Гуцул В. Г., Гуцул В. И.

ЭНЕРГОЭФФЕКТИВНЫЕ ИНЖЕНЕРНЫЕ РЕШЕНИЯ ДЛЯ КОММЕРЧЕСКИХ ЗДАНИЙ

Технический университет Молдовы. Гуцул В. Γ . — заведующая департамента, к.т.н., доцент; Гуцул В. И. — ассистент.

1 Введение

Анализ потребления первичной энергии в Европейском Союзе показывает, что около 82 % энергии потребляется в жилом, коммерческом и промышленном секторах. Из этого потребления 47 % используется для отопления зданий и производства тепла, необходимого для технологических и производственных процессов.

Энергопотребление зданий в Республике Молдова составляет 58 % от общего энергопотребления, что ставит проблему повышения энергоэффективности зданий в качестве приоритета. Цели государственной политики в области энергетики закреплены в Энергетической стратегии Республики Молдовы до 2050 года [1]. Документ предусматривает повышение безопасности в энергетической сфере, при этом на страну влияют такие факторы, как политизация торговли энергоресурсами, рост цен на электроэнергию и природный газ. В условиях отсутствия местных ресурсов ископаемого топлива Республика Молдова может минимизировать свою зависимость от импорта, используя потенциал возобновляемых источников энергии (ВИЭ) и увеличивая долю электроэнергии в структуре энергопотребления, в том числе в строительном секторе.

Одним из методов уменьшения потребления энергии является внедрение тепловых насосов для отопления, охлаждения и приготовления горячей воды. В отличие от традиционных газовых, электрических, твердотопливных котлов, тепловые насосы открывают эффективные технические возможности для экономии энергии и сокращения выбросов CO₂.

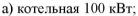
Целью данной статьи является анализ реального состояния систем обеспечения микроклимата на примере коммерческого здания и разработка мер, рекомендаций по внедрению энергоэффективных решений систем отопления, охлаждения и ГВС.

Эффективность и выбор того или иного источника тепловой энергии сильно зависят от климатических условий, особенно если источником тепла является атмосферный воздух. Лучше использовать тепловой насос с теплыми полами с водяным подогревом, чем с конвекторами, радиаторами или фанкойлами. Все зависит от температуры подачи системы отопления. Для работ с водяным теплым полом температура находится в пределах 35–45 °C, а для низкотемпературных радиаторов и фанкойлов требуется 50–55 °C.

2 Аудит здания и систем обеспечения микроклимата для коммерческого центра INSTALCO, город Кишинев

Рисунок 1 – Коммерческий центр INSTALCO

Здание построено в 1998 году. Имеет 4 уровня, общая площадь составляет 836 м². На первом этаже расположены магазин, склад, котельная; на 2 этаже – офисы, отдел продаж, бухгалтерия; на 3 этаже – сервисный центр; на 4 этаже (мансарда) – офисный кабинет для администрации компании.


В результате аудита и обследования здания, было обнаружено следующее:

- наружная стена пустотелый глиняный кирпич Брик стоун, неутепленный;
- здание не имеет подвала, первый этаж находится непосредственно на земле, пол не утеплен, что приводит к большим теплопотерям;

- входная дверь простая, одностворчатая;
- окна очень старые, из алюминиевого профиля, однокамерный стеклопакет, со швами между проемами и профилями до 1 см. Именно здесь происходят наибольшие потери тепла.

Потребность здания в тепле обеспечивают 2 конденсационных газовых котла по 50 кВт каждый, рисунок 2. Они монтируются в каскаде и управляются каскадным регулятором. Один котел установлен для подогрева теплоносителя для системы отопления, а второй – для приготовления горячей воды (ГВС). В котельной установлен змеевиковый теплообменник-бойлер на 200 литров. Рециркуляционный насос и датчик котла подключены к каскадному регулятору. При понижении температуры воды в котле автоматически запускается рециркуляционный насос. Данный тип подключения не влияет на систему отопления, которая может работать во время нагрева ГВС. Трубы не утеплены.

