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Abstract 
Using temperature values in 2D-space and its variations in time as well as the 

boundary conditions for both temperatures and vapor pressure an inverse problem has 
been studied in attempt to infer the conductivity properties of the domain by using the 
physics informed neural networks. Relying on mathematical models of heat and mois-
ture transfer а set of criteria has been proposed to form the loss functions to train the 
networks for temperature, vapor pressure, heat flux and conductivity predictions. 
The neural networks have been trained by using the proposed loss functions and the 
conductivity coefficients have been approximated to a certain level of accuracy. 
The results have shown good correlation of predictions to the ground truth values thus 
confirming good potential of the method and its ability to solve the problems provided 
that the sufficient number of training epochs have been used. Simultaneous and cou-
pled training of few networks at a time has shown expectedly slow convergency.  

 
1 General 
Ability to solve the inverse problems is an important tool that allows to monitor 

the performance of the structures by inference from some easy-to-measure indirect 
data. Machine learning methods and techniques renown as physically informed neural 

https://doi.org/10.48494/REALCORP2024.0078
https://doi.org/10.48494/REALCORP2024.0078
mailto:makarovaEA@mgsu.ru
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networks (PINN) supported by mathematical modeling frameworks, allowed to in-
corporate the physics laws into the regression analysis thus increasing the accuracy 
and soundness of the solutions. Present paper studies an application of PINN tech-
nique for solving an inverse problem in heat transfer, namely, it discusses an attempt 
to predict the ongoing change in the thermal conductivity parameters of the materials 
composing an exterior wall, by analyzing the variation of temperatures both in space 
and time within the non-uniform fragment of such a wall. This temperature variation 
was the result of combined action of different phenomena such as heat transfer, mois-
ture transfer, vapor condensation and evaporation caused by varying in time bounda-
ry conditions.  

The solution of non-linear, coupled, time-dependent heat transfer problem in two-
dimensional space is given in paper [1], that has been used as a source data in the 
present study. Figure 1 depicts a multi-layered wall and floor slab connection detail, 
which is used as the model [1].  

 

 
 
Figure 1 – Connection detail of three-layered exterior wall to concrete floor slab. 

Source “Energy efficient exterior walls with brick veneer. Details. Wall type 1, detail 
1 (to section 2–2)” [2]. All dimensions are in mm 

 
1.1 Given 
Let spatial and temporal variables be defined as 𝑥, 𝑦, 𝑡 ∈  (𝛺 ×  𝑇), where 𝛺 is 

spatial domain, and 𝑇 is temporal domain, 𝑥, 𝑦 – spatial coordinates covering the 
model (Figure 1). Temperature distribution within the model is given in a discrete 
form [1] and constitutes the input data or the ground truth for the inverse problem. 
This data can be written as: 

 𝛷: (𝑥, 𝑦 ∈ ℝ207×2, 𝑡 ∈ ℝ200) ↦ 𝜙 ∈ ℝ207×200, (1) 
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where 
𝑥, 𝑦, 𝑡 ∈ (𝛺 × 𝑇); 
𝛷 – an operator that maps spatial and temporal variables to temperature values; 
𝜙 – temperatures ℃. 
Additionally, mixed boundary conditions (Robin conditions) for the temperature 

(time dependent variation of heat fluxes and the temperature itself) and Dirichlet 
boundary conditions for the vapor pressure (time dependent variation of relative hu-
midity indoor and outdoor) are also considered as given [1]. All materials are iso-
tropic. It is also known that conductivities are linearly dependent on material mois-
ture content.  

 
1.2  Problem Definition 
Having information above, we need to find a function that will correlate the spa-

tial and temporal variables to conductivity coefficient, i. e.  

