дают перемещение фазы волны в пространстве с течением времени, видят, что электрическая и магнитная составляющие волны взаимно перпендикулярны и т.д.

В результате применения элементов графического моделирования у студентов возрастает способность к более эффективному использованию полученных знаний на практике. Они задают кинематические уравнения и видят на экране, как конец радиус-вектора при своем движении описывает определенную траекторию, как ведет себя вектор скорости и т.д. Процесс присвоения знаний ускоряется.

Компьютерные анимации при современном уровне аппаратного и программного обеспечения является неплохим средством для визуального графического моделирования всевозможных физических процессов. Формирование информационной компетентности будущего специалиста – важная часть профессиональной подготовки студента и его последующей удачной адаптации ко всем перипетиям и коллизиям в дальнейшей жизни.

ИНТЕРАКТИВНЫЕ СИСТЕМЫ САМООБУЧЕНИЯ В КУРСЕ «НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА»

Гришаев А.Н.

Витебский государственный технологический университет, г. Витебск

Масштабное внедрение компьютерной техники в учебный процесс, с одной стороны, и заметное снижение уровня графической подготовки студентов первого курса, с другой, сделали действительно актуальной задачу разработки высокоэффективных, наглядных учебных курсов по начертательной геометрии и инженерной графике на базе современных компьютерных технологий.

Проведенный сравнительный анализ компьютерных технологий разработки мультимедийных интерактивных систем, а также многолетний опыт разработки электронных учебных пособий позволили обоснованно выбрать в качестве основной среды разработки электронных учебных курсов программу Flash.

Технология Flash обладает следующими положительными особенностями:

- 1) Flash-технология позволяет дизайнеру и разработчику объединить в одном проекте анимацию, видео-, аудио-, текстовую и графическую информацию.
- 2) Flash-технология позволяет создавать анимационные файлы небольших размеров, идеально подходящие для размещения в Internet. Обеспечивается это особенностями формата сохранения фильмов Flash (.swf). В отличие от классических анимационных форматов, SWF запоминает не содержание каждого кадра, а лишь произошедшие в нем изменения по сравнению с некоторым опорным кадром. В результате Flash-анимация "весит" в сотни раз меньше аналогичной классической покадровой анимации.
- Flash-анимации являются интерактивными, то есть способными реагировать на действия пользователя. Основой интерактивности является язык сценариев ActionScript.
- 4) Разработанные на основе технологии Flash демонстрационные материалы могут масштабироваться без потерь в качестве изображения.

Типовая схема разработки учебных интерактивных демонстрационных материалов включает следующие основные этапы: 1) планирование (подбор тем, задач); 2) разработка сценария; 3) подготовка графических материалов (чертежей, схем, иллюстраций, трехмерных моделей); 4) создание Flash-ролика (дизайн интерфейса, импорт графических материалов, разработка анимации, программирование, публикация, тестирование и отладка).

По этой схеме были разработаны учебные интерактивные демонстрационные материалы по следующим темам: «Построение проекций точек, расположенных на поверхности геометрических тел»; «Построение проекций линий, расположенных на поверхности геометрических тел» (рисунок 1); «Построение проекций линии сечения геометрических тел плоскостью»; «Построение проекций очерковых образующих» и «Последовательность построения разреза» (рисунок 2).

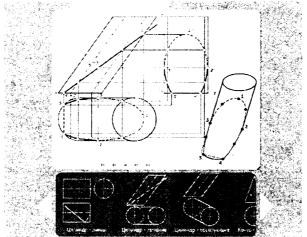


Рисунок 1 – Фрагмент интерактивной системы самообучения по теме «Построение проекций линии сечения геометрических тел плоскостью»

Также было разработано мультимедийное учебное электронное пособие к выполнению заданий по теме «Изображения упрощенные и условные крепежных деталей и соединений» для студентов механических и технологических специальностей дневного и заочного отделений (рисунок 3). Главная особенность этого учебного пособия в эффективном сочетании двухмерной графики (чертежи) и видео (модели). Видеоматериалы получены на базе программы твердотельного моделирования и специального модуля для создания анимационных сцен и видео.

Разработанные демонстрационные материалы включают набор интерактивных анимационных сцен. Просмотр анимации возможен как в режиме непрерывной демонстрации, так и пошагово. Пошаговый режим осуществляется с помощью кнопок на панели управления и позволяет заострить внимание на наиболее важных этапах решения задачи. Это позволит обучающемуся самому

выбирать темп, траекторию обучения в соответствии с природными особенностями своей психики.