б) панель управления

Рисунок 2 – Конденсационные газовые котлы

В качестве нагревательных элементов используются стальные радиаторы панельного типа. Механическая система вентиляции отсутствует. Система естественной вытяжной вентиляции предусмотрена только в санузлах. Для охлаждения воздуха используются устаревшие сплит-кондиционеры On/Off.

3 Меры по повышению энергоэффективности здания

Существующие здания, подлежащие реконструкции, должны будут соответствовать набору минимальных требований энергоэффективности. Для рассматриваемого здания предлагаются следующие энергоэффективные мероприятия:

- теплоизоляция наружных стен, пола и крыши (толщина изоляции по расчету);
- замена старых окон на новые, герметичные и более энергоэффективные;
- замена дверей на двойные двери с тамбуром на входе;
- изоляция трубопроводов;
- замена люминесцентных ламп на светодиодные лампы;
- система вентиляции с рекуперацией тепла;
- использование низкотемпературных систем отопления;
- проанализировать возможность и перспективу установки теплового насоса.

Авторы провели исследование оптимального режима работы существующего конденсационного котла. Измерения проводились при разных условиях работы:

- 1) подача/обратка 80/60 °C;
- 2) подача/обратка 50/30 °C.

В процессе горения были проведены следующие замеры: статическое и динамическое давление газа на входе в горелку; температура теплоносителя на входе в

установку и на выходе; расход теплоносителя; температура дымовых газов. Данные снимались со счетчика до начала исследований и после. Рассчитаны тепловые потери и КПД установки. Полученные данные занесены в Таблицу 1.

Таблица 1. Режимная книга котла мощностью 50 кВт

ute	numire echipament nr.ser ere utila nominala (80/60 C) Pul eficiar esa instalarii		minala (50/3	30 C)
ute en	ere utila nominala (80/60 C) Pul	tere utila no	minala (50/3	80 C)
en	eficiar]	ililiaia (30/3	.u c)
]		
dre	esa instalarii]		
er	soana responsabila			
N₂	Denumire parametru măsurat	Unităti de măsură	Valoarea	
			Putere utila	
			50-30 ° C	80-60 ° C
1	Tip combustibil		G20	
2	Presiune gaz la intrarea in arzător, Pststic	mbar	30	30
3	Presiune gaz la intrarea in arzător, P dinamic	mbar	26	23
4	Consum gaz dupa indicații contor	m^3/h	1,75	4,29
5	Temperatura aerului in centrală	°C	24,1	24,1
	Temperatura agent termic la intrare în cazan	°C	34	61
5		°C	39	67
_	Temperatura agent termic la ieșire din cazan		3.66	3,66
7	Temperatura agent termic la ieșire din cazan Debit de agent termic prin cazan	m³/h		=0.f
7		m ³ /h ⁰ C	55,8	78,5
7	Debit de agent termic prin cazan		- 1	78,5
7	Debit de agent termic prin cazan Temperatura Gazelor de ardere		- 1	78,5 5,5
7	Debit de agent termic prin cazan Temperatura Gazelor de ardere Compoziția chimica a gazelor de ardere:	0C	55,8	
7	Debit de agent termic prin cazan Temperatura Gazelor de ardere Compoziția chimica a gazelor de ardere:	°C %	55,8	5,5
7	Debit de agent termic prin cazan Temperatura Gazelor de ardere Compoziția chimica a gazelor de ardere: O2 CO2	°C %	55,8 5 9	5,5 8,7
5 7 8 9 .0	Debit de agent termic prin cazan Temperatura Gazelor de ardere Compoziția chimica a gazelor de ardere: O2 CO2 CO	°C % % ppm	55,8 5 9 148	5,5 8,7 285
7 3 9	Debit de agent termic prin cazan Temperatura Gazelor de ardere Compoziția chimica a gazelor de ardere: O2 CO2 CO4 NO	°C % ppm ppm	55,8 5 9 148 10	5,5 8,7 285 7

Из анализа полученных данных был сделан вывод, что конденсационный котел более эффективен при работе при низких температурах.

