$
; e) $y = \ln(4 + x)$;

ж)
$$y = \frac{1}{x-6}$$
; з) $y = 10^x$; и) $y = \cos 3x$.

3)
$$y = 10^x$$

$$y = \cos 3x$$

3. Найти у' и у":

a)
$$\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}$$

$$6) \begin{cases} x = t^4 \\ y = \ln t \end{cases}$$

a)
$$\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}$$
6)
$$\begin{cases} x = t^4 \\ y = \ln t \end{cases}$$
B)
$$\begin{cases} x = 3(t - \sin t) \\ y = 3(1 - \cos t) \end{cases}$$
C)
$$\begin{cases} x = 5\cos^2 t \\ y = 3\sin^2 t \end{cases}$$
D)
$$\begin{cases} x = arc\sin t \\ y = \sqrt{1 - t^2} \end{cases}$$
e)
$$\begin{cases} x = arctgt \\ y = \ln(1 + t^2) \end{cases}$$

$$\Gamma) \begin{cases} x = 5\cos^2 t \\ y = 3\sin^2 t \end{cases}$$

$$\pi) \begin{cases} x = arcsint \\ y = \sqrt{1 - t^2}; \end{cases}$$

e)
$$\begin{cases} x = arctg t \\ y = ln(1+t^2) \end{cases}$$

4. Найти v' и v":

a)
$$y = e^y + 4x$$
;

$$6) \ln y - \frac{y}{x} = 7;$$

a)
$$y = e^{y} + 4x$$
; 6) $\ln y - \frac{y}{x} = 7$; B) $y^{2} + x^{2} = \sin y$;

$$\Gamma$$
) $e^{y} = 4x - 7y$;

e)
$$sin y = 7x + 3y$$
;

ж)
$$tg y = 4y - 5x$$
; з) $y = 7x - ctg y$;

$$3) y = 7x - ctg y$$

и)
$$xy - 6 = \cos y$$
;

$$\kappa$$
) $3y = 7 + xy^3$.

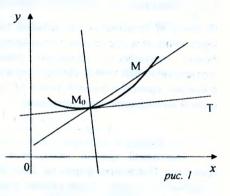
Приложения производной.

Касательной кривой y = f(x) в её точке $M_a(x_a; y_a)$ называется предельное положение $M_{\mu}T$ секущей MM_{μ} , когда точка M стремится к M_{α} вдоль данной кривой.

Уравнение касательной к кривой y = f(x) B TOURE $M_0(x_0; y_0)$ имеет вид:

$$y-y_0=f'(x_0)(x-x_0).$$

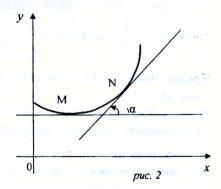
Нормалью к кривой в точке $M_n(x_0; y_0)$ называется прямая,



проходящая через M_{μ} и перпендикулярная к касательной в данной точке. Уравнение нормали к кривой y = f(x) в точке $M_{\theta}(x_0; y_0)$ имеет вид:

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0).$$

Кривизной кривой в её точке М называется предел абсолютной величины отношения угла $\Delta \alpha$ между касательными в точках М и N кривой к длине дуги $MN = \Delta s$, когда $N \to M$, т.е $k = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right|$ угол α выражен в радианах. y = f(x)Кривизна кривой вычисляется по формуле:



$$k = \frac{|y''|}{(1+y'^2)^{\frac{1}{2}}}.$$

Если кривая задана параметрическими уравнениями $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ то её кривизна определяется формулой:

$$k = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

Радиусом кривизны кривой в точке называется величина, обратная её кривизне в этой точке. Если радиус кривизны обозначить через R, то $k=\frac{1}{R}$. Окружностью кривизны (соприкасающейся окружностью) кривой в её точке M называется предельное положение окружности, проходящей через точку M и две другие точки кривой L и N, когда $L \to M$ и $N \to M$. Радиус окружности кривизны равен радиусу кривизны кривой в соответствующей точке. Центр окружности кривизны называется центром кривизны кривой в данной точке M. Координаты X и Y центра кривизны кривой вычисляются по формулам:

$$X = x - \frac{y'(1+y'^2)}{y''}; \qquad Y = y + \frac{1+y'^2}{y''}.$$

Эволютой кривой называется геометрическое место её центров кривизны. Последние формулы дают параметрические уравнения эволюты с параметром x или y. Если кривая задана параметрически, то уравнения её эволюты будут иметь вид:

$$X = x - y' \frac{x'^2 + y'^2}{x'y'' - y'x''}; \quad Y = y + x' \frac{x'^2 + y'^2}{x'y'' - y'x''}.$$

Эвольвентой кривой называется такая кривая, для которой данная кривая является эволютой.

Если s = s(t) — закон прямолинейного движения материальной точки, то $s' = \frac{ds}{dt}$ — скорость, а $s'' = \frac{d^2s}{dt^2}$ — ускорение этой точки.

<u>Пример</u>. Написать уравнение касательной и нормали к кривой $f(x) = x^3$ в точке $M_o(2;8)$.

Решение: Прежде всего, точка M_{θ} лежит на кривой, так как её координаты удовлетворяют данному уравнению. Находим производную данной функции и её значение при $x_{\theta}=2$: $f'(x)=\left(x^{3}\right)=3x^{2}$; $f'(x_{\theta})=3\cdot 2^{2}=12$. Подставляя значения $x_{\theta}=2$, $y_{\theta}=8$, $f'(x_{\theta})=12$ в уравнения касательной и нормали, получим соответственно:

$$y-8=12(x-2)$$
, или $12x-y-16=0$ – уравнение касательной; $y-8=-\frac{1}{12}(x-2)$, или $x+12y-98=0$ – уравнение нормали.

<u>Пример</u>. Составить уравнения касательной и нормали к эллипсу $\frac{x^2}{18} + \frac{y^2}{8} = 1$ в точке $M_g(3;2)$.

Решение: Находим производную неявной функции $\frac{x^2}{18} + \frac{y^2}{8} - 1 = 0$:

$$\frac{2x}{18} + \frac{2yy'}{8} = 0$$
, откуда $y'(x) = -\frac{4x}{9y}$, $y'(x_0) = y'(3) = -\frac{4 \cdot 3}{9 \cdot 2} = -\frac{2}{3}$.

Подставляя значения $x_0 = 3$, $y_0 = 2$, $y'(x_0) = -\frac{2}{3}$ в уравнения касательной и нормали, получим соответственно:

$$y-2=-\frac{2}{3}(x-3)$$
, или $2x+3y-12=0$ – уравнение касательной;

$$y-2=\frac{3}{2}(x-3)$$
, или $3x-2y-5=0$ – уравнение нормали.

<u>Пример.</u> Составить уравнения касательной и нормали к кривой, заданной параметрически: $\begin{cases} x = 2(t - sint) \\ y = 2(1 - cost) \end{cases}$ при $t = \frac{\pi}{2}$.

Решение: Уравнение касательной можно записать в виде $Y-y=y_x'(x)(X-x)$, где (x;y) – координаты точки кривой, (X;Y) – координаты точки касательной. Находим y_x' :

$$y'_x = \frac{y'_t}{x'_t} = \frac{2 \sin t}{2(1 - \cos t)} = \frac{\sin t}{1 - \cos t} = ctg\frac{t}{2}$$
. Подставляя выражения для x , y и y'_x в соответствующую формулу, получим уравнение касательной к данной кривой в произвольной точке: $Y - 2(1 - \cos t) = ctg\frac{t}{2}(X - 2(t - \sin t))$.

