МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАФЕДРА ТЕОРЕТИЧЕСКОЙ И ПРИКЛАДНОЙ МЕХАНИКИ

Задания и методические указания к выполнению расчетно-графических работ по теоретической механике

для студентов специальности 6-05-0811-03 Мелиорация и водное хозяйство При изучении курса теоретической механики студент должен выполнить установленные учебной программой расчетно-графические работы по основным разделам дисциплины. Методические указания содержат краткий теоретический материал по основным разделам курса теоретической механики и индивидуальные условия для выполнения расчетно-графических работ.

Основная цель методических указаний — оказать помощь студентам при выполнении РГР и развить их навыки самостоятельной работы.

Составители: А. И. Веремейчик, доцент, к. ф.-м. н.

В. М. Хвисевич, профессор, к. т. н.

М. В. Хеук, ассистент, м. т. н.

Рецензенты: В. А. Лебедь, заместитель директора по научной работе филиала «Научно-технический центр» РУП «СТРОЙТЕХНОРМ», к. т. н.

В. В. Мороз, заведующий кафедрой природообустройства учреждения образования «Брестский государственный технический университет», к. т. н., доцент

СОДЕРЖАНИЕ

введение	3
УКАЗАНИЯ ПО ОФОРМЛЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ	4
1. ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ	4
1.1 Проекция силы на координатную ось	4
1.2 Момент силы относительно точки на плоскости	5
1.3 Момент силы относительно центра и оси в пространстве	5
1.4 Распределенные нагрузки	
1.5 ЗАДАНИЕ 1. Определение реакций опор и давления в шарнире составной рамы 1.5.1 Условие задания	
1.5.2 Пример решения	
2. КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЙ ТВЕРДОГО ТЕЛА	13
2.1 Краткие теоретическое сведения	
2.2 ЗАДАНИЕ 2. Определение скоростей и ускорений точек твердого тела	
при поступательном и вращательном движениях	15
2.2.1 Условие задания	15
2.2.2 Пример решения	
3. ДИНАМИКА ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ	20
3.1 Краткие теоретические сведения	
3.2 ЗАДАНИЕ 3. Динамика относительного движения материальной точки	
3.2.1 Условие задания	
3.2.2 Пример решения	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	30

ВВЕДЕНИЕ

Выполнение расчетно-графических работ, их оформление и защита являются элементами самостоятельной работы студентов и призваны помочь им в усвоении соответствующего раздела курса. Перед выполнением работы студенту необходимо изучить теоретический материал, проработать с помощью учебников и пособий практические способы решения задач по данной теме, научиться на конкретных примерах применять имеющиеся методики решения и выбирать оптимальные из них. При защите расчетно-графической работы необходимо ответить на контрольные вопросы, связанные с ее выполнением, и показать умение решать задачи по ее тематике.

Задания и методические указания соответствуют учебному плану специальности 6-05-0811-03 Мелиорация и водное хозяйство, и включают краткие теоретические сведения, условия задания для выполнения расчетно-графических работ, примеры расчетов.

УКАЗАНИЯ ПО ОФОРМЛЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

- 1. Расчетно-графическая работа выполняется на стандартных листах формата A4 и оформляется в следующем порядке: титульный лист, задание на РГР, текст решения задач со схемами, выводы и 1–2 чистые страницы для замечаний преподавателя.
- 2. Необходимые данные для расчетов принимать по схемам и таблицам согласно варианту студента и указаниям преподавателя.
- 3. Чертежи и схемы выполняются с соблюдением масштабов и правил графики.
- 4. Полученные результаты в конце каждого решения приводятся в виде таблицы.

1 ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ

1.1 Проекция силы на координатную ось

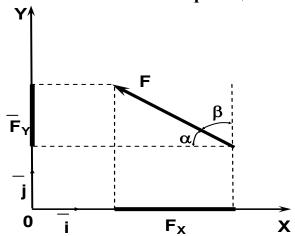


Рисунок 1 – Определение проекции силы на ось координат

Проекцией силы на ось называется скалярная величина, равная произведению модуля силы на косинус острого угла между вектором силы и осью, взятому с соответствующим значком.

$$F_{x} = -F \cos \alpha;$$

$$F_{y} = F \sin \alpha;$$

или

$$F_{x} = -F \sin \beta;$$

$$F_{y} = F \cos \beta.$$

Вектор силы в пространстве равен $\overline{F} = F_x \overline{i} + F_y \overline{j} + F_z \overline{k}$.

Если линия действия силы не параллельна координатной плоскости, то используется способ двойного проецирования.

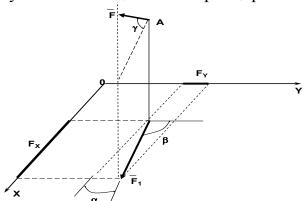


Рисунок 1.2 – Определение проекции силы на ось методом двойного проецирования

$$F_1 = F\cos\gamma;$$

$$F_x = F_1 \cos \alpha = F \cos \gamma \cos \alpha;$$

$$F_{v} = F_{1} \cos \beta = F \cos \gamma \cos \beta;$$

где γ — угол между вектором и плоскостью XOY.

1.2 Момент силы относительно точки на плоскости

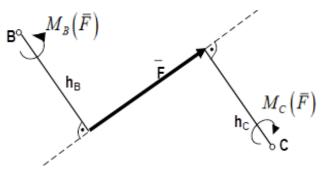


Рисунок 1.3 – К определению момента силы относительно точки

Моментом силы относительно точки на плоскости называется скалярная величина, равная произведению модуля силы на плечо, взятая с соответствующим знаком.