 𝒟: (𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇 ↦ 𝐷̃, (2) 
where 

𝐷̃ – conductivity coefficient approximation; 
𝒟 – function that maps (𝑥, 𝑦, 𝑡) to conductivity coefficient values. 
Heat sinks and sources 𝑄ℎ are being calculated by using the following expression [1]: 

 𝑄ℎ = 595 𝛩 𝐴  (
0.0022 𝑘𝐵

𝑝𝑎𝑡𝑚 𝑚
𝑝 −

0.0022 𝑘𝐵

𝑝𝑎𝑡𝑚 𝑚
610.94 𝑒

(
17.625 𝜙

𝜙+243.04
)
), (3) 

where 
𝑝 – vapor pressure within 𝛺;  
𝜙 – temperature, ℃; 

𝛩 = (25 + 19 𝑣) – evaporation coefficient in 
𝑘𝑔

𝑚2 ℎ𝑜𝑢𝑟
, 𝑣 – air flow velocity in 

𝑚

𝑠𝑒𝑐
, 

which is set to zero; 
𝐴 – moisture to air contact area, 𝑚2; 
𝑝𝑎𝑡𝑚 – absolute pressure in Pa (atmospheric pressure); 
𝑚 – dry air molecular mass; 
𝑘𝐵 –  Boltzmann constant.  
Variation of vapor pressure within 𝛺 is unknown and need to be approximated in 

form of: 

 𝒫: (𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇 ↦ 𝑃̃, (4) 
where  

𝑃̃ – approximate values of vapor pressure in (𝑥, 𝑦) at any time 𝑡; 
𝒫 – a function that maps (𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇 to vapor pressure values. 
 
2 Materials and Methods 
2.1  Neural Networks 
Let seek all unknown functions in form of the neural networks, such that: 

 𝐷̃ = 𝐷𝑚𝑖𝑛 + (𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛) 𝜎(𝑁𝑁𝒟(𝑥, 𝑦, 𝑡; 𝜃𝐷)), (5) 

where 

𝐷̃ – approximate values of conductivity coefficient; 
𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥 – minimum and maximum possible values of conductivity coefficients 

within the domain. This is a-priori information aimed to limit the solution of ill-posed 
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problem to a pre-set range. Maximum and minimum values of conductivities for mate-
rials that are usual in construction industry are known from the literature [4]; 

𝜎(⋅) – sigmoid function with a range [0,1]; 
𝑁𝑁𝒟 – a neural network; 
𝑥, 𝑦, 𝑡 – spatial and temporal arguments defined in 𝛺 × 𝑇; 
𝜃𝐷 – neural network parameters.  
Similarly, for (4), the vapor pressure function shall have the form of: 

 𝑃̃ = 𝑃𝑜𝑢𝑡(𝑡) + (𝑃𝑖𝑛(𝑡) − 𝑃𝑜𝑢𝑡(𝑡))𝜎(𝑁𝑁𝒫(𝑥, 𝑦, 𝑡; 𝜃𝑃)), (6) 

where 

𝑃̃ – vapor pressure approximation; 
𝑃𝑖𝑛(𝑡), 𝑃𝑜𝑢𝑡(𝑡) – vapor pressure values at inner and outer face of the wall at a time 

𝑡 – the boundary conditions; 
𝑁𝑁𝒫 – a neural network; 
𝜃𝑃 – neural network parameters;  
see (5) for others. 
Additionally, we introduce the following functions: 

 Normalized temperature as a function of space and time 

 𝜙‾ = 𝜎 (𝑁𝑁𝜙(𝑥, 𝑦, 𝑡; 𝜃𝜙)), (7) 

where 

  𝜙‾ – approximate values of temperatures normalized to a range of [0,1]; 

  𝑁𝑁ϕ – neural network; 

  𝜃𝜙 – neural network parameters; 

  see (5) for others. This function is normalized continuous form of (1). 
   

 Heat flux vector function of space and time 

 {𝐽ℎ}̃ = 𝐽ℎ𝑚𝑖𝑛 + (𝐽ℎ𝑚𝑎𝑥 − 𝐽ℎ𝑚𝑖𝑛) 𝜎 (𝑁𝑁𝐽(𝑥, 𝑦, 𝑡; 𝜃𝐽)), (8) 

where 

{𝐽ℎ̃} – a vector (𝐽ℎ̃𝑥, 𝐽ℎ̃𝑦) of heat flux at x, y, t; 

𝐽ℎ𝑚𝑖𝑛 , 𝐽ℎ𝑚𝑎𝑥 – minimum and maximum possible values of heat flux with in 
𝛺 × 𝑇, that can be approximated from Robin boundary conditions for the tempera-
tures; 

𝑁𝑁𝐽 – neural network generating a vector {𝑁𝑁𝐽𝑥 , 𝑁𝑁𝐽𝑦}
𝑇

; 

𝜃𝐽 – neural network parameters; 

see (5) for others.  
 