При $t = \frac{\pi}{2}$ из последнего уравнения находим: $Y - 2 = l(X - 2(\frac{\pi}{2} - 1))$, или $X - Y - \pi + 4 = 0$.

<u>Промер</u>. Найти кривизну кривой $x^2 + y^2 = 25$.

Решение: Искомую кривизну вычислим по формуле $k = \frac{|y''|}{\left(I + {y'}^2\right)^{\frac{3}{2}}}$. Найдём сначала первую и вторую производную неявной функции $x^2 + y^2 = 25$.

Дифференцируя, получим:
$$2x + 2yy' = 0$$
; $y' = -\frac{x}{y}$; $y'' = \left(-\frac{y}{x}\right)' = \frac{y}{y}$

$$= -\frac{x'y - xy'}{y^2} = -\frac{y - x\left(-\frac{x}{y}\right)}{y^2} = -\frac{x^2 + y^2}{y^3} = -\frac{25}{y^3}.$$
 Подставляя полученные

выражения в формулу кривизны, находим:

$$k = \frac{\left| -\frac{25}{y^3} \right|}{\left[1 + \left(-\frac{x}{y} \right)^2 \right]^{\frac{3}{2}}} = \frac{25}{\left(x^2 + y^2 \right)^{\frac{3}{2}}} = \frac{25}{25^{\frac{3}{2}}} = \frac{1}{5}, \text{ r.e. } k = \frac{1}{5}.$$

<u>Пример.</u> Тело движется вдоль прямой Ox по закону x=t-sint. Определить скорость и ускорение движения при $t=\frac{\pi}{2}$.

Решение: В силу механического значения первой и второй производной находим для любого момента времени t:

$$v = \frac{dx}{dt} = 1 - cost$$
 (скорость); $w = \frac{dv}{dt} = \frac{d^2x}{dt^2} = sint$ (ускорение).

При
$$t = \frac{\pi}{2}$$
 получаем: $v = 1$, $w = 1$.

Задания.

1. Записать уравнения касательной и нормали в точке $M_{\varrho}(2;2)$ к кривой

$$\begin{cases} x = \frac{1+t}{t^3} \\ y = \frac{3}{2t^2} + \frac{1}{2t} \end{cases}$$

- 2. Записать уравнение касательной к кривой $y = x^2 7x + 3$ в точке с абсциссой x = 1.
- 3. Записать уравнение нормали к кривой $y = x^3 16x + 7$ в точке с абсциссой x = 1.
- 4. Записать уравнение касательной к кривой $y = \sqrt{x-4}$ в точке с абсциссой x = 8.
- 5. Записать уравнение нормали к кривой $y = \sqrt{x+4}$ в точке с абсциссой x = -3.
- 6. Вычислить кривизну кривой $y = e^x$ при x = 0.

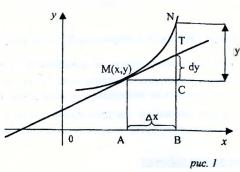
- 7. Найти кривизну кривой $y = -x^3$ в точке с абсциссой $x = \frac{1}{2}$.
- 8. Найти кривизну в любой точке циклоиды $\begin{cases} x = 2(t sint) \\ y = 2(1 cost) \end{cases}$
- 9. Закон движения материальной точки имеет вид: $s = \frac{3t^2}{4} 3t + 7$. В какой момент времени скорость её движения будет равна 7 m/c?
- 10. Закон движения материальной точки имеет вид: $s = 3t^4 t^3 + 4t^2 + 6$. Найти скорость её движения в момент времени t = 2c.
- 11. Закон движения материальной точки имеет вид: $s = 4t^3 2t + 11$. В какой момент времени скорость её движения будет равна 190 м/с?

Домашние задания.

- 1. Записать уравнение нормали к кривой $y = \frac{x^4}{4} 27x + 60$ в точке с абсииссой x = 2.
- 2. Записать уравнение касательной к кривой $y = -\frac{x^2}{2} + 7x \frac{15}{2}$ в точке с абсинской x = 3.
- 3. Записать уравнение нормали к кривой $y = 3tg\ 2x + 1$ в точке с абсциссой $x = \frac{\pi}{2}$.
- 4. Записать уравнение касательной к кривой $y = 4tg \ 3x$ в точке с абсциссой $x = \frac{\pi}{0}$.
- 5. Закон движения материальной точки имеет вид: $s = 2t^5 6t^3 58$. Найти скорость её движения в момент времени t = 2c.
- 6. По оси Ox движутся две материальные точки, законы движения которых имеют вид: $x = 2t^3 2t^2 + 6t 7$ и $x = \frac{5}{3}t^3 t^2 + 14t + 4$. В какой момент времени их скорости будут равными ?
- 7. Закон движения по прямой материальной точки задан формулой: $s = \frac{1}{3}t^3 \frac{1}{2}t^2 30t + 18$. В какой момент времени скорость точки будет равна нулю?
- 8. Закон движения материальной точки имеет вид: $s = 3t + t^3$. Найти скорость её движения в момент времени t = 2 c.

Дифференциал функции. Приложения дифференциала. Дифференциалы высших порядков.

Дифференциалом функции y = f(x)называется главная часть её приращения, линейно зависящая от приращения $\Delta x = dx$ независимой переменной Дифференциал dy функции произведению равен eë производной И дифференциала независимой переменной:



dy = y'dx = f'(x)dx,

поэтому справедливо равенство: $y' = \frac{dy}{dx}$.

Из рис.1 видно, что если MN — дуга графика функции y = f(x), MT — касательная, проведённая к нему в точке M(x;y), и $AB = \Delta x = dx$, то CT = dy, а отрезок $CN = \Delta y$. Дифференциал функции dy отличается от её приращения Δy на бесконечно малую более высокого порядка по сравнению с Δx . Непосредственно из определения дифференциала и правил нахождения производных имеем (u = u(x), v = v(x)):

- 1) dC = 0 (C = const);
- 2) $dx = \Delta x$, если x независимая переменная;
- 3) $d(u \pm v) = du \pm dv$;
- 4) d(uv) = vdu + udv;
- 5) d(Cu) = Cdu;

6)
$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2} \quad (v \neq 0);$$

7) $df(u) = f'_u(u)u'dx = f'(u)du$.

<u>Пример</u>. Найти дифференциал функции $y = sin^5 3x$.

Решение: Находим производную данной функции: $y' = 5 \sin^4 3x \cdot \cos 3x \cdot 3$; тогда $dy = 15 \sin^4 3x \cdot \cos 3x \cdot dx$.

Дифференциалом n-го nорядка функции y = f(x) называется дифференциал от дифференциала (n-1)-го nорядка этой функции, τ .е.

$$d^n y = d(d^{n-1}y).$$

Если дана функция y = f(x), где x – независимая переменная, то

$$d^2y = y''dx^2$$
, $d^3y = y'''dx^3$, ..., $d''y = y^{(n)}dx^n$.

Если y = f(u), где $u = \varphi(x)$, то $d^2y = y''(du)^2 + y'd^2u$, где дифференцирование функции y выполняется по переменной u (это имеет место и для дифференциалов более высоких порядков).

<u>Пример</u>. Найти дифференциал второго порядка функции $y = ln(1 + x^2)$.