Плечом h силы \bar{F} относительно точки называют кратчайшее расстояние между этой точкой и линией действия силы, т. е. длину отрезка перпендикуляра, опущенного из точки C на линию действия силы \bar{F} .

Правило знаков. Если сила поворачивает плоскость действия относительно точки против движения часовой стрелки, то момент положителен. В противном случае момент отрицателен: $M_B(\bar{F}) = F \cdot h_B$; $M_C(\bar{F}) = -F \cdot h_C$.

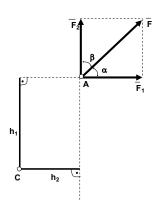


Рисунок 1.4 – К определению момента силы относительно точки

Иногда момент силы относительно точки удобно вычислять по теореме Вариньона.

$$\bar{F} = \bar{F}_1 + \bar{F}_2;
M_c(\bar{F}) = M_c(\bar{F}_1) + M_c(\bar{F}_2);
M_c(\bar{F}) = -F_1 h_1 + F_2 h_2;
M_c(\bar{F}) = -F \cos \alpha \cdot h_1 + F \cos \beta \cdot h_2.$$

1.3 Момент силы относительно центра и оси в пространстве

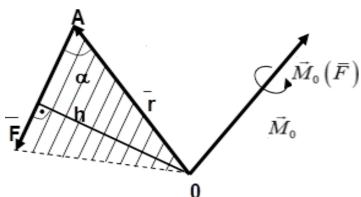


Рисунок 1.5 – Векторный момент силы относительно центра

Моментом силы относительно точки (центра) в пространстве называется векторная величина \bar{M}_0 , равная векторному произведению радиуса-вектора точки приложения силы A на вектор силы. $\vec{M}_0(\bar{F}) = \bar{r} \times \bar{F}$.

Направлен вектор \bar{M}_0 перпендикулярно плоскости векторов (\bar{r},\bar{F}) в ту сторону, чтобы с его конца кратчайший поворот от \bar{r} к \bar{F} (отложенным из той же точки O) был виден против движения часовой стрелки.

Модуль момента равен:

$$M_0(\bar{F}) = r \cdot F \sin(\bar{r}, \bar{F}) = r \cdot F \sin \alpha; \quad r \cdot \sin \alpha = h;$$

$$M_0(\bar{F}) = F \cdot h.$$

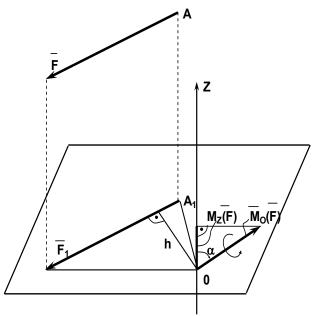


Рисунок 1.6 – Определение момента силы относительно оси

Моментом силы относительно оси в пространстве называется скалярная величина M_z , равная моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.

При этом M_z положителен, если проекция силы \overline{F}_1 поворачивает плоскость вокруг оси при наблюдении с ее положительного конца против движения часовой стрелки.

$$M_z(\bar{F}) = F_1 h_1$$
.

 M_{z} равен нулю в двух случаях:

- 1) линия действия силы \overline{F} направлена параллельно оси z;
- 2) линия действия силы \overline{F} пересекает ось z.

Связь между $\overline{M}_0(\overline{F})$ и $\overline{M}_z(\overline{F})$ выражается равенством

$$M_z(\bar{F}) = M_0(\bar{F}) \cdot \cos(\bar{M}_0^{\wedge}, z).$$

При решении задач удобно пользоваться теоремой Вариньона о моменте равнодействующей относительно оси.

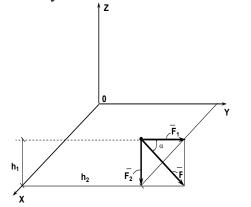


Рисунок 1.7 – Применение теоремы Вариньона

Например, сила \overline{F} лежит в плоскости, параллельной координатной плоскости zOy (рисунок 1.7).

$$\overline{F} = \overline{F}_1 + \overline{F}_2$$
;

По теореме Вариньона:

$$M_{x}(\bar{F}) = M_{x}(\bar{F}_{1}) + M_{x}(\bar{F}_{2});$$

$$M_{x}(\bar{F}) = -F_{1}h_{1} - F_{2}h_{2};$$

$$M_{x}(\bar{F}) = -F\cos\alpha \cdot h_{1} - F\sin\alpha \cdot h_{2}.$$

1.4 Распределенные нагрузки

Распределенными называются нагрузки, непрерывно приложенные вдоль некоторой линии или на поверхности тела.

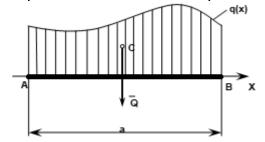


Рисунок 1.8 – Распределенная нагрузка

Они характеризуются интенсивностью q, то есть силой, приходящейся на единицу длины или площади.

Равнодействующая такой нагрузки \overline{Q} по модулю равна площади криволинейной трапеции и приложена в центре тяжести C этой трапеции.

На практике очень распространены равномерно распределенная нагрузка (q=const) и нагрузка, линейно изменяющаяся по длине (треугольная).