Для обследуемого здания, был произведен расчет потребности в тепле [2]. Расчеты были проведены для двух граничных условий: температура наружного воздуха -16 °C (температура самых холодных 5-ти дней для г. Кишинева) и 0.6 °C (средняя температура отопительного сезона) при постоянной температуре воздуха в помещении 20 °C. Модуль -16 °C/20 °C был выбран для определения необходимой мощности автономной котельной, а режим 0.6 °C/20 °C – для оценки количества тепла, необходимого в течение всего отопительного сезона. Продолжительность отопительного периода составляет 166 дней. В связи с тем, что во внерабочее время допускается поддерживать температурный режим ниже нормы, но не ниже 12 °C, потребность в тепле была рассчитана и для модуля 0.6 °C/12 °C.

Потребность в тепле для здания в холодный период года составляет 50 кВт для модуля -16 °C/20 °C; для модуля 0.6 °C/20 °C -27 кВт; для модуля 0.6/12 °C -16 кВт. Потребность в тепле за весь отопительный сезон, согласно расчетам, составляет: в рабочее время (с 7:00 до 18:00) 49302 кВт·ч; а во внерабочее время -34528 кВт·ч; всего 83830 кВт·ч.

Для рассматриваемого здания была проанализирована возможность установки теплового насоса. Известно, что тепловой насос теряет свою мощность при понижении наружной температуры, поэтому был выбран тепловой насос с мощностью более 50 кВт. Согласно программе подбора было выбрано оборудование из каталога производителя: Чиллер Hyundai 65 кВт в тепловом насосе F65, включая оборудование, необходимое для его установки. Цена чиллера составляет 10 700 евро, а общая сумма инвестиций — 15 650 евро. Выбранный чиллер при средней температуре отопительного сезона будет производить 58,80 кВт тепла, потребляя 19,60 кВт электроэнергии [3, 4]. В результате коэффициент энергоэффективности СОР будет

равен 3.00. Расчет срока окупаемости инвестиций в тепловой насос представлен в Таблице 2.

Таблица 2. Расчет срока окупаемости инвестиций в тепловой насос

Расходы на систему	Чиллер с тепловым	Газовый котел 50 кВт	
отопления	насосом воздух-вода		
1. Первоначальные	A=301328	В=0, существующий	
инвестиции, лей	A-301328		
Количество тепловой			
энергии, необходимой для	83830	83830	
холодного периода года,	83830		
кВт∙ч			
Количество			
энергоресурсов	27943 кВт∙ч	9212 m^3	
необходимое для	электроэнергии	природный газ	
холодного периода года			
2. Стоимость			
потребляемой энэргии,	x=66784	y=133298	
лей			
Срок окупаемости	Срок окупаемости теплового насоса – 4 года 194 дней		
инвестиций, лет			
$\left(A - B \right)$			
$I = \frac{1}{(y - x)}$			

Примечание – Теплота сгорания 1m^3 природного газа =33,08 МДж; 1 кВт/ч=3,6 МДж, 33,08/3,6=9,1 кВт. Цена за 1m^3 газа составляет 14,47 лея [4]. Цена за 1 кВт·ч электроэнергии 2,39 lei [5]. Курс обмена: 1 евро = 19,2542 лея, по данным НБМ на день расчета [6].

Выводы

- тепловые насосы являются хорошим решением для коммерческих зданий при условии, что они построены в соответствии с действующими нормами или запланированы мероприятия по повышению уровня их энергоэффективности;
- если тепловой насос используется только для обогрева коммерческого здания, срок окупаемости инвестиций составляет 3–5 лет. Учитывая нестабильные цены на газ, все более теплый климат в холодный период года, выбор в пользу тепловых насосов очевиден.
- учитывая низкую эффективность тепловых насосов при низких температурах наружного воздуха, их рекомендуется устанавливать в уже существующие системы газового отопления.

Список использованных источников

- 1. Strategia Energetică a Republicii Moldova 2050 (SEM 2050).
- 2. NCM E.04.01:2017 "Protecția termică a clădirilor", 2017.
- 3. NIBE ENERGY SYSTEMS. Air/Water Heat Pump NIBE AMS 10-16. Installer Manual. 2018. HB EN 1826-3331942. https://nibe.ru.
- 4. BLACK SEA. BSExpert v.2023 [software].
- 5. https://anre.md.
- 6. https://www.bnm.md/.