2.2  Loss functions 
In order to train the networks, or, in other words, to determine network parameters 

we need to build, so called, loss functions that will be used in optimization calcula-
tions. The following criteria are proposed to evaluate how accurate the predictions 
are, on one side and to regularize them to avoid the overfitting.  

2.2.1 Neural network for prediction of temperatures (7) 
a) “Prediction versus the Ground Truth” Criterion – Supervised Learning 

 ℒϕ1 = ‖𝜙‾ − 𝜙‖2 , (9) 
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where 

𝜙‾ – temperature predictions by neural network for (𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇; 
𝜙 – temperature values as per (1) for the same (𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇, the ground truth; 
b) Regularization Criteria 

 ℒϕ2
= ||ϕ𝑥

̅̅ ̅̅ ||2 + ||ϕ𝑦
̅̅ ̅̅ ||2 (10) 

 ℒϕ3
= ||ϕ𝑥𝑥

̅̅ ̅̅ ̅||2 + ||ϕ𝑦𝑦
̅̅ ̅̅ ̅||2 (11) 

 ℒϕ4
= ||ϕ𝑥𝑥𝑥

̅̅ ̅̅ ̅̅ ||2 + ||ϕ𝑦𝑦𝑦
̅̅ ̅̅ ̅̅ ̅||2 (12) 

where 

𝜙‾𝑥 =
∂𝜙‾

∂𝑥
 – first partial derivative of temperature predictions over 𝑥; 

𝜙‾𝑦 =
∂𝜙‾

∂𝑦
 – first partial derivative of temperature predictions over 𝑦; 

𝜙‾𝑥𝑥 =
∂2𝜙‾

∂𝑥2
 – second partial derivative of temperature predictions over 𝑥; 

𝜙‾𝑦𝑦 =
∂2𝜙‾

∂𝑦2
 - second partial derivative of temperature predictions over 𝑦; 

𝜙‾𝑥𝑥𝑥 =
∂3𝜙‾

∂𝑥3
 - third partial derivative of temperature predictions over 𝑥; 

𝜙‾𝑦𝑦𝑦 =
∂3𝜙‾

∂𝑦3
 - third partial derivative of temperature predictions over 𝑦; 

c) “Predicted Time Derivative versus Ground Truth Time Derivative” Criterion – 
Supervised Learning 

 ℒϕ5 = ‖𝜙‾𝑡 − 𝜙𝑡‖2, (13) 
where 

𝜙‾𝑡 =
∂𝜙‾

∂𝑡
 – first partial derivative of temperature predictions over time; 

𝜙𝑡 – first partial derivative of temperature over time as per (1), calculated by us-
ing finite differences method. 

d) “Fourier’s Law” Criteria 
As per Fourier’s Law [5], the heat flux predictions of (8) can be assessed jointly 

with temperature predictions (7) and conductivity predictions (5) by the following 
equations:  

  ℒϕ6 = ‖𝐽ℎ̃𝑥 + 𝐷̃
∂𝜙‾

∂𝑥
‖

2
 (14) 

 ℒϕ7 = ‖𝐽ℎ̃𝑦 + 𝐷̃
∂𝜙‾

∂𝑦
‖

2
   , (15) 

where 

𝐽ℎ̃𝑥 – heat flux at 𝑥 direction as predicted by (8); 

𝐽ℎ̃𝑦 – heat flux at 𝑦 direction as predicted by (8); 

𝐷̃ – conductivity coefficients as predicted by (5); 

 
∂𝜙‾

∂𝑥
,

∂𝜙‾

∂𝑦
 – spatial derivatives of temperature predictions 𝜙‾ at 𝑥, 𝑦 directions respec-

tively; 
e) “Heat Balance Equation” Criterion 

 ℒϕ8 = ‖−
∂𝜙‾

∂𝑡
+

∂

∂𝑥
(𝐷̃

∂𝜙‾

∂𝑥
) +

∂

∂𝑦
(𝐷̃

∂𝜙‾

∂𝑦
) + 𝑄ℎ(𝑃̃, 𝜙‾)‖

2
, (16) 

where 

 𝑄ℎ(𝑃̃, 𝜙‾) – an energy consumed/expelled during evaporation/condensation as per (3) 



