УДК 556.(476.1)

А. А. ВОЛЧЕК, С. И. ПАРФОМУК, Н. Н. ШЕШКО, Н. Н. ШПЕНДИК, С. В. СИДАК

Беларусь, Брест, БрГТУ E-mail: volchak@tut.by

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В КОЛЕБАНИЯХ СТОКА РЕК БРЕСТСКОЙ ОБЛАСТИ

В условиях глобальных изменений климата происходит трансформация водного баланса и, как следствие, гидрологического режима водных объектов. Результаты анализа многолетних данных наблюдений за стоком рек Беларуси позволяют говорить о наличии незначительного снижения годового стока [1]. При этом за последние 20–30 лет сформировался тренд на снижение среднегодового стока, значимый вклад в который обеспечили маловодные годы за последнее десятилетие. Более яркая тенденция в изменении стока наблюдается для максимальных его значений, что выражается в устойчивом тренде на всем протяжении доступных данных и особенно на современном этапе. Данные изменения наблюдаются на фоне повышения зимнего стока, что в первую очередь обусловлено участившимися зимними оттепелями, и, как следствие, снижением запаса влаги в виде снежного покрова и почвенного льда [2].

В то же время анализ данных за последние 20 лет (с 2004-го по 2024 г.) не позволяет установить для всех ключевых рек Брестской области статистически значимые тренды снижения водности. Реки Бобрик, Лесная, Цна и Рыта не имеют статистически значимых трендов изменения водности. Реки Ясельда и Горынь имеют устойчивый тренд в снижении уровней до 45 см за 10 лет. Аналогичная картина складывается для максимальных уровней весеннего периода с менее выраженным трендом до 30 см за 10 лет.

Минимальный уровень практически для всех рек демонстрирует динамику снижения за последние 20 лет, что в первую очередь обусловлено глобальными изменениями климата.

Наблюдаемые тенденции по снижению водности особенно критичны для немноговодных рек и проявляются в снижении уровня вплоть до обмеления малых рек. Изменения стока оценивались с помощью линейных трендов, параметры которых приведены в таблице.

Таблица — Статистические характеристики линий трендов уровней воды рек Брестской области

	Уровни							
Река – створ	Нер.г.		Н _{мак.в.п.}		Н _{мин.ло.}		Н _{мин.зим.}	
	α	r	α	r	α	r	α	r
Ясельда – Сенин	–28,2 ↓↓	-0,48	-15,1 ↓	-0,36	-3,4 ↓	-0,27	–17,7↓	-0,28
Бобрик – Лунин	11,5 ↑	0,37	5 ≈	0,09	8,1 ↑	0,24	–5,4 ≈	-0,10
Цна – Дятловичи	1 ≈	0,02	-10,9 ↓	-0,12	-12,5 ↓↓	-0,57	-9,5 ↓	-0,18
Горынь – Викторовичи	-46,6 ↓↓	-0,65	-32,3 ↓	-0,32	-50,3 ↓↓	-0,84	-42,4 ↓↓	-0,55
Лесная – Тюхиничи	6,1 ↑	0,14	3,2 ≈	0,06	-3,2 ↓↓	-0,61	–2,7 ≈	-0,08
Рыта – Радваничи	7,5 ↑	0,26	12,5 ↑	0,30	–0,4 ≈	0,03	8,8 ↑	0,25

Примечание — $H_{\text{ср.г.}}$ — среднегодовые уровни воды; $H_{\text{мак.в.п.}}$ — максимальные уровни воды весеннего половодья; $H_{\text{мин.л.-о.}}$ — минимальные уровни воды летне-осеннего периода; $H_{\text{мин.зим.}}$ — минимальные уровни воды зимнего периода; $\downarrow \downarrow$ — существенное снижение уровней воды; \downarrow — тенденция к снижению уровней воды; \approx — стабильные уровни воды; \uparrow — тенденция к росту уровней воды; α , см/10 лет — градиент изменения уровней воды; r — коэффициент корреляции линейных трендов уровней воды.

Анализ частоты проявления продолжительных периодов с количеством осадков за месяц менее 10 мм показал устойчивый рост частоты данных событий (рисунок). С 2006-го по 2014 г. наблюдались данные события по станции Брест пять раз, а уже с 2015-го по 2024 г. прирост их количества составил 17 событий. Такого рода метеорологические проявления негативно сказываются на устойчивости формирования урожая сельхозкультур.