Решение: Имеем:
$$y' = \frac{2x}{l+x^2}$$
, $y'' = \frac{2(l+x^2)-4x^2}{(l+x^2)^2} = \frac{l(l-x^2)}{(l+x^2)}$. Тогда $d^2y = \frac{l(l-x^2)}{(l+x^2)}dx^2$.

Так как дифференциал функции отличается от её приращения на бесконечно малую высшего порядка по сравнению с величиной dx, то $\Delta y \approx dy$, или $f(x + \Delta x) - f(x) \approx f'(x) dx$, откуда следует равенство:

$$f(x + \Delta x) \approx f(x) + f'(x)dx$$
.

Полученная формула часто применяется для приближённого вычисления значений функции при малом приращении Δx независимой переменной x.

<u>Пример</u>. Вычислить приращение стороны куба, если известно, что его объём увеличился с 27 до $27,1\,$ м³.

Решение: Если x – объём куба, то его сторона $y = \sqrt[3]{x}$. По условию задачи x = 27, $\Delta x = 0.1$. Тогда приращение стороны куба $\Delta y \approx dy = y'(x)\Delta x = \frac{1}{3\sqrt[3]{27^2}} \cdot 0.1 = \frac{0.1}{27} \approx 0.0037$ м.

Пример. Найти приближённо sin 31°.

Решение: Полагаем $x = \frac{\pi}{6}$, откуда $\Delta x = 1^{\circ} \cdot \frac{\pi}{180^{\circ}} \approx 0.017$. Тогда: $\sin 31^{\circ} \approx \sin \frac{\pi}{6} + \cos \frac{\pi}{6} \cdot 0.017 = 0.5 + 0.017 \cdot \frac{\sqrt{3}}{2} \approx 0.515$.

С помощью дифференциала функции вычисляют абсолютную погрешность функции ε_y , если известна абсолютная погрешность ε_x аргумента. В практических задачах значения аргумента находятся с помощью измерений, и его абсолютная погрешность считается известной. Пусть требуется вычислить значение функции y = f(x) при некотором

значении аргумента х, истинная величина которого нам неизвестна, но дано его приближённое значение x_n с абсолютной погрешностью ε_n : $x = x_n + dx$, $|dx| \le \varepsilon_x$. Тогда $|f(x) = f(x_n)| \approx |f'(x_n)| \cdot |dx| \le |f'(x_n)| \cdot \varepsilon_x$. Отсюда видно, что $\varepsilon_y = |f'(x_y)| \varepsilon_x$. Относительная погрешность δ_y

функции выражается формулой
$$\delta_y = \frac{\varepsilon_y}{|f(x_0)|} = \left|\frac{f'(x_0)}{f(x_0)}\right| \cdot \varepsilon_x = \left|(\ln f(x_0))'\right| \cdot \varepsilon_x$$
.

Например, если в последнем примере принять $\varepsilon_{*} = 0.017$, то $\varepsilon_{y} = \left| \cos \frac{\pi}{6} \right| \cdot 0.017 \approx 0.015, \ \delta_{y} = \frac{0.015}{0.5} \cdot 100 \% = 3 \%.$

Задания.

- 1. Даны функция $y = x^3 2x^2 + 2$ и точка $x_0 = 1$. Для любого приращения независимой переменной Δx выделить главную часть приращения функции. Оценить абсолютную величину разности между приращением функции и её дифференциалом в данной точке, если:
 - a) $\Delta x = 0.1$;
 - 6) $\Delta x = 0.01$.

Сравнить эту разность с абсолютной величиной дифференциала функции.

2. Найти дифференциалы первого порядка следующих функции:

a)
$$y = x t g^3 x$$
;

6)
$$y = \sqrt{arctg x + (arcsin x)^2}$$
;

B)
$$y = ln(x + \sqrt{4 + x^2})$$
; $r) y = \frac{x}{1 - x}$;

$$r) y = \frac{x}{1-x}$$

д)
$$y = ln \frac{l-x}{l+x}$$
;

e)
$$y = e^{-x^2}$$
.

3. Найти дифференциалы следующих функций, заданных неявно:

a)
$$(x+y)^2 \cdot (2x+y)^3 = 1$$
;

6)
$$y = e^{-\frac{x}{y}}$$

4. Найти дифференциалы второго порядка функций:

a)
$$y = e^{-x^3}$$
;

6)
$$y = \cos 5x$$
;

B)
$$y = \arccos x$$
;

$$\Gamma$$
) $y = \sin x \cdot \ln x$.

5. Найти дифференциалы третьего порядка функций:

a)
$$y = \sin^2 2x$$
;

$$6) y = \frac{\ln x}{r}$$

6)
$$y = \frac{\ln x}{x}$$
; B) $y = x^2 e^{-x}$.

6. Найти приближённое значение функции $y = x^3 - 4x^2 + 5x + 3$ при x = 1,03 с точностью до двух знаков после запятой.

- 7. Найти приближённое значение функции $y = \sqrt{1+x}$ при x = 0.2.
- 8. Насколько, приблизительно, увеличится объём шара, если его радиус R = 15 см удлинится на 2 мм?

- 9. Найти приближённое значение $\sqrt[4]{17}$ с точностью до двух знаков после запятой.
- 10. Найти приближённо arcsin 0,54.
- Найти приближённо 4/15.8.
- Найти приближённо 4^{1,2}.
- 13. Найти дифференциалы 1-го, 2-го и 3-го порядков функции $y = x^3 \ln x$.
- 14. Найти приближённое значение функции $y = \sqrt[3]{\frac{1-x}{1-x}}$ при x = 0,1 с точностью до двух знаков после запятой.
- 15. Найти дифференциалы первого и второго порядков $y = (x^2 + 1) \operatorname{arctg} x$.
- 16. Вычислить приближённое значение функции $y = \sqrt{x^2 7x + 10}$ при x = 0.98 с точностью до двух знаков после запятой.
- 17. Найти дифференциалы второго и третьего порядков функции $y = e^{-3x} \cdot \cos 2x$
- 18. Вычислить приближённое значение функции $y = \sqrt[3]{x^2 5x + 12}$ пои x = 1,3 с точностью до двух знаков после запятой.

Домашние задания.

- 1. Найти приращение Δy и дифференциал dy функции $y = 5x + x^2$ при x = 2 и $\Delta x = 0.001$.
- 2. Найти дифференциалы первого порядка следующих функций:

a)
$$y = x^4 + 4x^3 + 6x^2 + 4x$$
; 6) $y = \frac{x^2 - 1}{x^3}$;

6)
$$y = \frac{x^2 - 1}{x^2}$$

B)
$$y = \sqrt{x^3 + 6x^2}$$
;

$$\Gamma) y = tg^2 2x;$$

II)
$$v = 4 \sin^3 t$$
:

e)
$$v = e^{\sin 4x}$$
.

3. Найти дифференциалы следующих функций, заданных неявно:

a)
$$x^2 + 2xy - y^2 = a^2$$
;

6)
$$ln\sqrt{x^2+y^2} = arctg\frac{y}{x}$$
.

- 4. Найти дифференциалы второго порядка функций:
 - a) $v = (2x 3)^3$:
- 6) $y = 3\sin(2x + 5)$;
- B) $y = x \arccos x$.
- С помощью дифференциала приближенно (с точностью до двух знаков после запятой) вычислить данные величины и оценить допущенную относительную погрешность:
- a) $\sqrt[4]{34}$; 6) $\sqrt[3]{26,19}$; B) $\arcsin 0.6$;
- r) $\sqrt{16.64}$; II) $e^{0.2}$;
- e) lg 11.