14 

 𝑄ℎ(𝑃̃, 𝜙‾) = 595 𝛩 𝐴  (
0.0022 𝑘𝐵

𝑝𝑎𝑡𝑚 𝑚
𝑃̃ −

0.0022 𝑘𝐵

𝑝𝑎𝑡𝑚 𝑚
610.94 𝑒

(
17.625 𝜙‾

𝜙+243.04
)
),          (17) 

∂𝜙‾

∂𝑡
 – temporal derivative of temperature predictions 𝜙‾; 

others see (14), (15); 
f) “Gauss – Green Theorem” Criterion. 
Gauss – Green theorem correlates the changes of a vector field within a closed ar-

ea to the changes of that field along the boundary of the same area. 

 ℒϕ9 = ‖𝐽𝑏𝑐
𝜔 + 𝐽𝑖𝑛

𝜔 ‖2, (18) 
where  

𝐽𝑏𝑐
𝜔 = ∮ (𝐷̃

∂𝜙‾

∂𝑥
𝑐𝑜𝑠(𝛼) + 𝐷̃

∂𝜙‾

∂𝑦
𝑠𝑖𝑛(𝛼))

𝑆

𝑑𝑆;                                                           (19)

𝐽𝑖𝑛
𝜔 = ∬ (

∂

∂𝑥
(𝐷̃

∂𝜙‾

∂𝑥
) +

∂

∂𝑦
(𝐷̃

∂𝜙‾

∂𝑦
) + 𝑄ℎ(𝑃̃, 𝜙‾))

𝜔

𝑑𝜔,                                       (20)

 

where  
𝛼 – an angle between positive 𝑥 direction and an outward normal to boundary 𝑆 

of subdomain 𝜔 such that; 

 𝛺 = ⋃𝑖=1
𝑁 𝜔𝑖, where N – number of subdomains; 

𝐽𝑏𝑐
𝜔  – total heat flux change along the boundary of the subdomain 𝜔; 

 𝐽𝑖𝑛
𝜔  – total heat flux change within 𝜔.  

Having specified the criteria above, the total loss function for this network then 
might be presented as their sum. 

 ℒϕ = ∑ ℒϕ𝑖
9
𝑖=1 . (21) 

In order to determine the parameters of the neural networks the following optimi-
zation problem needs to be solved.  

 𝜃𝜙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝜙
(ℒϕ) = {(𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇: ℒϕ(𝑥, 𝑦, 𝑡) ≤ 𝜖}, (22) 

where 𝜖 – accuracy of the solution. 
2.2.2 Neural Network for Prediction of Vapor Pressure (6) 
Let denote as 𝑝𝑏𝑐  = {𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡}𝑇 the vapor pressures values at the boundaries of 

𝛺, being given as Dirichlet boundary conditions as per [1]. Also, let 𝜕𝛺𝑖𝑛 be a 
boundary of 𝛺 facing the indoor environment and 𝜕𝛺𝑜𝑢𝑡 – a boundary facing the out-
door environment, then: 

a) “Prediction versus Boundary Conditions” Criteria 

 ℒ𝓅1 = ‖𝑃̃(𝜕𝛺𝑖𝑛 ∨ 𝜕𝛺𝑜𝑢𝑡) − 𝑝𝑏𝑐‖
2
; (23) 

b) “Phase Change Heat” Criterion 

 ℒ𝓅2 = ‖𝑄ℎ
(1)

(𝑃̃, 𝜙‾) − 𝑄ℎ
(2)

(𝑃̃, 𝜙‾)‖
2
, (24) 

where 

 𝑄ℎ
(1)

(𝑃̃, 𝜙‾) =
∂𝜙‾

∂𝑡
−

∂

∂𝑥
(𝐷

∂𝜙‾

∂𝑥
) +

∂

∂𝑦
(𝐷

∂𝜙‾

∂𝑦
);     (25) 