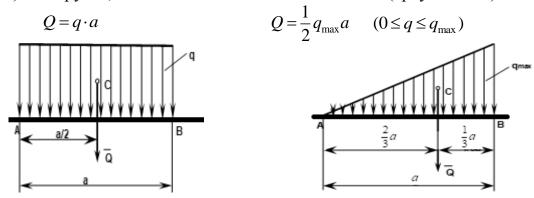


Рисунок 1.9 – Равномерно-распределенная и треугольная нагрузка

1.5 ЗАДАНИЕ 1. Определение реакций опор и давления в шарнире составной рамы

1.5.1 Условие задания

Составная рама состоит из двух жестких частей, шарнирно соединенных в точке C. При помощи внешних связей (шарнирно-неподвижных, шарнирно-подвижных опор, заделок) рама крепится к неподвижному основанию. Рама нагружена сосредоточенными силами $F_1...F_7$, парами сил с моментами $M_1...M_3$ и равномерно распределенной нагрузкой с интенсивностью q. Требуется определить реакции опор и давление в шарнире C.

Геометрические схемы конструкций приведены на рисунке 1.11, а общая схема нагружения для всех вариантов задания приведена на рисунке 1.12.

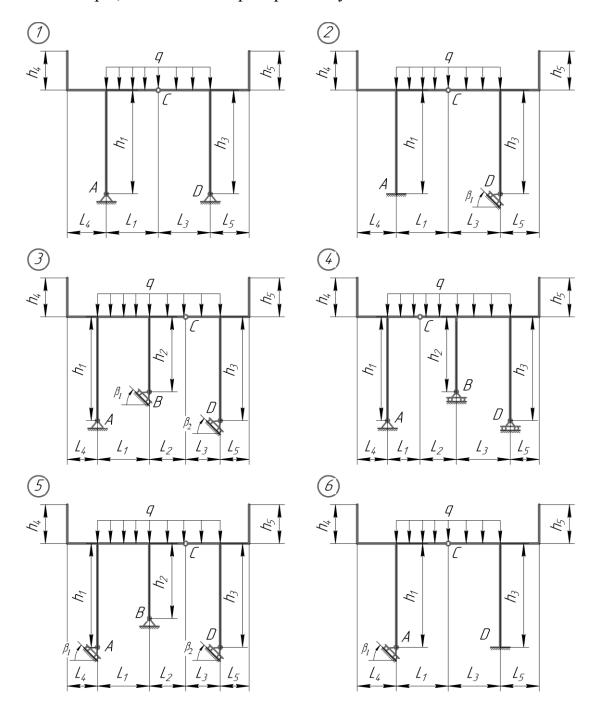
Исходные данные для расчета содержатся в листе индивидуального задания, синтезированного на компьютере, выдаваемого преподавателем каждому студенту. Угол отсчитывается от горизонтали следующим образом (рисунок 1.10).

Рисунок 1.10 – Правило отсчета угла

Таблица 1.1 – Условные обозначения опор

Тип опоры	Жесткая	Шарнирно-	Шарнирно-				
тип опоры	заделка неподвижная		подвижная				
Условное	стойка	стойка	стойка				
обозначение	рамь	рамы	рамы				
	//////	rhim	β>0 β<0				

При составлении расчетной схемы по исходным данным не нужно показывать силы и пары, значения которых равны нулю.



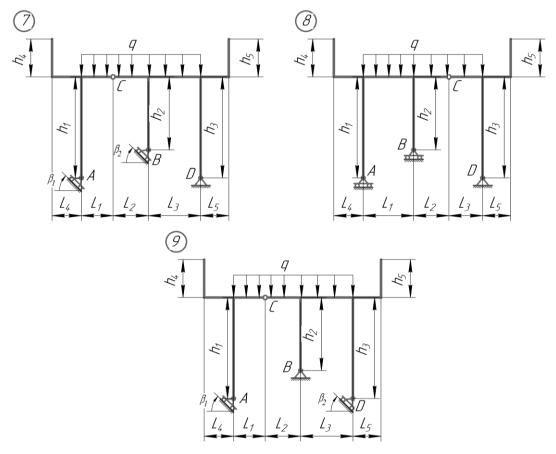
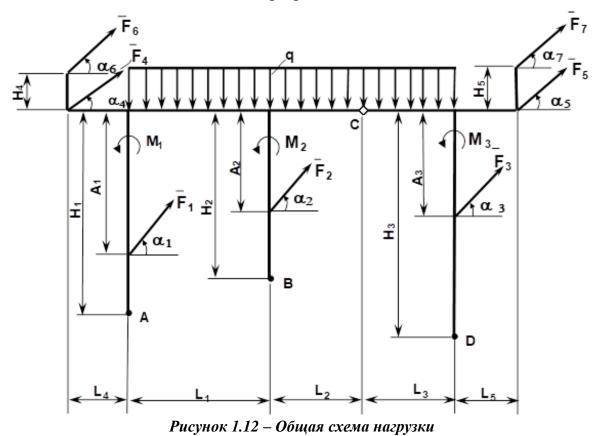


Рисунок 1.11 – Варианты геометрических схем конструкций

Информация о связях в точках A, B, D содержится в бланке индивидуального задания. Условные обозначения опор приведены в таблице 1.1.