Правило Лопиталя.

Если функции y = f(x) и $y = \varphi(x)$ непрерывны и дифференцируемы в некоторой окрестности точки x_0 , стремятся к нулю (или $\pm \infty$) при $x \to x_0$ и существует $\lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)}$, то существует также $\lim_{x \to x_0} \frac{f(x)}{\varphi(x)}$, причём эти пределы равны, т.е. $\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)}$. Это правило (правило Лопиталя) справедливо и при $x_0 = \pm \infty$. Если частное $\frac{f'(x)}{\varphi'(x)}$ вновь даёт в предельной точке неопределённость вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ или $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$ и функции f'(x) и $\varphi'(x)$ удовлетворяют всем требованиям, ранее указанным для функций f(x) и $\varphi(x)$, то можно перейти к отношению вторых производных, и т. д. Однако следует помнить, что предел отношения самих функций может существовать, в то время как отношение производных не стремится ни к какому пределу.

Пример. Найти $\lim_{x\to\infty} \frac{x+\sin x}{x+\cos x}$.

Решение: Имеем: $\lim_{x\to\infty} \frac{x+\sin x}{x+\cos x} = \lim_{x\to\infty} \frac{1+\frac{\sin x}{x}}{1+\frac{\cos x}{x}} = 1$. Но предел вида

 $\lim_{x\to\infty} \frac{(x+\sin x)^t}{(x+\cos x)^t} = \lim_{x\to\infty} \frac{1+\cos x}{1-\sin x}$ не существует, так как при $x\to\infty$ числитель и знаменатель дроби могут принимать любые значения из отрезка [0;2], а само отношение производных принимает любые неотрицательные значения. Следовательно, правило Лопиталя в этом случае неприменимо.

<u>Пример</u>. Найти $\lim_{x\to 0} \frac{e^{3x}-1}{\sin 5x}$.

Решение: Числитель и знаменатель данной дроби непрерывны, дифференцируемы и стремятся к нулю. Это означает, что можно применить правило Лопиталя: $\lim_{x\to 0}\frac{e^{3x}-1}{\sin 5x}=\lim_{x\to 0}\frac{3e^{3x}}{5\cos 5x}=\frac{3}{5}$.

Неопределённость вида $[0 \cdot \infty]$ получается из произведения функций $f_i(x) \cdot f_j(x)$, в котором $\lim_{x \to x_i} f_i(x) = 0$ и $\lim_{x \to x_i} f_j(x) = \infty$. Это произведение

легко преобразуется в частное вида $\frac{f_i(x)}{f_2(x)}$ или $\frac{f_2(x)}{l/f_i(x)}$, что даёт неопределённости вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ или $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$. Если же $\lim_{x \to x} f_i(x) = \lim_{x \to x} f_2(x) = \infty$, то разность $f_i(x) - f_2(x)$ даёт неопределённость вида $[\infty - \infty]$. Но $f_i(x) - f_2(x) = f_i(x) \cdot \left(1 - \frac{f_2(x)}{f_i(x)} \right)$. Тогда, если $\lim_{x \to x} \frac{f_2(x)}{f_i(x)} = l$, приходим к неопределённости вида $[0 \cdot \infty]$.

Пример. Вычислить $\lim x^3 e^{-x}$.

Решение: Так как мы имеем неопределённость вида $[\infty \cdot 0]$, то $\lim_{x \to \infty} x^3 e^{-x} = \lim_{x \to \infty} \frac{x^3}{e^x} = \lim_{x \to \infty} \frac{3x^2}{e^x} = \lim_{x \to \infty} \frac{6x}{e^x} = \lim_{x \to \infty} \frac{6}{e^x} = 0.$

Рассмотрим функцию вида $f(x)^{\varphi(x)}$.

- 1) Если $\lim_{x\to x_a} f(x)=0$, $\lim_{x\to x_a} \varphi(x)=0$, то имеем неопределённость вида $\left[0^\theta\right]$.
- 2) Если $\lim_{x\to x_a} f(x) = 1$, $\lim_{x\to x_a} \varphi(x) = \infty$, приходим к неопределённости $\left[I^{\infty}\right]$.
- 3) Если $\lim_{x\to x_c} f(x) = \infty$, $\lim_{x\to x_c} \varphi(x) = 0$, получаем неопределённость вида $\left[\infty^0\right]$.

Для раскрытия этих неопределённостей применяется метод логарифмирования, который состоит в следующем. Пусть $\lim_{x \to x} f(x)^{\varphi(x)} = A$.

Так как логарифмическая функция непрерывна, то $\lim_{x \to x_0} \ln y = \ln \lim_{x \to x_0} y$. Тогда $\ln A = \lim_{x \to x_0} (\varphi(x) \cdot \ln f(x))$, и неопределённости трёх рассматриваемых видов сводятся к неопределённости вида $[\theta \cdot \infty]$.

<u>Пример</u>. Вычислить $\lim_{x\to 0} (e^x + x)^{\frac{1}{x}}$.

Решение: Обозначим искомый предел через А. Тогда:

$$\ln A = \lim_{x \to 0} \frac{\ln(e^x + x)}{x} = \lim_{x \to 0} \frac{e^x + 1}{1} = \lim_{x \to 0} \frac{e^x + 1}{e^x + x} = 2$$
, откуда $A = e^2$.

Задания. Найти пределы указанных функций:

1.
$$\lim_{x \to 1} \frac{x^3 - 7x^2 + 4x + 2}{x^3 - 5x + 4}$$
; 2. $\lim_{x \to 0} \frac{x \cos x - \sin x}{x^3}$;

3.
$$\lim_{x\to 0} \frac{e^{7x}-1}{t\sigma 3x}$$
;

4.
$$\lim_{x\to 0} \frac{tg x - x}{x - \sin x}$$

4.
$$\lim_{x\to 0} \frac{\lg x - x}{x - \sin x}$$
; 5. $\lim_{x\to 1} \frac{1 - 4\sin^2\left(\frac{\pi x}{6}\right)}{1 - x^2}$;

6.
$$\lim_{x\to 0} \frac{1-\cos x^2}{x^2-\sin x^2}$$
; 7. $\lim_{x\to \frac{\pi}{2}} \frac{\lg x}{\lg 5x}$; 8. $\lim_{x\to \infty} \frac{e^x}{x^5}$;

7.
$$\lim_{x \to \infty} \frac{\lg x}{\lg 5x}$$
;

8.
$$\lim_{x\to\infty}\frac{e^x}{x^5}$$
;

9.
$$\lim_{x\to\infty}\frac{\ln x}{\sqrt[3]{x}}$$
;

10.
$$\lim_{x\to 0} \frac{\pi/x}{cta(\pi x/2)}$$
; 11. $\lim_{x\to +\infty} \frac{\ln(x+7)}{\sqrt{1-x^2}}$;

11.
$$\lim_{x \to \infty} \frac{\ln(x+7)}{x}$$

12.
$$\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{x}{\ln x} \right);$$