 𝑄ℎ
(2)

(𝑃̃, 𝜙‾) = 595 𝛩 𝐴  (
0.0022 𝑘𝐵

𝑝𝑎𝑡𝑚 𝑚
𝑃̃ −

0.0022 𝑘𝐵

𝑝𝑎𝑡𝑚 𝑚
610.94 𝑒

(
17.625 𝜙‾

𝜙+243.04
)
) ,  (26) 

𝐷̃ – conductivity coefficients as predicted by (5); 
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c) “First Derivatives” as Regularization 

 ℒ𝓅3 = ‖𝑃̃𝑥‖
2

+ ‖𝑃̃𝑦‖
2

+ ‖𝑃̃𝑡‖
2
, (27) 

where 

𝑃̃𝑥 =
∂𝑃̃

∂𝑥
 – first partial derivative of vapor pressure over 𝑥; 

 𝑃̃𝑦 =
∂𝑃̃

∂𝑦
 - first partial derivative of vapor pressure over 𝑦; 

𝑃̃𝑡 =
∂𝑃̃

∂𝑡
 – first partial derivative of vapor pressure over time; 

d) “Prediction to be Close to Mean” Criterion. 
As a regularization criterion it is assumed that the predicted vapor pressure values 

need to be close to mean values calculated as a linear interpolation across the domain 
𝛺, between its boundary values. 

 ℒ𝓅4 = ‖𝑃̃ − 𝑃̂‖
2
, (28) 

where 

 𝑃̂ = 𝑝𝑜𝑢𝑡 +
𝑝𝑖𝑛−𝑝𝑜𝑢𝑡

𝛺
(𝑥, 𝑦, 𝑡), (29) 

 𝑃̂ – linear interpolation between 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡 within 𝛺 at any given time t; 
(𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇. 
 Total loss function for this network will have a form of: 

 ℒ𝓅 = ∑ ℒ𝓅𝑖

4
𝑖=1 . (30) 

Optimization problem to determine network parameters has the following form: 

 𝜃𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑝
(ℒ𝓅) = {(𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇: ℒ𝓅(𝑥, 𝑦, 𝑡) ≤ 𝜖} (31) 

where  𝜖 – accuracy of the solution. 
2.2.3 Neural Network for Prediction of Heat Flux Values (8) 
The following criteria shall be used for training of heat flux neural network. 
a) “Predictions versus Robin Boundary Conditions” Criterion 

ℒ𝒥1
= ‖√(𝐽ℎ̃𝑖𝑛)

𝑥

2
+ (𝐽ℎ𝑖𝑛̃)

𝑦

2
− 𝐽ℎ𝑖𝑛‖

2

+ ‖√(𝐽ℎ̃𝑜𝑢𝑡)
𝑥

2
+ (𝐽ℎ𝑜𝑢𝑡̃)

𝑦

2
− 𝐽ℎ𝑜𝑢𝑡‖

2

,     (32) 

where 
𝐽ℎ𝑖𝑛, 𝐽ℎ𝑜𝑢𝑡 – heat flux values at inner and outer face of 𝛺 at a time 𝑡 – Robin 

boundary conditions; 

(𝐽ℎ̃𝑖𝑛 𝑥, 𝐽ℎ̃𝑖𝑛 𝑦) – neural network prediction for heat flux at 𝜕𝛺𝑖𝑛; 

(𝐽ℎ̃𝑜𝑢𝑡 𝑥, 𝐽ℎ̃𝑜𝑢𝑡 𝑦) – neural network prediction for heat flux at 𝜕𝛺𝑜𝑢𝑡; 

b) “Prediction to be Close to Mean” as Regularization Criterion. 

 𝐿𝐽2
= ||𝐽ℎ̃𝑡𝑜𝑡(𝑥, 𝑡) − 𝐽ℎ̂(𝑥, 𝑡)||2 , (33) 

where 

𝐽ℎ̃𝑡𝑜𝑡(𝑥, 𝑡) – heat flux as predicted by neural network (8), passing through a plane 
along 𝑦 direction and at any given 𝑥 and time 𝑡. 