1.5.2 Пример решения

Исходные данные

		слодиыс даниы		
L1 = 2,6	M	L2 = 0.0 M	L3	3 = 2.5 M
L4 = 2,5	M	L5 = 0.0 M		
H1 = 3.9 M	H2 = 0.0 M	H3 = 5.3 M	H4 = 0.0 M	H5 = 1.7 M
Опора А – ша	рнирно-подвиж	кная; $\beta = -45^{\circ}$; с	опора D – жестк	ая заделка
$F1 = 24 \kappa\text{H}$			$\alpha 1 = 180^{\circ}$	
$F2 = 0 \kappa\text{H}$			$\alpha 2 = 0^{\circ}$	
$F3 = 0 \kappa\text{H}$			$\alpha 3 = 0^{\circ}$	
F4 = 12 kH			$\alpha 4 = 45^{\circ}$	
$F5 = 0 \kappa\text{H}$			$\alpha 5 = 0^{\circ}$	
$F6 = 0 \kappa H$			$\alpha 6 = 0^{\circ}$	
F7 = 38 kH			$\alpha 7 = 150^{\circ}$	
A1 = 2,5 M		_	$\alpha 7 - 130$	A3 = 0.0 M
M1 = 0.0 kH	Нм			M3 = 27,0 кHм

Решение.

В соответствии с исходными данными, рисунком 1.11 и таблицей 1.1 вычерчиваем в масштабе схему рамы с нагрузкой (рисунок 1.2). Мысленно отбросив внешние связи, заменим их действие реакциями $\overline{R}_{A}, \overline{X}_{D}, \overline{Y}_{D}, \overline{M}_{D}$. Распределенную нагрузку заменим ее равнодействующей \overline{Q} (рисунок 1.12), величина которой равна

$$Q = 5, 1 \cdot q = 5, 1 \cdot 5 = 25, 5 \text{ KH}.$$

Освободим раму от внешних связей и их действие на раму заменим соответствующими реакциями связей ($\bar{R}_{\!\scriptscriptstyle A}, \bar{X}_{\!\scriptscriptstyle D}, \bar{Y}_{\!\scriptscriptstyle D}, \bar{M}_{\scriptscriptstyle D}$.).

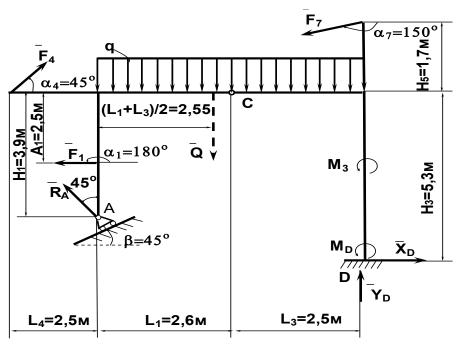


Рисунок 1.13 – Схема рамы согласно заданию

Рама находится в равновесии под действием задаваемых сил и реакций связей (рисунок 1.13), образующих произвольную плоскую систему сил, для которой можно составить три условия равновесия. Поскольку неизвестных реакций четыре, а уравнений только три, расчленим раму на части в шарнире C. В шарнире C неизвестную реакцию для левой части конструкции заменим составляющим $\overline{X}_C, \overline{Y}_C$ по положительному направлению осей координат. Для правой части составляющие $\overline{X}_C, \overline{Y}_C$ направлены противоположно положительному направлению осей координат (рисунки 1.14 и 1.15).

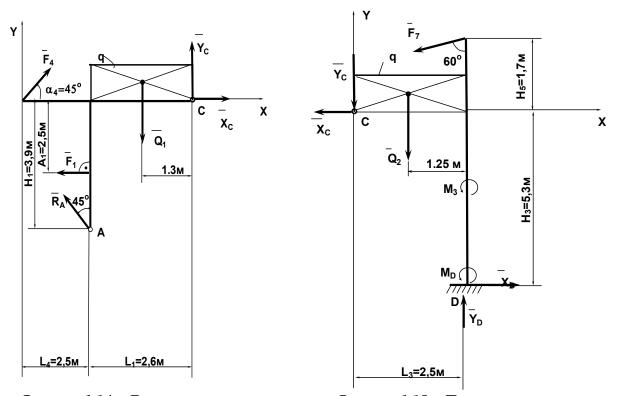


Рисунок 1.14 – Левая часть рамы

Рисунок 1.15 – Правая часть рамы

Распределенную нагрузку в левой и правой частях рамы заменим равнодействующими \bar{Q}_1 и \bar{Q}_2 соответственно.

$$Q_1 = 2,6 \cdot q = 2,6 \cdot 5 = 13 \text{ kH};$$

$$Q = 2,5 \cdot q = 2,5 \cdot 5 = 12,5$$
 кН.