13.
$$\lim_{x\to 3} \left(\frac{1}{x-3} - \frac{5}{x^2-x-6} \right);$$

14.
$$\lim_{x\to\frac{\pi}{2}}\left(\frac{x}{ctg\,x}-\frac{\pi}{2\cos x}\right);$$

$$15. \lim_{x\to 0} \left(\frac{1}{x\sin x} - \frac{1}{x^2} \right);$$

16.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{x}{e^x - 1}\right);$$

17.
$$\lim_{x\to 5} \left(\frac{1}{x-5} - \frac{5}{x^2 - x - 20} \right)$$
;

18.
$$\lim_{x\to\infty} x \sin\frac{3}{x}$$
;

19.
$$\lim_{x\to 0} (1-\cos x) \cdot \cot x$$
;

20.
$$\lim_{x\to 1} \ln x \cdot \ln(x-1)$$
;

21.
$$\lim_{x\to 0} (x \cdot \ln x)$$
;

22.
$$\lim_{x\to 0} (1-\cos 2x) \cdot \cot 4x$$
;

23.
$$\lim_{x\to\infty} x^4 e^{-x}$$
;

24.
$$\lim_{x\to 1} (x-1)^{x-1}$$
;

24.
$$\lim_{x\to 1} (x-1)^{x-1}$$
; 25. $\lim_{x\to 0} \left(\ln\frac{1}{x}\right)^x$; 26. $\lim_{x\to 0} (\sin x)^{n/x}$;

26.
$$\lim_{x\to 0} (\sin x)^{\log x}$$
;

27.
$$\lim_{x\to 0} \left(\frac{x-4}{x+3}\right)^{3x}$$
; 28. $\lim_{x\to 0} \left(\frac{tg \, x}{x}\right)^{\frac{1}{x^2}}$; 29. $\lim_{x\to 0} x^{\sin x}$;

28.
$$\lim_{x \to 0} \left(\frac{tg x}{x} \right)^{\frac{1}{x^2}}$$

30.
$$\lim_{x\to 0} \frac{1-\cos 7x}{x\sin 7x};$$

31.
$$\lim_{x \to 0} (\cos 2x)^{\frac{1}{x^2}}$$

30.
$$\lim_{x\to 0} \frac{1-\cos 7x}{x\sin 7x}$$
; 31. $\lim_{x\to 0} (\cos 2x)^{\frac{1}{x^2}}$; 32. $\lim_{x\to 2} \frac{\cot\left(\frac{\pi x}{4}\right)}{x-2}$;

33.
$$\lim_{x\to 0} \left(\frac{1}{x}\right)^{\sin x}$$
;

34.
$$\lim_{x\to\infty} x \sin\frac{3}{x}$$
; 35. $\lim_{x\to\infty} x^{\frac{1}{1-x}}$.

35.
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$

Домашние задания. Найти указанные пределы:

1.
$$\lim_{x \to 1} \frac{x^3 - 2x^2 - x + 2}{x^3 - 7x + 6}$$
; 2. $\lim_{x \to 0} \frac{tgx - x}{2\sin x + x}$;

$$2. \lim_{x\to 0} \frac{tg \, x - x}{2 \sin x + x}$$

3.
$$\lim_{x\to 0} \frac{tg x - \sin x}{4x - \sin x}$$
;

4.
$$\lim_{x \to \frac{\pi}{2}} \frac{tg \, 3x}{tg \, 5x}$$

$$5. \lim_{x\to\infty} \frac{\ln(x+5)}{\sqrt[4]{x+3}}$$

4.
$$\lim_{x\to\frac{\pi}{2}}\frac{\operatorname{tg} 3x}{\operatorname{tg} 5x}$$
; 5. $\lim_{x\to\infty}\frac{\ln(x+5)}{\sqrt[4]{x+3}}$; 6. $\lim_{x\to0}\frac{\pi/x}{\operatorname{ctg}(\pi x/x)}$;

7.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$
;

7.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right);$$
 8. $\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x}\right);$ 9. $\lim_{x\to 0} (1-e^{2x}) \cdot \cot x;$

9.
$$\lim_{x\to 0} (1-e^{2x}) \cdot ctg x$$

10.
$$\lim_{x \to 0} (x^2 \ln x)$$
; 11. $\lim_{x \to 1} (1-x)^{\ln x}$; 12. $\lim_{x \to \infty} (\ln x)^{\frac{1}{x}}$; 13. $\lim_{x \to 0} (\arcsin x \cdot \cot x)$; 14. $\lim_{x \to 1} \left(\frac{1}{2(1-\sqrt{x})} - \frac{1}{3(1-\sqrt[3]{x})} \right)$.

Представление элементарных функций по формуле Маклорена.

Если функция f(x) непрерывна и имеет непрерывные производные до (n-1)-го порядка включительно на отрезке [a;b], причём в каждой внутренней точке этого отрезка существует конечная производная $f^{(n)}(x)$, то на этом отрезке справедлива формула Тейлора:

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(x)}{2!}(x-a)^2 + \frac{f'''(x)}{3!}(x-a)^3 + \dots + \frac{f^{n-1}(x)}{(n-1)!}(x-a)^{n-1} + \frac{f^n(\xi)}{n!}(x-a)^n, \text{ rge } \xi = a + \theta(x-a), \ 0 < \theta < 1.$$

В частности, при a = 0 имеем (формула Маклорена):

$$f(x) = f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + \frac{f''(\xi)}{n!}x^n,$$

где $\xi = \theta x$, $0 < \theta < 1$.

<u>Пример.</u> Разложить функцию $f(x) = e^x$ по степеням x до члена с x^{n-1} . Решение: Находя последовательно производные от f(x), получим:

$$f(x) = e^x$$
, $f(0) = 1$; $f'(x) = e^x$, $f'(0) = 1$; ...; $f^{(n-1)}(x) = e^x$, $f^{(n-1)}(0) = 1$.

Подставляя полученные выражения в формулу Маклорена, будем иметь:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} e^{\xi}, \text{ rge } \xi = \theta x, \ 0 < \theta < 1.$$

Задания.

- 1. Функцию $f(x) = \sin x$ разложить по степеням x до члена с x^5 .
- 2. Функцию $f(x) = \cos x$ разложить по степеням x до члена с x^{n-1} .
- 3. Функцию $f(x) = \sqrt{l+x}$ разложить по степеням x до члена с x^2 .
- 4. Функцию $f(x) = (x^2 3x + 1)^3$ разложить по степеням x.

Домашние задания.

- 1. Функцию $y = xe^{x}$ разложить по степеням x до члена с x^{n-1} .
- 2. Функцию y = tg x разложить по степеням x до члена с x^2 .
- 3. Функцию $y = \arcsin x$ разложить по степеням x до члена с x^3 .

Исследование функций с помощью производной.

1) Промежутки монотонности.

Функция y = f(x) возрастает (убывает) на интервале (a;b), если для любых $x_i, x_i \in (a;b)$, таких, что $x_i < x_i$, следует неравенство $f(x_i) < f(x_i) < f(x_i) > f(x_i)$. Функция y = f(x) не возрастает (не убывает) на интервале (a;b), если для любых $x_i, x_i \in (a;b)$, таких, что $x_i < x_i$, следует неравенство $f(x_i) \ge f(x_i)$ ($f(x_i) \le f(x_i)$).

<u>Теорема</u>. Если функция y = f(x) дифференцируема на интервале (a;b) и $f'(x) \ge 0$ ($f'(x) \ge 0$), для любых $x \in (a;b)$, то функция y = f(x) не убывает (не возрастает) на данном интервале.