 𝐽ℎ̃𝑡𝑜𝑡(𝑥, 𝑡) = ∫ 𝐽ℎ̃
𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛
(𝑥, 𝑡)𝑑𝑦. (34) 

𝐽ℎ̂(𝑥, 𝑡) – heat flux passing through a vertical plane at any given 𝑥, in a moment 𝑡, 
being calculated as linear interpolation between boundary values; 
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𝐽𝑡𝑜𝑢𝑡(𝑡) = ∫ 𝐽
𝛺𝑜𝑢𝑡

ℎ𝑜𝑢𝑡(𝑡) 𝑑𝛺𝑜𝑢𝑡 ;                                                                          (35)

𝐽𝑡𝑖𝑛(𝑡) = ∫ 𝐽
𝛺𝑖𝑛

ℎ𝑜𝑢𝑡(𝑡) 𝑑𝛺𝑖𝑛 ;                                                                              (36)

𝐽ℎ̂(𝑥, 𝑡) = 𝐽𝑡𝑜𝑢𝑡 +
𝐽𝑡𝑖𝑛 − 𝐽𝑡𝑜𝑢𝑡

𝛺
(𝑥, 𝑡) ;                                                                (37)

 

𝐽𝑡𝑜𝑢𝑡(𝑡), 𝐽𝑡𝑖𝑛(𝑡) – total heat flux leaving and entering 𝛺 at time 𝑡, respectively; 
(𝑥, 𝑡) – 𝑥 coordinate and time argument 𝑡; 
c) “Heat Flux Direction” Criterion. 
From Fourier’s Law we know that heat flux needs to be opposite directed to the 

space derivatives of the temperature. Hence 

 ℒ𝒥3
= ||φ

𝑥

norm
+ 𝐽ℎ𝑥

norm||2 + | |φ
𝑦

norm
+ 𝐽ℎ𝑦

norm ||2 , (38) 

where 

∇𝜙‾ 𝑛𝑜𝑟𝑚 = (𝜙‾𝑥
𝑛𝑜𝑟𝑚, 𝜙‾𝑦

𝑛𝑜𝑟𝑚) – unit vector of temperature gradients, predicted by 

neural network (7); 

𝐽ℎ̃𝑛𝑜𝑟𝑚 = (𝐽ℎ̃𝑥
𝑛𝑜𝑟𝑚, 𝐽ℎ̃𝑦

𝑛𝑜𝑟𝑚) – unit vector of heat flux, predicted by neural net-

work (8); 
d) “Heat Balance Equation” Criterion  

 ℒ𝒥4
= || −

∂ϕ̅

∂𝑡
+

∂Jh̃х

∂𝑥
+

∂Jh̃y

∂𝑦
+ 𝑄ℎ(𝑃̅, ϕ̅) ||2 ; (39) 

∂Jh̃х

∂𝑥
, 

∂Jh̃y

∂𝑦
 – space derivatives of heat flux predictions; 

e) “Gauss – Green Theorem” Criterion 

 ℒ𝒥5
= ‖𝐽𝑏𝑐

𝜔 + 𝐽𝑖𝑛
𝜔 ‖2 , (40) 

where 

𝐽𝑏𝑐
𝜔 = ∮(𝐽ℎ̃𝑥 + 𝐽ℎ̃𝑦)

𝑆

𝑑𝑆,                                                                                                  (41)

𝐽𝑖𝑛
𝜔 = ∬ (

∂𝐽ℎ̃𝑥

∂𝑥
+

∂𝐽ℎ̃𝑦

∂𝑦
+ 𝑄ℎ(𝑃̃, 𝜙‾))

𝜔

𝑑𝜔 .                                                              (42)

 

Total loss function for neural network (8) is then: 

 ℒ𝒥 = ∑ ℒ𝒥𝑖
5
𝑖=1  . (43) 

In order to determine the network parameters, the following optimization problem 
need to be solved: 

 𝜃𝐽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐽
(ℒ𝒥) = {(𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇: ℒ𝒥(𝑥, 𝑦, 𝑡) ≤ 𝜖}, (44) 

where  𝜖 – accuracy of the solution. 
2.2.4 Neural Network for Prediction of Conductivity Coefficients (5) 
The criteria for this network are: 
a) “Heat Balance Equation” Criterion 