Составим уравнения равновесия произвольной плоской системы сил, приложенных к левой части (рисунок 1.13)

$$\sum F_{kx} = 0; X_C + F_4 \cos 45^\circ - F_1 - R_A \sin 45^\circ = 0; (1.1)$$

$$\sum F_{ky} = 0; Y_C + F_4 \cos 45^\circ - Q_1 - R_A \sin 45^\circ = 0; (1.2)$$

$$\sum M_C(\overline{F}_k) = 0; \ Q_1 \cdot 1, 3 - F_1 \cdot 2, 5 - R_A \cos 45^\circ \cdot 2, 6 - F_4 \sin 45^\circ \cdot 5, 1 - R_A \sin 45^\circ \cdot 3, 9 = 0; (1.3)$$

Из уравнения (1.3) находим реакцию \overline{R}_{A}

$$R_A = \frac{1,3Q_1 - 2,5F_1 - 5,1F_4\sin 45^{\circ}}{2,6\cos 45^{\circ} + 3,9\sin 45^{\circ}} = \frac{1,3\cdot 13 - 2,5\cdot 24 - 5,1\cdot 1,2\cdot 0,707}{2,6\cdot 0,707 + 3,9\cdot 0,707} = -8,8 \text{ kH}.$$

Из (1.2) и (1.3) определяем давления $\,\overline{\!X}_{\scriptscriptstyle C}, \,\overline{\!Y}_{\!\scriptscriptstyle C}\,.$

$$X_C = F_1 + R_A \sin 45^\circ - F_4 \cos 45^\circ = 24 - 18,8 \cdot 0,707 - 12 \cdot 0,707 = 2,22 \text{ kH};$$

 $Y_C = Q_1 + F_4 \sin 45^\circ - R_A \cos 45^\circ = 13 - 12 \cdot 0,707 - 18,8 \cdot 0,707 = 17,8 \text{ kH}.$

Составляем уравнение равновесия произвольной плоской системы сил, приложенных к правой части (рисунок 1.14).

$$\sum F_{kx} = 0;$$
 $-X_C - F_7 \sin 60^\circ + X_D = 0;$ (1.4)

$$\sum F_{ky} = 0; Y_D - Y_C - Q_2 - F_7 \cos 60^\circ = 0; (1.5)$$

$$\sum M_D(\overline{F}_k) = 0; \quad X_C \cdot 5.3 + Y_C \cdot 2.5 + Q_2 \cdot 1.25 + M_3 + F_7 \sin 60^\circ \cdot 7 + M_D = 0. \quad (1.6)$$

Откуда

$$X_D = X_C + F_7 \sin 60^\circ = 2,22 + 38 \cdot 0,866 = 3,51 \text{ кH};$$

$$Y_D = Y_C + Q_2 + F_7 \sin 60^\circ = 17,8 + 12,5 + 38 \cdot 0,5 = 49,3 \text{ кH};$$

$$M_D = -5,3X_C - 2,5Y_C - 1,25Q_2 - M_3 - 7F_7 \cos 60^\circ$$

$$M_D = -5,3 \cdot 2,22 - 2,5 \cdot 17,8 - 1,25 \cdot 12,5 - 27 - 7 \cdot 38 \cdot 0,866 = -329 \text{ кH} \cdot \text{м}.$$

Для проверки правильности решения составим уравнение равновесия сил, приложенных ко всей раме (рисунок 1.12).

$$\begin{split} & \sum M_C(\overline{F}_k) = M_D + M_3 + 2.5Y_D + 5.3X_D + 1.7F_7 \sin 60^\circ - 2.5F_7 \cos 60^\circ + 0.05Q - \\ & -5.1F_4 \sin 45^\circ - 2.5F_1 - 2.6R_A \cos 45^\circ - 3.9R_A \sin 45^\circ = -392 + 27 + 49.3 + 5.3 \cdot 35.1 + \\ & 1.7 \cdot 38 \cdot 0.866 - -2.5 \cdot 38 \cdot 0.05 \cdot 25.5 - 5.1 \cdot 12 \cdot 0.707 - 2.5 \cdot 24 + 2.6 \cdot 18.8 \cdot 0.707 + \\ & 3.9 \cdot 18.8 \cdot 0.707 = -479.8 + 479.9 = 0.1 \neq 0. \end{split}$$

Оцениваем погрешность расчета:

$$\varepsilon = \frac{0.1 \cdot 100\%}{479.8} = 0.02\% < 3\%$$
 (допустимо).

Ответ:
$$R_A = -18.8 \text{ кH},$$
 $X_D = 35.1 \text{ кH},$ $Y_D = 49.3 \text{ кH},$ $M_D = -329 \text{ кH·м},$ $X_C = 2.22 \text{ кH},$ $Y_C = 17.8 \text{ кH}.$

Знаки показывают, что $\overline{R}_{\!\scriptscriptstyle A}$ и $M_{\!\scriptscriptstyle D}$ направлены противоположно показанным на рисунке 1.13.

2 КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЙ ТВЕРДОГО ТЕЛА

2.1 Краткие теоретическое сведения

Вращательное движение твердого тела полностью определяется заданием угла его поворота как функции времени: $\varphi = \varphi(t)$. Угол поворота обычно измеряют в радианах. Главными кинематическими характеристиками вращательного движения в целом являются угловая скорость и угловое ускорение.

Угловая скорость тела в данный момент времени равна первой производной по времени от угла поворота (2.1).

$$\omega = \frac{d\varphi}{dt} = \dot{\varphi} \,. \tag{2.1}$$

Введенная таким образом угловая скорость ω будет положительной, если в рассматриваемый момент времени тело вращается в направлении, соответствующем выбранному положительному направлению отсчета угла φ , т. е. если в данный момент угол φ возрастает. Если в данный момент тело движется так, что угол φ убывает, то величина ω будет отрицательной. Абсолютное значение угловой скорости будем обозначать через ω : $\omega = |\overline{\omega}| = \dot{\varphi}$. Если угол поворота измеряется в радианах, а время – в секундах, то единицей измерения угловой скорости будет рад/с.

