Шаламберидзе З. П., Стариков А. Н.

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ УЧЕБНОГО КОРПУСА № 8 ВЛАДИМИРСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

Владимирский государственный университет, Шаламберидзе 3. П.— директор студенческого городка, Стариков А. Н. — доцент кафедры «Теплогазоснабжение, вентиляция и гидравлика», к.т.н., доцент

Повышение энергоэффективности зданий и сооружений во Владимирском государственном университете ведется на планомерной основе. Целью энергетического обследования является оценка эффективности работы фактического энергоиспользующего оборудования, состояния энергетического оборудования, учет потребляемых и отпускаемых топливно-энергетических ресурсов, финансовой отчетности по использованию ТЭР, анализа договорных отношений с поставщиками ТЭР, затрат на энергообеспечение, и др.

Для достижения поставленной цели необходимо решить ряд задач:

оценка фактического состояния систем энергопотребления и их учета, сравнение показателей использования ТЭР с нормативными значениями;

составление энергетического паспорта и топливно-энергетического баланса организации, прошедшей энергетическое обследование;

выявление причин нерационального и неэффективного использования ТЭР и определение резервов их экономии;

определение правильности расчетов с субабонентами и поставщиками ТЭР за потребленные энергоресурсы, а также возможности сокращения объема потребления ТЭР и расходов по их оплате.

разработка комплекса технических и организационных мероприятий, направленных на повышение энергоэффективности.

исследования выступает восьмой Объектом корпус Владимирского государственного университета (ВлГУ), расположенного по адресу: г. Владимир, ул. Никотская, д. 1. Университет работает в сфере образовательных услуг по направлениям: техническому, гуманитарному и педагогическому. Здание рассчитано 392 человека ежедневно обучающихся, человек профессорско-55 преподавательского состава, обслуживающего персонала. Арендаторов в помещениях нет.

Технические характеристики здания «Восьмой корпус ВлГУ», представлены в таблице 1.

Таблица 1. Технические характеристики здания корпус №8 ВлГУ (ул. Никитская, д. 1)

No	Характеристика	Размерность	Значение
Π/Π			
1	Постройка	год	1907
2	Полный объём (строительный)	M^3	16 897
3	Площадь общая/основная/вспомогат.	M^2	2790,2/1719,5/891,7
4	Число этажей	шт.	3
5	Высота от пола до потолка	M	4,24 (3,92; 4,38; 4,43)
6	Количество окон	шт.	133
7	Площадь остекления	M^2	299
8	Материал стен	материал, м	кирпич (0,96),
9	Материал окон	материал	Дерево, пласт. стеклопак.
10	Физический износ по паспорту	%	54

Сведения о потреблении энергетических ресурсов по годам за 4 предшествующих обследованию года приведены в таблице 2.

Таблица 2. Финансовые показатели и потребление ТЭР за 2020–2023 гг.

таолица 2. Финансовые показатели и потреоление 1 ЭР за 2020–2025 гг.									
ЭНЕРГОРЕСУРС	2020		2021		2022		2023		
Объемы финансирования производства продукции, услуг), тыс. руб. (Росс.)	4836,63		4992,36		4998,21		4996,17		
Электроэнергия, тыс. кВт/тыс. руб. (Росс.)	61,50	246,00	63,21	252,84	62,49	249,96	58,54	263,43	
Тепловая энергия, Гкал/тыс. руб. (Росс.)	622,00	839,60	622,00	839,60	1609,00	2172,00	1436,00	1938,00	
Водопотребление, тыс. м ³ /тыс. руб. (Росс.)	2,79	40,13	1,64	23,67	2,16	31,12	2,92	42,01	
Водоотведение, тыс. м ³ /тыс. руб. (Росс.)	2,79	32,40	1,64	19,07	2,16	25,07	2,92	33,84	
ГСМ, л/тыс. руб. (Росс.)	-	-	-	-	-	-	-	-	
ИТОГО, тыс. руб. (Росс.)	1158,13		1135,18		2478,15		2277,27		
Электроэнергия, тыс. т.у.т.	0,021187		0,021776		0,021528		0,020167		
Тепловая энергия, тыс. т.у.т.	0,092429		0,092429		0,239097		0,213390		
ИТОГО, тыс. т.у.т.	0,113616		0,114205		0,260625		0,233557		

Теплоснабжение корпуса № 8 ФГБОУ ВО «Владимирский государственный университет» осуществляет ОАО «Владимирские коммунальные системы» (ВКС) по Государственному контракту.