Яркие, красочные иллюстрации и анимации позволяют нагляднее представить сущность решения задач, при этом изучаемый материал становится более привлекательным и доступным для восприятия.

Представленные мультимедийные интерактивные учебные пособия внедрены в учебный процесс на кафедре «Инженерная графика» УО «Витебский государственный технологический университет», а именно — в курсе «Начертательная геометрия. Инженерная графика» в лабораторных работах и лекциях.

Таким образом, переход к личностно-ориентированной системе интерактивного самообучения и самообразования позволяет интенсифицировать и ускорить процесс подготовки инженерных кадров с одновременным повышением уровня и качества обучения.

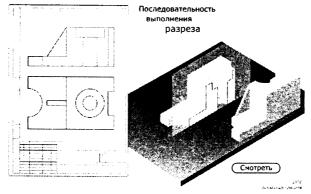


Рисунок 2 – Фрагмент интерактивной системы самообучения по теме «Последовательность построения разреза»

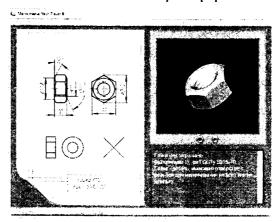


Рисунок 3 – Фрагмент интерактивной системы самообучения по теме «Изображения упрощенные и условные крепежных дегалей и соединений»

Литература

- 1. Гришаев, А.Н. Методика разработки мультимедийных приложений на основе технологии интеграции пакетов трехмерной графики и среды разработки Flash / А.П. Гришаев, А.В. Новикова, В.И. Луцейкович: тезисы докладов XL науч.-гехн. конф. преподавателей и студентов университета // УО "ВГТУ". Витебск: УО «ВГТУ», 2007. С. 165-166.
- 2. Гришаев, А.Н. Совершенствование методов обучения в курсе «Инженерная графика / А.Н. Гришаев, В.И. Луцейкович: Тезисы докладов XLI НТК преподавателей и студентов университета. Витебск: УО «ВГТУ», 2008. С.45.
- 3. Гришаев, А.Н. Инновационные технологии обучения в курсе «Инженерная графика» / А.Н. Гришаев, В.И. Луцейкович // Формирование творческой личности инженера в процессе графической подготовки УО «ВГТУ»: материалы Республиканской научно-практической конференции. Витебск, 2008. С. 38.
- 4. Гришаев, А.Н. Разработка мультимедийных интерактивных систем обучения демонстрационного гипа / А.Н. Гришаев, В.И. Луцейкович // Формирование творческой личности инженера в процессе графической подготовки УО «ВГТУ»: материалы Республиканской научно-практической конференции. Витебск, 2008. С. 33.

ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ ИННОВАЦИОННЫХ МЕТОДОВ ПРИ ЧТЕНИИ ЛЕКЦИЙ ПО ИСТОРИИ АРХИТЕКТУРЫ

Гуторова Т.В.

Брестский государственный технический университет, г. Брест

История развития общества на всех этапах мировой цивилизации отражалась в памятниках архитектуры. Архитектурные сооружения являются наиболее крупными и доступными для обозрения памятниками эпохи. Они дают достоверную картину развития строительной техники, конструкций, материалов и художественных принципов, отражают характер эпохи, особенности материальной и духовной культуры общества, место человека в обществе, господствующие идеи времени строительства. Архитектура создаёт обобщённый, ёмкий и целостный образ времени: гармония в жизни свободного человекагражданина, столь характерная для античности; господство религиозной идеологии, отражённое в готических соборах средневековья; торжество идей гуманизма в эпоху Ренессанса; характерная для дворянства демонстрация роскоши и богатства, нашедшая отражение в зданиях и сооружениях эпохи классицизма.

Изучение наследия мировой архитектуры даёт возможность специалисту оценивать художественную ценность и экономическую целесообразность рассматриваемого объекта строительства с учётом климатических особенностей, наличия строительных ресурсов, уклада жизни, мировоззрения и существующей системы ценностей времени строительства; позволяет привить будущим специалистам потребность в самообразовании и совершенствовании профессиональных и общенаучных знаний.

В современных условиях появилась необходимость становления и развития такого сознания специалистов инженеров-строителей, которое позволит обеспечить широкую эрудицию и повысить уровень общей культуры. А также наряду с профессиональной подготовкой специалистов обеспечить формирование динамично развивающейся личности, которая чётко представляет возможность.