Угловое ускорение тела в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота тела по времени (2.2):

$$\varepsilon = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2} = \ddot{\varphi}. \tag{2.2}$$

Если знаки ω и ε одинаковы, тело вращается ускоренно, если разные — замедленно. Абсолютное значение углового ускорения будем обозначать через ε : $\varepsilon = |\overline{\varepsilon}| = \overline{\varphi}$. Единицей измерения углового ускорения является рад/ c^2 .

Кинематические характеристики движения отдельных точек твердого тела определяются характеристиками движения тела в целом и положением точек в теле.

При вращении твердого тела вокруг неподвижной оси любая его точка описывает окружность с центром на оси вращения, лежащую в плоскости, перпендикулярной оси. Радиус окружности представляет собой расстояние h от точки до оси вращения.

Величина скорости точки твердого тела, вращающегося вокруг неподвижной оси, равна произведению угловой скорости ω тела на расстояние h от этой точки до оси вращения:

$$v = \omega \cdot h. \tag{2.3}$$

Из формулы (2.3) следует, что модули скоростей точек вращающегося тела пропорциональны расстояниям от этих точек до оси вращения. На рисунке 2.1 показано распределение скоростей точек, лежащих на отрезке OM.

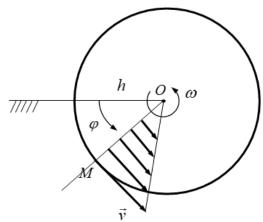


Рисунок 2.1 – Распределение скоростей точек

Направление касательной к траектории любой точки тела считается положительным, если оно соответствует принятому в качестве положительного направлению отсчета угла φ . Проекция ускорения точки M на положительное направление касательной к траектории равна касательному ускорению точки.

$$a_M^{\tau} = \varepsilon \cdot h. \tag{2.4}$$

Модуль нормального ускорения точки M равен

$$a_M^n = \omega^2 \cdot h. (2.5)$$

Касательное ускорение $\bar{a}_{\scriptscriptstyle M}^{\scriptscriptstyle \tau}$ точки M направлено по касательной к описываемой этой точкой окружности:

- в ту же сторону что и скорость (рисунок 2.2, a), если вращение ускоренное (при этом знаки ω и ε одинаковы);
- в сторону, противоположную скорости (рисунок 2.2, б), если вращение замедленное (при этом знаки ω и ε разные).

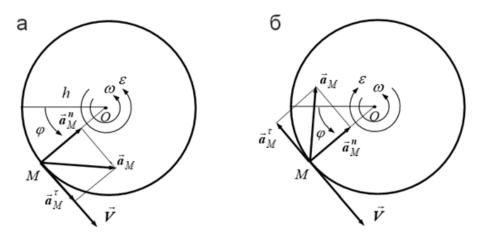
Нормальное ускорение \overline{a}_{M}^{n} точки всегда направлено от этой точки к оси вращения тела (к центру O описываемой точкой окружности), поэтому ускорение \overline{a}_{M}^{n} называют также центростремительным (или осестремительным).

Ускорение точки M является геометрической суммой своих нормальной и касательной составляющих:

$$\overline{a}_M = \overline{a}_M^n + \overline{a}_M^\tau \,. \tag{2.6}$$

Модуль ускорения:

$$a_{M} = \sqrt{\left(a_{M}^{n}\right)^{2} + \left(a_{M}^{\tau}\right)^{2}} = h\sqrt{\varepsilon^{2} + \omega^{4}}. \tag{2.7}$$



а — вращение ускоренное; б — вращение замедленное **Рисунок 2.2 — Направление касательного ускорения**

2.2 ЗАДАНИЕ 2. Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях

2.2.1 Условие задания

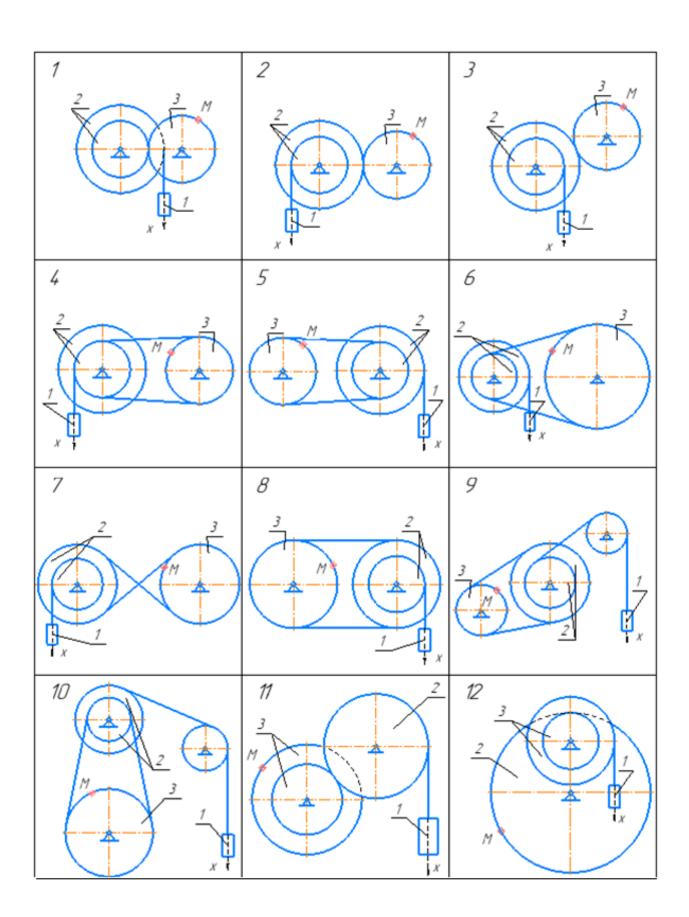
По заданному уравнению прямолинейного поступательного движения груза 1 определить скорость, а также касательное, нормальное и полное ускорения точки M механизма в момент времени t_1 , когда путь, пройденный грузом, равен S.