Потребление тепловой энергии для восьмого корпуса составляет 1436,0 Гкал на 2023 год в натуральном выражении. Максимальный перепад температур: наружного воздуха: от -27° С до $+8^{\circ}$ С. Ежесуточные показания теплосчетчика корпуса фиксируются в журнале учета тепловой энергии с передачей в ВКС выписки с данными 15 и 30 (31) числа текущего месяца.

По контракту раздел системы теплоснабжения по эксплуатационной ответственности определяется границей, которой являются наружная стена здания.

Теплосеть от границы раздела под стеной и по подвалу находится на балансе и эксплуатационной ответственности абонента ВлГУ.

Расход тепла и теплоносителя определяется счетчиком ТС.ТМК-Н1 № 00639. Приготовление горячей воды в корпусе № 8 ВлГУ не производится. Прибор учета горячего водоснабжения в восьмом корпусе отсутствует.

Анализ фактического теплопотребления объекта

Годовое потребление тепловой энергии, сведения о потребление тепловой энергии по корпусу № 8 ВлГУ и финансовых затратах в 2021–2013 гг. приведены в таблице 3.

Таблица 3.	. Потребление	тепловой энер	гии в 2021–2023 гг.

Год	Лимит,	Гкал	Фактическое потребление. Гкал			
	Отопление	ГВС	Отопление	ГВС	Всего	
2021	650.00	138.00	293.00	329.00	622,00	
2022	650.00	138.00	757.00	852.00	1609,00	
2023	650.00	138.00	810,00	626.00	1436,00	
Среднее			372,00	361,40	733,40	
значение			372,00	501,10	755,10	

Расчет годовой потребности тепловой энергии по МДК 4-05.2004

Расчет потребности тепла на отопление

Требуемая температура воздуха внутри зданий высших учебных заведений +18 ° C [1, таблица 3.2]. Продолжительность отопительного периода составляет 209 суток (5112 ч), [2, таблица 3.1], $\Gamma CO\Pi = 4579,5$ °C·сут. [3, таблица 5.2]. Средняя температура наружного воздуха за отопительный период -3,5 °C [2, таблица 3.1].

Годовая потребность на отопление рассчитывается согласно п .3.2.1 и приложению 3 [4] по формуле

$$Q_{\rm o} = V q_{\rm o} (t_{\rm пом} - t_{\rm vn}) (1 + K_{u.p.}) n \cdot 10^6$$
, Гкал/год.

Удельная отопительная характеристика здания для расчетных условий по Владимирской области принята по таблице 14 [3].

Расчетный коэффициент инфильтрации $K_{u,p}$ определяется по формуле 4.2 [3]:

$$K_{u.p.} = 10^{-2} \sqrt{2gL\left(1 - \frac{273 + t_{yn}}{273 + t_{nom}}\right) + W_o^2}$$

где W_0^2 – средняя скорость ветра.

Результаты расчета сведены в таблицу 4.

Годовая потребность в тепле на отопление корпуса № 8 ВлГУ (Никитина, 1) составляет 597,39 Гкал.

Расчет тепловых потерь в системе теплопотребления

Так как граница балансовой принадлежности и эксплуатационной ответственности сторон установлена по наружной грани стен зданий, расчет потерь тепловой энергии через изоляцию трубопроводов наружной тепловой сети не производится.

Таблица 4. Расчет годовой потребности в тепле на отопление

Наименова ние здания	та здан ия	Объем здания по наружн ому обмеру	Удельная отопительн ая характерис тика	воздуха внутри	ура наружно		ент инфильтра	сть в	сть систем ы
	Н,м	V , M^3	<i>q₀</i> , ккал/(м³·ч ·°С)	t_j ,°C	$t_{po},^{\circ}\mathrm{C}$	п, ч.	$K_{u.p.}$	Гкал/год	Гкал/ч
Корпус № 8	14,0	16509,8	0,31	18	-3,5	5112	0,062	597,39	0,250