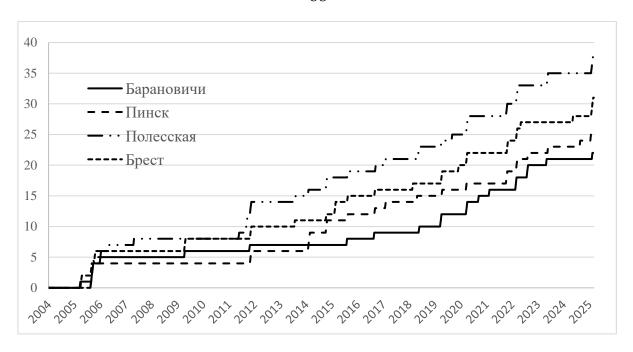


Рисунок – Проявление периодов с количеством осадком за один месяц менее 10 мм

С учетом использования наиболее консервативных сценариев изменения климата повышение температуры (средняя величина за период 2021-2050 гг.) в бассейнах рек Припяти в среднем за год может составить до $1,9\,^{\circ}$ С при максимальном повышении температуры зимой на $2,3\,^{\circ}$ С, летом – на $1,9\,^{\circ}$ С, весной и осенью – примерно на $1,7\,^{\circ}$ С. При этом годовое количество осадков изменится незначительно (суммарно за год уменьшится на $2\,^{\circ}$ %) с увеличением их зимой (в среднем на $7\,^{\circ}$ %), максимальным уменьшением летом (в среднем на $10\,^{\circ}$ %), в меньшей степени уменьшением весной (на $4\,^{\circ}$ %) и незначительным уменьшением осенью (в среднем на $1,6\,^{\circ}$ %).

Благодаря многолетним данным и построенным на их основе статистическим моделям, получены прогнозные значения изменений стока рек Беларуси по основным бассейнам. Так, для рек Брестской области к 2035 г. может наблюдаться значительное 20 %-е снижение стока в летний период на фоне 5 %-го снижения годового стока [3].

Водный режим рек может служить индикатором увлажнения водосборов, что напрямую определяет урожайность сельскохозяйственных культур, которая существенно колеблется по годам и зависит прежде всего, как и сток, от погодных условий, складывающихся в конкретном году. Потери урожайности от неблагоприятных погодных условий в отдельные годы в разрезе районов могут достигать 20–25 %.

Сопоставление полученных результатов исследований за период с 1950-го по 1980 г. и современных исследований (1989–2020) показало,

что для автоморфных минеральных почв региона количество дней с величиной меньше влажности разрыва капилляров составляло в 1950–1980 гг. в среднем 90 дней, за период 1989–2018 гг. возросло до 122 дней; для временно избыточных увлажненных почв — соответственно от 65 до 91 дня, глееватых и глеевых — от 35 и до 53 дней. Эти данные подтверждают полученные в результате исследований сведения об увеличении повторяемости и продолжительности почвенных засух на территории Брестской области вследствие климатических изменений за последние десятилетия.

На фоне указанных тенденций изменения климата и гидрологического режима необходимо осуществлять мероприятия по снижению негативных последствий. Мероприятия должны быть направлены на решение двух основных задач:

- 1. Адаптация сельского хозяйства, как наиболее зависимой отрасли от климатических условий, посредством изменения агротехники, спектра возделываемых культур и др.
- 2. Разработка оценок современного и перспективного состояния водных ресурсов с учетом их колебаний, а также влияния на них различных природно-антропогенных факторов и разработка на их основе инженерноорганизационных мероприятий по управлению водными ресурсами.

В частности, детализируя данные крупные задачи, можно выделить следующие шаги:

- обобщить имеющиеся данные о современных изменениях доступных водных ресурсов;
- актуализировать бассейновые схемы управления водными ресурсами рек Брестской области;
- разработать модель (балансовая, имитационная, прогнозная) функционирования бассейнов рек и на ее основе оптимизировать комплексное использование водных ресурсов Брестской области;
- актуализировать и адаптировать режимы эксплуатации водных объектов с учетом моделей функционирования бассейнов рек, в т. ч. экономическое обоснование расчетной обеспеченности;
- разработка инженерно-строительных мероприятий по обеспечению сохранения и перераспределения водных ресурсов;
 - расширение применения водосберегающих технологий орошения;
- снижение потерь на испарение и инфильтрацию при транспортировке и хранении;
 - применение агротехники с целью повышения влагоемкости почв;
- планировка полей, обеспечивающая накоплении влаги в почве при сохранении поверхностного стока в многоводные периоды;
- расширение применения мелких водоемов-накопителей с малыми потерями на фильтрацию;

- применение подземных источников, вплоть до минерализованных подземных вод;
- повышение уровня автоматизации и комплексной диспетчеризации систем управления водными ресурсами.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Волчек, А. А. Динамика изменения водных ресурсов Беларуси в современных условиях / А. А. Волчек, С. В. Сидак, С. И. Парфомук // Инновации: от теории к практике : сб. науч. ст. VIII Междунар. науч.-практ. конф., Брест, 21–22 окт. 2021 г. / редкол.: В. В. Зазерская [и др.]. Брест : Изд-во БрГТУ, 2021. С. 81–89.
- 2. Волчек, А. А. Водные ресурсы Беларуси и экологические риски / А. А. Волчек // Вопросы географии / Рус. геогр. о-во ; редкол.: В. М. Котляков [и др.]. М. : Медиа-ПРЕСС, 2023. Сб. 157 : Водные проблемы и их решение. С. 81–104. DOI: 10.24057/probl.geogr.157.4.
- 3. Водные ресурсы Беларуси и их прогноз с учетом изменения климата / А. А. Волчек, В. Н. Корнеев, С. И. Парфомук, И. А. Булак; под общ. ред. А. А. Волчек, В. Н. Корнеева. Брест: Альтернатива, 2017. 228 с.