Показать на рисунке векторы скорости и ускорения точки.

Исходные данные приведены в таблице 2.1. Схемы указаны на рисунке 2.3.

Таблица 2.1 – Исходные данные к заданию 2

Номар рарианта	Заданные величины					
Номер варианта исходных данных	R ₂ , cm	<i>r</i> ₂ , c _M	<i>R</i> ₃ , см	<i>r</i> ₃ , c _M	x = x(t), $x - cM, t - c$	<i>S</i> , м
1	60	45	36	_	$10 + 100 t^2$	0,5
2	100	60	75	_	$18 + 70 t^2$	0,2
3	100	60	30	-	$5 + 60 t^2$	0,5
4	40	25	20	_	$5 + 40 t^2$	0,3
5	20	15	10	-	$2 + 50 t^2$	0,1
6	15	10	20	-	$5 + 80 t^2$	0,2
7	20	10	30	_	$4 + 90 t^2$	0,5
8	40	30	20	_	$10 + 40 t^2$	0,3
9	30	15	40	_	$5 + 60 t^2$	0,2
10	25	20	50	_	$6 + 30 t^2$	0,3
11	40	_	50	20	$10 + 40 t^2$	0,5
12	120	_	70	50	$18 + 120 t^2$	0,2
13	70	_	45	25	$5 + 60 t^2$	0,5
14	110	90	_	25	$25 + 100 t^2$	0,3
15	45	_	50	15	$2 + 30 t^2$	0,1
16	55	35	60	-	$5 + 80 t^2$	0,2
17	_	15	150	25	$4 + 90 t^2$	0,5
18	65	30	50	15	$12 + 40 t^2$	0,3
19	55	30	25	_	$5 + 60 t^2$	0,2
20	70	_	60	30	$6 + 45 t^2$	0,3
21	100	50	45	15	$8 + 100 t^2$	0,5



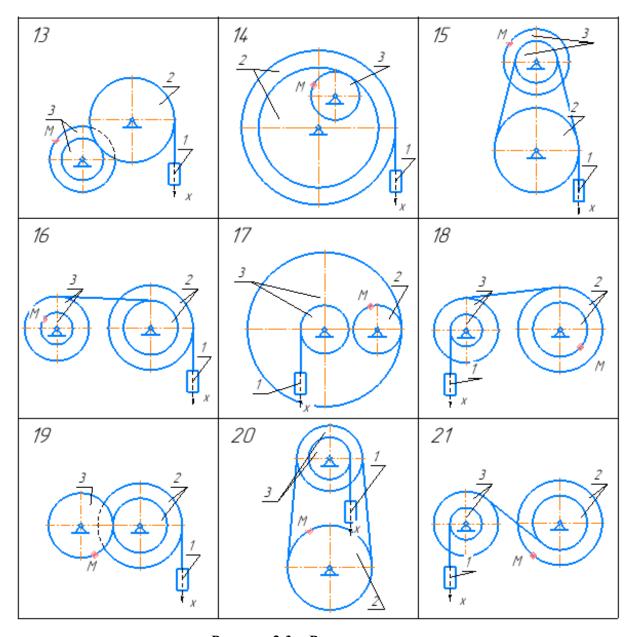


Рисунок 2.3 – Варианты схем

Примечание — Для определения момента времени t_1 необходимо учесть, что путь S, пройденный телом за время $t = t_1$, заданный в условии задания, равен $S = x(t_1) - x(t_0)$, где $t_0 = 0$.

2.2.2 Пример решения

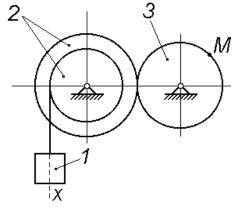


Рисунок 2.4 – Схема механизма

Дано:
$$R_2 = 60$$
 см, $r_2 = 40$ см, $R_3 = 50$ см, $S = 0.2$ м, $x(t) = 18 + 80t^2$ см,

Найти: v_M , a_M^{τ} , a_M^n , a_M .

Решение.

Для определения момента времени t_1 необходимо учесть, что путь S=0,2 м = 20 см, пройденный грузом 1 за время $t=t_1$, определяется выражением

$$S = x(t_1) - x(t_0), (2.8)$$

где $t_0 = 0$.

Поэтому с учетом данных задачи получим следующее уравнение относительно неизвестного момента времени t_1 :

$$20 = 18 + 80t_1^2 - 18 = 80t_1^2. (2.9)$$

Отсюда $t_1 = 0,5$ с.