Потери тепловой энергии, Гкал/год, с утечками сетевой воды определяют по формуле 38 [4].

$$Q_{
m y} = G_{
m y} \cdot {
m c}_{
m B} ig(t_{
m пp}^{
m cr} - t_{
m подп} ig) r \cdot 10^6,$$
 Гкал/год

Для закрытых систем теплоснабжения расход воды на подпитку за планируемый период G_y определяется по формуле 39 [4].

$$G_{\rm y} = 0.0025 \ V_{\rm BC} Y$$
, кг

Расход воды, $V_{\rm BC}$ м³/ч, на наполнение внутренних систем отопления присоединенных потребителей определяется по показаниям водомеров, а при их отсутствии вычисляется по формуле 40 [4].

$$V_{\rm BC} = v_{\rm BC}Q_{\rm BC}$$
, ${\rm M}^3/{\rm H}$

Ориентировочно принимаем удельный объем воды на заполнение местных систем отопления зданий по всему объему в размере 30 м³/Гкал/ч суммарного расчетного часового расхода тепла на отопление и вентиляцию согласно [4].

Таким образом, тепловой поток равен 54,447/1,2=45,373 Гкал/год, тепловые потери трубопроводами ГВС составляют 9,075 Гкал/год. $(45,373\cdot 0,2=9,075$ Гкал/год).

Всего расчетно-нормативные потери равны сумме потерь с утечками сетевой воды в системах отопления и трубопроводами ГВС – 11,084 Гкал/год.

Для определения класса энергетической эффективности здания применялась методика п.10.3, [3]. Класс энергетической эффективности здания составил D.

В качестве выводов можно отметить, что система теплоснабжения функционирует исправно, однако имеются замечания:

для корпуса № 8 ВлГУ отсутствует схема теплоснабжения. Необходимо разработать расчетные и принципиальные схемы теплоснабжения учреждения;

установка теплосчетчика ГВС для корпуса № 8 ВлГУ;

так как теплоснабжающая организация не предоставляет сведения по лимитам каждого здания ВлГУ, принимаются расчетные лимиты потребления тепловой энергии, которые составляют 651,84 Гкал/год (из них 597,34 Гкал/год на отопление, 54,45 Гкал/год на ГВС);

проведен расчет параметров теплопотребления здания корпуса № 8 ВлГУ по МДК 4-05.2004, анализ и сравнение предоставленных данных с расчетными данными. Расчетное количество тепловой энергии на отопление по МДК 4-05.2004 составляет 597,39 Гкал. Максимальная часовая нагрузка составила 0,250 Гкал/ч;

проведены расчеты потерь энергии в тепловой сети корпуса. В системе отопления 2,01 Гкал/год, в системе ГВС 9,08 Гкал/год. Суммарное значение потерь составило 11,09 Гкал/год;

сопротивление теплопередаче ограждающих конструкций здания ниже нормативного значения и не соответствуют требованиям по теплозащите здания, кроме окон. В результате чего теплопотери через чердачное перекрытие, наружные стены и двери достаточно высоки.

Фактическое значение годового потребления тепловой энергии выше принятого расчетного показателя.

Сопротивление теплопередаче ограждающих конструкций здания ниже нормативного значения и не соответствуют требованиям по теплозащите здания, кроме окон. В результате чего теплопотери через чердачное перекрытие, наружные стены и двери достаточно высоки.

Список использованных источников

- 1. Здания жилые и общественные. Параметры микроклимата в помещениях: ГОСТ 30494-2011 Межгосударственный стандарт. Приказ Росстандарта от 12.07.2012 N 191 (ред. от 20.12.2022).
- 2. Строительная климатология: СП 131.13330.2020, утв. приказом Мин. строя и ЖКХ РФ от 24 декабря 2020 г. N 859.
- 3. Тепловая защита зданий: СП 50.13330.2012. СП Актуализированная редакция СНиП 23-02-2003, утв. Приказом Минрегиона России от 30.06.2012 N 265 (ред. от 15.12.2021).
- 4. Отопление, вентиляция и кондиционирование воздуха. СП 60.13330.2012. Актуализированная редакция СНиП 41-01-2003, — утв. Приказом Минрегиона России от 30.06.2012 N 279.
- 5. Методики определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения: МДК 4-05.2004.