<u>Пример</u>. Определить интервалы монотонности функции $y = x^3 - 3x^2 - 24x + 72$.

Решение: Область определения функции — вся числовая ось. Находим первую производную: $y'(x) = 3x^2 - 6x - 24$. Находим корни производной: $3(x^2 - 2x - 8) = 0$, откуда $x_1 = 4$, $x_2 = -2$. Методом интервалов исследуем знаки первой производной для возможных изменений аргумента:

Следовательно, для $x \in (-\infty; -1) \bigcup (4; +\infty)$ производная y'(x) > 0, т.е. функция на этих промежутках возрастает. Для $x \in (-l; 4)$ y'(x) < 0, откуда следует, что на этом промежутке функция убывает.

2) Экстремум функции.

Значение $f(x_0)$ называется локальным максимумом (локальным минимумом) функции y = f(x), если при любом достаточно малом δ

выполняется условие $f(x_0) > f(x)$ ($f(x_0) < f(x)$) для любых $x \in (x_0 - \delta; x_0 + \delta)$, за исключением точки x_0 . При этом точка x_0 называется точкой максимума (точкой минимума) функции. Локальные максимумы и минимумы называются экстремумами функции, а точки максимума или минимума — точками экстремума.

<u>Теорема</u> (необходимое условие локального экстремума). Если функция y = f(x) имеет в точке x_0 локальный экстремум, то производная $f'(x_0)$ равна нулю или не существует.

Точки, в которых производная f'(x) равна нулю или не существует, называются критическими. Экстремум в таких точках может быть, а может и не быть.

Теорема (первое достаточное условие экстремума).

Пусть x_0 – критическая точка функции y = f(x). Если при переходе через x_0 слева направо производная f'(x) меняет знак с "плюса" на "минус" (с "минуса" на "плюс"), то функция f(x) в точке x_0 имеет локальный максимум (локальный минимум).

Теорема (второе достаточное условие экстремума).

Пусть $f'(x_0) = 0$ и $f''(x_0) \neq 0$. Тогда функция y = f(x) в точке x_0 имеет экстремум, причём x_0 — точка локального максимума (минимума), если $f''(x_0) < 0$ ($f''(x_0) > 0$).

<u>Пример.</u> Исследовать на экстремум функцию $y = \frac{x^2}{x-2}$.

Решение: Функция определена на всей числовой оси, за исключением точки x=2. Находим первую производную: $y'=\frac{2x(x-2)-x^2}{(x-2)^2}=\frac{x^2-4x}{(x-2)^2}$.

Определяем критические точки: y'=0 при $x_1=0$, $x_2=4$ и не существует при $x_3=2$. Исследуем знаки первой производной до и после критической точки:

Согласно первому достаточному условию, в точке $x_1=0$ функция имеет максимум и $y_{max}=y(0)=0$, а в точке $x_2=4$ – минимум и $y_{min}=y(4)=8$.

Пример. Исследовать на экстремум функцию $y = x^3 - 6x^2 - 15x + 2$.

Решение: Функция определена для всех действительных чисел. Находим производную $y' = 3x^2 - 12x - 15$ и критические точки $x_1 = -1$, $x_2 = 5$. Находим вторую производную: y'' = 6x - 12. Имеем y''(-1) = -18 < 0, следовательно, по второму достаточному условию $x_i = -1$ – точка максимума и $y_{max} = y(-1) = 10$; y''(5) = 18 > 0, откуда $x_1 = 5$ – точка минимума и $v_{-} = v(5) = -98$.

Для нахождения наибольшего или наименьшего значения функции на отрезке (так называемых глобальных экстремумов) нужно из значений функции на концах отрезка и в критических точках выбрать наибольшее и наименьшее.

Пример. Найти наибольшее и наименьшее значения функции $y = x^4 - 2x^2 + 3$ на отрезке [-3;0].

Решение: Находим производную $y' = 4x^3 - 4x = 4x(x-1)(x+1)$ критические точки $x_1 = 0$, $x_2 = 1$, $x_3 = -1$. Точка x = 1 не принадлежит отрезку [-3;0]. Найдём значения функции при x=-3, x=0, x=-1: f(-3)=66, f(0)=3, f(-1)=2. Следовательно, $f_{max}=f(-3)=66$, [-3:0]

$$f_{\min} = f(-1) = 2$$
.

Задания.

1. Найти интервалы монотонности функции:

a)
$$y = (x-2)^5 (2x+1)^4$$
; 6) $y = ln(x+1)$;

6)
$$y = ln(x+1)$$
;

B)
$$y = x - e^{x}$$
;

r)
$$y = e^{2x}$$
;

$$A) y = \frac{1}{\ln x};$$

e)
$$y = x + x\sqrt{x}$$
.

2. Найти экстремумы функции:

a)
$$y = 2x^3 - 6x^2 - 18x + 7$$
; 6) $y = \frac{2x + 3}{3x + 5}$;

6)
$$y = \frac{2x+3}{3x-5}$$

B)
$$y = x - ln(1+x)$$
; $r) y = x ln x$;

r)
$$v = x \ln x$$

a)
$$y = x^2(1 - x\sqrt{x});$$
 e) $y = xe^{-\frac{x^2}{2}}.$

e)
$$v = xe^{-\frac{x^2}{2}}$$

3. Найти наибольшее и наименьшее значения функции на отрезке:

a)
$$y = x - x\sqrt{-x}$$
, $[-4;0]$; 6) $y = \frac{x-1}{x-1}$, $[0;4]$;

6)
$$y = \frac{x-1}{x+1}$$
, [0;4]

B)
$$y = arctg \frac{1-x}{1+x}$$
, [0;1]; Γ) $y = 3\sqrt[3]{x^2} - 6\sqrt[3]{x} + 4x - 8$, $[-1;8]$;
B) $y = \sqrt{100 - x^2}$, $[-6;8]$; P 0 $y = x^2 - 2x\sqrt{x} + x - 4$, [0;4].

- 4. Число 36 разложить на два таких множителя, чтобы сумма их квадратов была наименышей.
- 5. Окно в загородном доме имеет форму прямоугольника, завершённого полукругом. Периметр окна равен р. При каком радиусе полукруга площадь окна будет наибольшей?
- 6. Из листа жести требуется сделать ведро цилиндрической формы с крышкой. Плошаль полной поверхности цилиндра, который можно выкроить из этого листа, составляет S. Каковы должны быть размеры ведра наибольшего объёма?
- 7. Картина высотой 1,4м повешена на стену так, что её нижний край на 1.8 м выше глаз наблюдателя. На каком расстоянии от стены должен стать наблюдатель, чтобы его положение было наиболее благоприятным для осмотра картины (т.е. чтобы угол зрения был наибольшим)?

Домашние задания.

1. Найти экстремумы и промежутки монотонности функции:

a)
$$y = \sqrt[3]{(x^2 - 6x + 5)^2}$$
;

6)
$$y = \sqrt{3x-7}$$
;

B)
$$v = x \ln^2 x$$
;

r)
$$y = x^4 + 4x^3 - 2x^2 - 12x + 5$$
;

д)
$$y = e^{3-6x-x^2}$$
;

e)
$$y = x^{\frac{2}{3}} - x$$
.