 ℒ𝒟1
= ‖−

∂𝜙‾

∂𝑡
+

∂

∂𝑥
(𝐷̃

∂𝜙‾

∂𝑥
) +

∂

∂𝑦
(𝐷̃

∂𝜙‾

∂𝑦
) + 𝑄ℎ(𝑃̃, 𝜙‾)‖

2
; (45) 
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b) “Fourier’s Law” Criteria 

 ℒ𝒟2
= ||𝐽ℎ𝑥 + 𝐷̃

∂ϕ̅

∂𝑥
||2 ; (46) 

 ℒ𝒟3
= ||𝐽ℎ𝑦 + 𝐷̃

∂ϕ̅

∂𝑦
||2 ; (47) 

c) “Gauss – Green Theorem” Criterion 

 ℒ𝐷4 = ||𝐽𝑏𝑐
𝜔 + 𝐽𝑖𝑛

𝜔 ||2 ,        (48) 
where 

 𝐽𝑏𝑐
𝜔 , 𝐽𝑖𝑛

𝜔  – the same as in (19) and (20). 
Total loss function is then: 

 ℒ𝒟 = ∑ ℒ𝒟𝑖
4
𝑖=1  . (49) 

Similar to other networks the optimization problem to find network parameters 
has a form: 

 𝜃𝐷 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐷
(ℒ𝒟) = {(𝑥, 𝑦, 𝑡) ∈ 𝛺 × 𝑇: ℒ𝒟(𝑥, 𝑦, 𝑡) ≤ 𝜖}, (50) 

where 𝜖 – accuracy of the solution. 
 
2.3 Training  
While the training of the networks the relevant loss functions were weighted by 

adaptive Lagrange multipliers as recommended in [7]. 

 ℒ𝒩𝒩 = ∑ (λ𝑖ℒ𝒾 +
1

2
log (

1

2λ𝑖
))𝑁

𝑖=1 , (51) 

where 
 ℒ𝑁𝑁 – total loss function of 𝑁th

 (or respective) neural network; 
𝑁 – number of criteria of relevant loss function; 
 𝜆𝑖 – Lagrange coefficient, such that 

 𝜆𝑖 =
1

2(𝓈(𝑖)
2 +𝛾−1)

 , (52) 

where 
 𝑖 – index of associated criterion; 
 𝛾−1 – top limit for Lagrange coefficients [7]; 

𝓈(𝑖)
2  – variance of residuals for i

th
 criterion of associated loss function. For in-

stance, for 4
th

 criterion of network (8) the variance is calculated as:  

 
𝓈(4)

2 =
∑ ((𝐽𝑏𝑐

𝜔 )
𝑗

−(−𝐽𝑖𝑛
𝜔 )

𝑗
)

2
𝑁
𝑗=1

𝑁−1
 
,          (53) 

𝑁 – number of values in a training batch. 
 
3 Results 
Neural networks architecture and training parameters are given in Table 1. 
Figure 2 shows (a) the temperature distribution within the domain as it is predicted 

by neural network (7) upon completion of first stage of training and (b) the ground 
truth values as per (1). First stage training was performed by using supervised learning 
criteria only. Relative error is amounted up to 30 %. Second training stage was coupled 
as all four networks were trained simultaneously by using each other’s predictions in 
their respective loss functions. Figure 3 depicts the ground truth temperatures as per (1) 
and neural network (7) predictions after the second stage of training. 
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Table 1 – Neural Networks’ Architectures 

Item 

Neural 
Network for 

Temperatures 
(7) 

Neural 
Network 
for Heat 
flux (8) 

Neural 
Network 
for Vapor 

Pressure (6) 

Neural  
Network for 
Conductivity 

Coefficient (5) 

Input layer. Number of 
neurons (x, y, t) 

