АНАЛИЗ ФОРМИРОВАНИЯ ПРАКТИКО-ОРИЕНТИРОВАННЫХ КОМПЕТЕНЦИЙ У ОБУЧАЮЩИХСЯ ПРИ ИЗУЧЕНИИ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

Пархоць Анна

Кушнер Т.Л., к.ф.-м.н.

Брестский государственный технический университет

THE ANALYSIS OF DEVELOPING STUDENTS' PRACTICE-ORIENTED COMPETENCE WHEN STUDYING RADIATION SAFETY DISCIPLINE

Parhots Anna

Kushner T.L., PhD in Physics and Mathematics

Brest State Technical University

Аннотация. Рассматриваются итоги тестирования студентов нескольких специальностей по радиационной безопасности, изучающих данную дисциплину в рамках интегрированного модуля «Безопасность жизнедеятельности человека» или как часть дисциплины «Защита населения и объектов от чрезвычайных ситуаций. Радиационная безопасность».

Ключевые слова: радиационная безопасность, практико-ориентированные компетенции, активные методы обучения.

Проблема формирования профессиональных компетенций может успешно решаться в процессе обучения с помощью моделей производственных ситуаций, ситуационных задач и соответствующих деловых игр. Подготовленный специалист, в своей профессиональной деятельности должен предвидеть ее последствия и нести ответственность за результат, обеспечивая тем самым безопасность себе и окружающим. Однако, не менее важным является освоение теоретических знаний, того фундамента, на котором базируется профессионализм в сложной системе безопасности. В области радиационной безопасности невозможно познакомить обучающихся с реальными условиями радиационной аварии, так как невозможно смоделировать ситуацию аварии с соответствующим ей масштабом. Поэтому, необходимо сформировать не только знания, но и умения грамотного поведения в условиях радиационного загрязнения, используя доступную информацию после аварий и военных действий, «накопленных» человечеством.

В учреждении образования «Брестский государственный технический университет» преподавание дисциплины «Радиационная безопасность» студентам всех специальностей университета ведется с 1990 года. За прошедший период учебные программы по данному курсу претерпели ряд изменений. Вместе с тем «Радиационная безопасность» по-прежнему является частью дисциплины «Защита населения и объектов от чрезвычайных ситуаций. Радиационная безопасность» или преподается как дисциплина интегрированного модуля «Безопасность жизнедеятельности человека» [1].

Целью данной работы является анализ результатов тестирования по радиационной безопасности студентов специальностей «Автоматизированные системы обработки информации» (АС-5), «Промышленная электроника» (ПЭ-12, ПЭ-20), «Программируемые мобильные системы» (МС-5), «Вычислительные машины системы и сети» (Э-58), «Производство строительных изделий и конструкций» (СТ-42), «Экономика и управление на предприятии» (ЭУ-37). Тестирование проходило как среди студентов дневной, так и заочной

форм обучения. Необходимо отметить, что количество часов, отводимых на изучение дисциплины «Радиационная безопасность» существенно отличается в зависимости от специальности и формы обучения. Всего в тестировании приняло участие 149 студентов.

В рамках данной публикации невозможно привести все варианты тестовых заданий. В тесте также содержалось большее количество вопросов. Ниже представлена определенная выборка заданий, очерчивающих компетенции в области радиационной безопасности, обусловленные образовательными стандартами указанных специальностей. Содержание тестов и тематика заданий студентам заранее не разглашались. Имелся лишь список необходимой для изучения литературы. Анализ результатов тестирования представлен в таблице.