2. Найти наибольшее и наименьшее значения функции на отрезке:

a)
$$y = 2x^3 + 3x^2 - 12x + 1$$
, $[-1;5]$;

6)
$$y = x + 3\sqrt[3]{x}$$
, $[-1;1]$;

B)
$$y = 2x - \sqrt{x}$$
, [0,4];

B)
$$y = 2x - \sqrt{x}$$
, $[0; 4]$; $r) y = tg x - x$, $\left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$;

д)
$$y = x^4 - 8x^2 + 3$$
, $[-2;2]$;

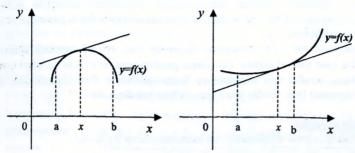
e)
$$y = \frac{1-x+x^2}{1-x-x^2}$$
, [0;1].

- 3. Какое положительное число, будучи сложено с обратным ему числом, даёт наименьшую сумму?
- 4. Из всех прямоугольников данной площади S определить тот, периметр которого - наименьший.
- 5. Требуется изготовить закрытый цилиндрический бак вместимостью $V = 16\pi \, \text{м}^3$. Каковы должны быть размеры бака (радиус и высота), чтобы на его изготовление пошло наименьшее количество материала?
- 6. Мотком проволоки длиной 20 м требуется огородить клумбу, имеющую форму кругового сектора. При каком радиусе круга площадь клумбы будет наибольшей?

Исследование функций с помощью производных.

1) Выпуклость, вогнутость графика функции. Точки перегиба.

График функции y = f(x) называется выпуклым (вогнутым) на интервале (a;b), если на этом интервале график расположен не выше (не ниже) касательной к графику функции, проведённой в любой точке этого интервала.



Теорема (достаточное условие выпуклости (вогнутости)): Если функция y = f(x) в каждой точке интервала (a;b) удовлетворяет условию $f''(x) \le 0$ ($f''(x) \ge 0$), то график функции является выпуклым (вогнутым) на этом интервале.

Если в точке $M_0(x_0; f(x_0))$ графика функции y = f(x) выпуклость меняется на вогнутость или наоборот, то точка $M_0(x_0; f(x_0))$ называется точкой перегиба.

Теорема (необходимое условие точки перегиба):

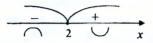
Если в точке $M_v(x_o; f(x_o))$ график функции y = f(x) имеет точку перегиба, а сама функция имеет непрерывную вторую производную, то $f''(x_o) = 0$.

<u>Теорема</u> (достаточное условие точки перегиба):

Пусть функция y = f(x) имеет вторую производную в окрестности точки x_0 и пусть в самой точке f''(x) = 0 или не существует. Тогда, если в указанной окрестности f''(x) имеет разные знаки слева и справа от точки x_0 , то график функции имеет перегиб в точке $M_0(x_0; f(x_0))$.

<u>Пример</u>. Найти интервалы выпуклости, вогнутости и точки перегиба графика функции $y = x^3 - 6x^2 + x$.

Решение: Область определения функции — вся числовая прямая. Находим производные: $y'(x) = 3x^2 - 12x + 1$, y''(x) = 6x - 12. Приравняв к нулю вторую производную, получим точку x = 2. Исследуем знак второй производной в окрестности этой точки:



Следовательно, для $x \in (-\infty; 2)$ f''(x) < 0 и график функции является выпуклым, а для $x \in (2; +\infty)$ — вогнутым. Таким образом, при переходе через x = 2 f''(x) меняет знак. Значит, точка M(2; -14) — точка перегиба графика данной функции.

2) Асимптоты графика функции.

Прямая L называется асимптотой графика функции y = f(x), если расстояние от точки M(x;y), лежащей на кривой, до прямой L стремится к нулю при неограниченном удалении этой точки от начала координат (т.е. при стремлении хотя бы одной из координат точки к бесконечности). Различают вертикальные, горизонтальные и наклонные асимптоты.

Если $\lim_{x\to a} f(x) = +\infty$ или $\lim_{x\to a} f(x) = -\infty$, то прямая x=a является вертикальной асимптотой графика функции y=f(x).

Если $\lim_{x\to +\infty} f(x) = b$ или $\lim_{x\to +\infty} f(x) = b$, то прямая y=b является горизонтальной асимптотой графика функции y=f(x).

Если существуют одновременно пределы $\lim_{x \to +\infty} \frac{f(x)}{x} = k$, $\lim_{x \to +\infty} (f(x) - kx) = b$ или $\lim_{x \to +\infty} \frac{f(x)}{x} = k$, $\lim_{x \to +\infty} (f(x) - kx) = b$, то прямая y = kx + b является наклонной асимптотой.

Пример. Найти асимптоты кривой $y = xe^x + 1$.

Решение: Данная функция определена для всех $x \in (-\infty; 0) \cup (0; +\infty)$.

Так как
$$\lim_{x \to 0+0} (xe^x + 1) = [0 \cdot \infty] = \lim_{x \to 0+0} \frac{e^x + 1}{1} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0+0} \frac{e^x \cdot \left(-\frac{2}{x^2}\right) - \frac{1}{x^2}}{-\frac{1}{x^2}} = \frac{1}{x^2}$$

 $= \lim_{x \to 0} 2 \cdot e^x = +\infty$, то прямая x = 0 является вертикальной асимптотой. Горизонтальных асимптот график функции не имеет, $\lim_{x\to \infty} (xe^x + 1) = +\infty$, $\lim_{x\to \infty} (xe^x + 1) = -\infty$. Определим наличие наклонных

acumittot:
$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(e^{x} + \frac{1}{x} \right) = 1, \qquad b = \lim_{x \to +\infty} (f(x) - kx) = 1$$

$$= \lim_{x \to +\infty} \left(x e^{\frac{2}{x}} + 1 - x \right) = \left[\infty - \infty \right] = \lim_{x \to +\infty} \frac{e^{\frac{2}{x}} + \frac{1}{x} - 1}{\frac{1}{x}} = \left[\frac{0}{0} \right] = \lim_{x \to +\infty} \frac{e^{\frac{2}{x}} \cdot \left(-\frac{2}{x^2} \right) - \frac{1}{x^2}}{\frac{1}{x^2}} = 3.$$

Следовательно, прямая y = x + 3 является наклонной асимптотой графика функции $y = xe^x + 1$ при $x \to +\infty$. Легко видеть, что при $x \to -\infty$ мы получим тот же результат. Таким образом, прямая y = x + 3 является наклонной асимптотой при $x \to \pm \infty$.

Задания.

1. Найти интервалы выпуклости, вогнутости и точки перегиба графика функций:

a)
$$y = \frac{x^3}{x^3 - 1}$$
;

a)
$$y = \frac{x^4}{x^3 - 1}$$
; 6) $y = x^4 + 2x^3 - 12x^2 - 5x + 2$;

$$\mathbf{B}) \ \ y = x \cdot e^x;$$

$$\Gamma) y = x - \ln x.$$

2. Найти асимптоты кривой:

a)
$$y = x^2 e^x$$
;

6)
$$y = 2x + arctg x$$
;

B)
$$y = \frac{x^2}{x - 1}$$

B)
$$y = \frac{x^2}{x-1}$$
; $r) y = x \cdot ln\left(e + \frac{l}{x}\right)$.

3. Найти интервалы выпуклости, вогнутости, точки перегиба:

a)
$$v = e^{arcig x}$$
:

a)
$$y = e^{arcig x}$$
; 6) $y = (x+2)^6 - 2x + 2$;

B)
$$y = (x+1)^4 + e^x$$
; r) $y = \frac{2}{x} \ln \frac{x}{2}$.