3 3 3 3 

Number of output 
neurons 

1 2 1 1 

Number of hidden layers 7 6 5 5 

Number of neurons in 
hidden layers     

Hidden Layer 1 40 15 20 20 

Hidden Layer 2 25 20 20 20 

Hidden Layer 3 30 30 20 20 

Hidden Layer 4 40 25 20 20 

Hidden Layer 5 30 20 20 20 

Hidden Layer 6 25 15 – – 

Hidden Layer 7 40 – – – 

Skip connections 1 → 7, 2 → 6 
1 → 6,  
2 → 5 

1 → 5,  
2 → 4 

1 → 5,  
2 → 4 

Training curriculum 2 staged 
Single 
staged 

Single 
staged 

Single staged 

Number of epochs 40000+10000 10000 10000 10000 

 
а)       b) 

 
 

Figure 2 – The temperature values (а) the ground truth values as per (1);  
(b) predictions of the neural network (7) after first stage of training. X, Y – spatial 

coordinates in 𝛺, Z – normalized temperature values. The values are given for 
a moment of t = 0.32663 
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Figure 3 – The temperature values at time t = 0.94472. Green – ground truth (1), 
red – prediction of (7). X, Y – spatial coordinates in 𝛺, Z – normalized temperature 

values 
 
Relative error has increased till 40 % due to inclusion of other networks into train-

ing process that has negatively affected the predictions temperature network (7).  
Figure 4 shows vapor pressure values predicted by neural network (6) in compari-

son with values obtained in [1]. As it was noted above, the training of this network has 
been carried out by using the boundary conditions and indirect criteria (24) and (25). 

 

 
 

Figure 4 – Vapor pressure values within 𝛺 at time t = 0.94472. Green – ground truth 
values [1], red – predictions of (6). X, Y – spatial coordinates in 𝛺, Z – vapor pres-

sure values 
 
Figure 5 shows the values of conductivity coefficients as predicted by neural net-

work (5) in comparison to data in [1]. The highest error values are occurring in this 
network’s predictions as they aggregate the errors of all other networks.  

Figure 6 depicts Forbenius norms for space and time series of conductivity coeffi-
cient predictions over (𝛺 × 𝑇). As it can be seen, the proposed loss functions indeed 
train the networks, however more epochs and further refinements are needed to re-
duce the training errors.  
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Figure 5 – Conductivity coefficients at time t = 0.94472. Green – ground truth 
values [1], red – predictions of neural network (5). X, Y – spatial coordinates in 𝛺, 

Z – conductivity coefficient values  
 

 
 
Figure 6 – Forbenius norms. Green solid line (Y) – Forbenius norm values of all 

spatial collocation points (𝑥, 𝑦) ∈ 𝛺 as per the ground truth data (1); Red dashed line 
(Y) – Forbenius norm values of all spatial collocation points  (𝑥, 𝑦) ∈ 𝛺 as predicted 

by neural network (5), (X) time steps t ∈ 𝑇; Blue solid line (Y) – Forbenius norm 
through all time steps of each collocation point (𝑥, 𝑦) ∈ 𝛺 of ground truth values; 
Blue dashed line (Y) – Forbenius norm through all time steps of each collocation 

point (𝑥, 𝑦) ∈ 𝛺 as predicted by (5), (X) collocation point number 
 
4 Conclusions 
At the result of the study, the followings might be concluded: 
1. Inverse problems are knowingly ill-posed, therefore every problem requires an 

individual strategy for its solving. In case of neural network, due care needs to be 
given to proper selection of loss function criteria. 

2. Mathematical models of heat and moisture transfer and the underlying physics 
laws adopted in training criteria allow to train the networks even with limited ground 
truth data. 

3. Having properly selected the training criteria, the machine learning techniques 
become powerful and effective tools for solving the inverse problems. As equally, the 
architecture of the networks should be carefully selected by analyzing the particulari-
ties of the problem. In the present study, the inclusion of skip connections in network 
architecture allowed to avoid gradient vanishing problem. 

4. Large number of criteria combined in a loss function may complicate the train-
ing process, therefore a contribution of each criterion needs to be adjusted dynamical-
ly during the training. Adaptive Lagrange coefficients allow to level or magnify the 
effect of any single criterion thus to dose them as relevant during the training process. 
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5. Coupled inverse problems require prolonged training time as the optimization 
needs to be achieved in all neural networks simultaneously. 
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