- 1. В состав ядер химических элементов входят:
- 1. протоны и фотоны; 2. протоны и электроны; 3. протоны и нейтроны; 4. электроны и нейтроны.
- 2. Число радиоактивных ядер уменьшилось за 8 суток в 4 раза. Период полураспада в этом случае будет равен:
 - 1. 2 суток; 2. 3 суток; 3. 4 суток; 4. 5 суток.
- 3. Слой половинного ослабления для γ -излучения с энергией E=0,4 МэВ у железа составляет $\Delta^{1}/_{2}$ =0,9 см. Какую толщину железа нужно взять, чтобы ослабить это же γ -излучение в 16 раз.
 - 1. 14,4 cm; 2. 7,2 cm; 3. 3,6 cm; 4. 28,8 cm.
- 4. Если при облучении весь организм человека получил дозу в 0,3 м3в, то красный костный мозг получил дозу:
 - 1. 2,5 m3b; 2. 5,0 m3b; 3. 0,036 m3b; 4. 0,4 m3b.
- 5. Поглощенная доза в 0,5 мГр, полученная при облучении альфа-частицами, эквивалентна поглощенной дозе гамма-излучения, равной:
 - 1. 10 м3в; 2. 0,025 м3в; 3. 10 мГр; 4. 40 мГр.
- 6. Концепция беспорогового действия радиации, означающая, что никакая даже самая малая доза облучения не является для человека безвредной:
- 1. опровергнута; 2. Подтверждена; 3. не установлена окончательно; 4. справедлива только для стохастических эффектов.
- 7. В среднем за год доза внешнего облучения от естественных источников для жителя Беларуси составляет:
 - 1. 0,5 m3b; 2. 0,8 m3b; 3. 2,4 m3b; 4. 1,0 m3b.
 - 8. К искусственным источникам радиации не относится:
 - 1. испытание ядерного оружия; 2. авария на АЭС; 3. космические лучи; 4. медицина.
 - 9. К основным принципам радиационной безопасности не относится:
 - 1. непревышение установленного нормами дозового предела;
 - 2. исключение всякого необоснованного облучения;
 - 3. снижение дозы излучения до возможно низкого уровня;
 - 4. отказ от использования в жизни человека радиоактивных источников.
- 10. Какова должна быть эффективная удельная активность природных радионуклидов в материалах, применяющихся в строящихся и реконструируемых жилых помещениях:
 - 1. более 370 Бк/к;г 2. более 570 Бк/кг; 3. менее 370 Бк/кг; 4. менее 170 Бк/кг.
 - 11. Какие параметры не подлежат контролю согласно НРБ-2000?
 - 1. объемная и удельная активность радионуклидов в воздухе;
 - 2. радиоактивное загрязнение одежды и обуви;
 - 3. доза и мощность дозы внешнего облучения;
 - 4. радиоактивность космического излучения.
- 12. К зоне с правом отселения после аварии на ЧАЭС относятся территории с плотностью загрязнения радионуклидами Cs137:
 - 1. $1-5 \text{ Kи/км}^2$; 2. $5-15 \text{ Ku/км}^2$; 3. $15-40 \text{ Ku/км}^2$; 4. $40-100 \text{ Ku/км}^2$.

Таблица – Результаты тестирования студентов по радиационной безопасности

	Наименование группы						
	AC-5	ПЭ-12	MC-5	ПЭ-20	Э-58	CT-42	ЭУ-37
Кол-во часов лекций/лабор.	2/2	2/2	6/16	6/16	6/16	18/4	6/8
Форма обучения	заочная		очная				
Форма контроля	экзамен	экзамен	экзамен	экзамен	экзамен	диффер. зачет	диффер. зачет
	Процентная доля правильно данных ответов, %						
1.	82	89	81	90	77	85	83
2.	40	35	86	60	59	69	58
3.	45	71	57	30	36	23	30
4.	41	11	10	10	9	8	4
5.	32	18	38	33	36	46	4
6.	18	11	14	15	27	8	17
7.	22	57	38	25	32	23	21
8.	59	43	67	65	64	69	57
9.	50	71	86	60	55	54	74
10.	13	43	62	70	46	73	52
11.	59	68	71	75	86	76	43
12.	18	46	52	55	55	46	78

Результаты тестирования оказались весьма неоднозначными. Однако прослеживаются определенные тенденции:

- успешнее студенты отвечают на те вопросы, которые прорабатывались в ходе выполнения лабораторных работ (например, вопросы 2, 3);
- выше процент правильных ответов на те вопросы, на которых лектор акцентировал внимание студентов (например, вопросы 8, 9, 10, 11).

Наряду с учебными занятиями на кафедре физики Брестского государственного технического университета работает студенческая научно-исследовательская лаборатория «Радиационная безопасность». В рамках внеучебной деятельности студентами проводятся не только исследования, например, поискового характера, где ими осваиваются навыки работы с научной литературой, но и формируются как коллективные, так и индивидуальные экспериментальные проекты. Работа в лаборатории предполагает применение активных формировании метолов обучения, что положительно сказывается на практикоориентированных компетенций будущих специалистов. Результаты исследований многократно докладывались на республиканских и международных конференциях [2]. Активность студентов при освоении дисциплины «Радиационная безопасность», а также при участии в научно-исследовательской работе учитывается в модульно-рейтинговой системе оценки знаний.

ЛИТЕРАТУРА

- 1. Кушнер, Т.Л. Предмет «Радиационная безопасность» в образовательном процессе / Т.Л. Кушнер [и др.] // Новые образовательные технологии в экологической подготовке студентов: материалы обл. науч.-метод. конф., Брест, 3–4 июня 2005 г. / БрГТУ; под. ред. П.П. Строкача [и др.]. Брест, 2005. С. 53–56.
- 2. Кушнер, Т.Л. Радиоэкология градостроительства: студенческие исследовательские проекты / Т.Л. Кушнер, А.А. Волчек // Проблемы снятия с эксплуатации объектов ядерной энергетики и восстановления окружающей среды INUDECO: сб. статей II междунар. науч.-практ. конф., Славутич, 25–27 апреля 2017 г. Славутич, 2017. С. 99–105.