Домашние задания. Исследовать функцию на экстремумы, интервалы выпуклости и вогнутости, точки перегиба, асимптоты графика функции:

a)
$$y = 2x^2 + \frac{1}{x}$$
; 6) $y = ln(1 - x^2)$;

B)
$$y = e^{\frac{1}{x+2}}$$
; r $y = \frac{3x-2}{5x^2}$.

Общая схема исследования поведения функции.

Примерная схема исследования поведения функции y = f(x).

- 1. Определить область определения функции.
- 2. Исследовать функцию на чётность и нечётность.
- 3. Найти координаты точек пересечения графика функции с осями координат и промежутки знакопостоянства функции.
- 4. Исследовать функцию на непрерывность, определить характер точек разрыва, если таковые имеются. Найти асимптоты кривой. Исследовать поведение функции в бесконечно удалённых точках.
- 5. Найти интервалы возрастания и убывания функции, экстремумы.
- 6. Найти интервалы выпуклости и вогнутости графика функции, определить точки перегиба.
- 7. Построить график функции.

<u>Пример</u>. Построить график функции $y = x \cdot e^{-x}$

Решение:

- 1. Область определения функции $D(y) = (-\infty, 0) \cup (0, +\infty)$.
- 2. Область определения функции является симметричной относительно начала координат, но $y(-x) = -x \cdot e^x \neq -y(x)$, $y(-x) \neq y(x)$. Таким образом, функция не является ни чётной, ни нечётной.
- 3. Точки пересечения с осями координат: если y=0, то $x \cdot e^{-\frac{t}{x}}=0$ уравнение не имеет решений; x=0 не принадлежит D(y). Таким образом, график функции не пересекает оси координат; y(x)>0, если x>0 и y(x)<0, если x<0.
- 4. Точка разрыва: x = 0. Исследуем характер разрыва: $\lim_{x \to 0^{-0}} x \cdot e^{-\frac{1}{x}} = -\infty$;

 $\lim_{x\to 0+0} x \cdot e^{-x} = 0$. Таким образом, в точке x = 0 функция терпит разрыв второго рода. Исследуем поведение функции в бесконечно удалённых точках: $\lim_{x\to -\infty} x \cdot e^{-x} = -\infty$; $\lim_{x\to +\infty} x \cdot e^{-x} = +\infty$. Найдём асимптоты графика

функции: x = 0 — вертикальная асимптота. Рассмотрим: $k = \lim_{x \to x} \frac{f(x)}{x} = 0$

$$= \lim_{x \to \infty} e^{-\frac{1}{x}} = 1; \qquad b = \lim_{x \to \infty} \left(x \cdot e^{-\frac{1}{x}} - x \right) = \lim_{x \to \infty} x \left(e^{-\frac{1}{x}} - 1 \right) = \left[\infty \cdot 0 \right] = \lim_{x \to \infty} \frac{e^{-\frac{1}{x}} - 1}{\frac{1}{x}} = -1.$$

Таким образом, график функции имеет наклонную асимптоту y = x - 1.

5. Вычислим первую производную и исследуем её знаки:

$$y' = e^{-\frac{1}{x}} + x \cdot e^{-\frac{1}{x}} \cdot \frac{1}{x^2} = e^{-\frac{1}{x}} \left(1 + \frac{1}{x} \right) = e^{-\frac{1}{x}} \frac{1 + x}{x}.$$

y' < 0 для $x \in (-1,0)$ – функция убывает;

y' > 0 для $x \in (-\infty; -1) \cup (0; +\infty)$ – функция возрастает.

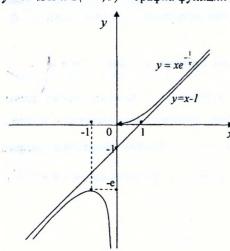
В окрестности точки x = -1 производная меняет знак с "+" на "-", поэтому в точке x = -1 функция имеет экстремум (максимум) и $y_{max} = y(-1) = -e$.

В точке x = 0 производная y' не существует, но в этой точке не существует и сама функция, поэтому точка x = 0 не является критической.

6. Вычислим вторую производную и исследуем её знаки:

$$y'' = e^{-\frac{1}{x}} \cdot \frac{1}{x^2} \left(1 + \frac{1}{x} \right) - \frac{1}{x^2} e^{-\frac{1}{x}} = e^{-\frac{1}{x}} \left(\frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{x^2} \right) = e^{-\frac{1}{x}} \cdot \frac{1}{x^3}.$$

y'' < 0 для $x \in (-\infty; 0)$ – график функции является выпуклым;



y'' > 0 для $x \in (0; +\infty)$ – график функции является вогнутым.

Так как точка x = 0 не принадлежит D(y), то точек перегиба – нет.

7. По результатам этих исследований строим график.

Задания. Построить графики функций:

1.
$$y = \frac{x^2}{x-1}$$
;

1.
$$y = \frac{x^2}{x-1}$$
; 2. $y = \frac{(x+1)^2}{x^2+2x}$;

$$3. y = \frac{2x}{\ln x};$$

4.
$$y = x + e^{-x}$$
;

4.
$$y = x + e^{-x}$$
; 5. $y = 2x - 3\sqrt[3]{x^2}$;

3.
$$y = \frac{2x}{\ln x};$$
6.
$$y = \ln \frac{x}{x-1};$$

7.
$$y = x^2 \cdot lnx$$
;

7.
$$y = x^2 \cdot \ln x$$
; 8. $y = \frac{x^3 + 2}{x^2}$;

9.
$$y = \frac{e^x}{x}$$
;

10.
$$y=(2+x^2)\cdot e^{-x^2}$$
.

Домашние задания. Построить графики функций:

1.
$$y = e^{2x-x^2}$$
;

$$2. \ y = x\sqrt{1-x}$$

1.
$$y = e^{2x-x^2}$$
; 2. $y = x\sqrt{1-x}$;
3. $y = \frac{x^3}{x^2 + 2x + 3}$; 4. $y = \frac{\ln x}{\sqrt{x}}$.

4.
$$y = \frac{\ln x}{\sqrt{x}}$$
.

Учебно-методическая литература по дисциплине "Высшая математика"

- 1. Пискунов Н.С. Дифференциальное и интегральное исчисление. М., Наука, 1985 г., т I.
- 2. Жевняк Р.М., Карпук А.А. Высшая математика, ч.1-2, Минск, ВШ, 1984-1988 г.
- 3. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М., Наука, 1985 г.
- 4. Сборник задач по математике для втузов (под ред. А.В. Ефимова и Б.П. Демидовича). М., Наука, 1981 г., ч.І.
- 5. Сборник индивидуальных заданий по высшей математике (под ред. А.П. Рябушко). Минск, ВШ, 2000 г., ч.I.
- 6. Гусак А.А. Высшая математика, т.1. Минск, ВШ, 1988 г.
- 7. Гусак А.А. Пособие к решению задач по высшей математике. Минск, ВШ, 1988 г.

Учебное издание

Составители: Гоголинская Рената Альдефонсовна

Мороз Людмила Трофимовна Русина Татьяна Ивановна Юхимук Михаил Михайлович

ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ

ЧАСТЬ II

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Ответственный за выпуск: Л.Т. Мороз Компьютерный набор: М.М. Юхимук

Редактор: Т.В. Строкач