Скорость груза 1 в прямолинейном поступательном движении определяется как первая производная по времени от координаты x(t):

$$v_1 = \dot{x} = \frac{d}{dt}(18 + 80t^2) = 160t$$
. (2.10)

Обозначим через A точку схода нити с колеса 2 (рисунок 2.5). Очевидно, что скорость этой точки совпадает со скоростью груза 1, так как нить предполагается нерастяжимой: $v_A = v_1$. С другой стороны, рассматривая точку A как точку, лежащую на ободе колеса радиуса r_2 , заключаем, что ее скорость $v_A = \omega_2 \cdot r_2$. Следовательно,

$$v_1 = \omega_2 \cdot r_2 \tag{2.11}$$

и значит,

$$\omega_2 = \frac{v_1}{r_2} \,. \tag{2.12}$$

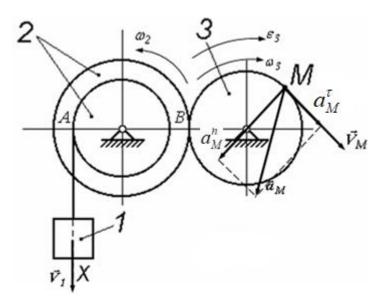


Рисунок 2.5 – Расчетная схема

Для получения соотношения, связывающего угловые скорости колес 2 и 3, учтем, что точки касания этих колес (иначе, точки их зацепления, совмещенные в полюсе B) имеют равные скорости, так как отсутствует скольжение между колесами. Скорость той из этих точек, которая принадлежит ободу колеса 2, равна

$$v_R = \omega_2 \cdot R_2. \tag{2.13}$$

Скорость другой точки, лежащей на ободе колеса 3, равна

$$v_B = \omega_3 \cdot R_3. \tag{2.14}$$

Таким образом,

$$\omega_2 \cdot R_2 = \omega_3 \cdot R_3. \tag{2.15}$$

Выражая ω_3 из последнего уравнения и учитывая (2.13), будем иметь

$$\omega_3 = \frac{R_2}{R_3} \omega_2 = \frac{R_2}{R_3 r_2} v_1. \tag{2.16}$$

Подставляя сюда заданные в условии величины и учитывая равенство (2.11), получаем

$$\omega_3 = 4.8t. \tag{2.17}$$

Угловое ускорение колеса 3 равно

$$\varepsilon_3 = \dot{\omega}_3 = 4.8 \text{ рад/c}^2. \tag{2.18}$$

Угловое ускорение положительно, как и угловая скорость этого колеса. Значит, вращение колеса 3 является ускоренным.

Скорость точки M , ее касательное, нормальное и полное ускорения рассчитываются по формулам

$$v_{M} = \omega_{3} \cdot R_{3} = 240t;$$

$$a_{M}^{\tau} = \varepsilon_{3} \cdot R_{3} = 240 \text{ cm/c}^{2}, \ a_{M}^{n} = \omega_{3}^{2} \cdot R_{3} = 1152t^{2}; \qquad (2.19)$$

$$a_{M} = \sqrt{(a_{M}^{\tau})^{2} + (a_{M}^{n})^{2}}.$$

Результаты вычислений для момента времени $t_1 = 0,5$ с приведены ниже в таблице 2.2.

Векторы скорости, касательного, нормального и полного ускорений точки M показаны на рисунке 2.5.

Таблица 2.2 – Результаты вычислений

v_M , cm/c a_M^{τ} , cm/c ²		a_M^n , cm/c ²	a_M , cm/c ²	
120	240	288	374,89	

Ответ: $v_M = 120$ см/с, $a_M^{\tau} = 240$ см/с², $a_M^n = 288$ см/с², $a_M = 374,89$ см/с².

3 ДИНАМИКА ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИТАЛЬНОЙ ТОЧКИ

3.1 Краткие теоретические сведения

Относительным движением материальной точки называется движение точки в подвижной системе координат. Пусть $O_1x_1y_1z_1$ — неподвижная система координат; Oxyz — подвижная система координат (рисунок 3.1).

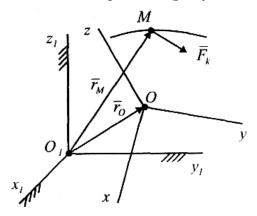


Рисунок 3.1 – Неподвижная и подвижная системы координат

Второй закон динамики в системе $O_1x_1y_1z_1$:

$$m\overline{a} = \sum_{k=1}^{n} \overline{F_k} \,, \tag{3.1}$$

где \overline{a} — абсолютное ускорение точки, равное геометрической сумме переносного \overline{a}_e , относительного \overline{a}_r и кориолисова \overline{a}_k ускорений, т. е.

$$\overline{a} = \overline{a}_e + \overline{a}_r + \overline{a}_k. \tag{3.2}$$

Подставив (3.1) в (3.2), получим запись второго закона динамики в системе Oxyz, т. е. в неинерциальной системе отсчета:

$$m\overline{a_r} = \sum_{k=1}^n \overline{F_k} + \overline{\Phi_e} + \overline{\Phi_k}, \tag{3.3}$$

где $\overline{\Phi_e} = -m\overline{a_e}$ и $\overline{\Phi_k} = -m\overline{a_k}$ имеют размерность силы и называются переносной и кориолисовой силами инерции.

Проецируя векторное уравнение (3.3) на подвижные оси *Охуz*, получим дифференциальные уравнения относительного движения материальной точки в декартовых осях:

$$\begin{cases} m\ddot{x} = \sum F_{ix} + \Phi_{ex} + \Phi_{k_x}; \\ m\ddot{y} = \sum F_{iy} + \Phi_{ey} + \Phi_{k_y}; \\ m\ddot{z} = \sum F_{iz} + \Phi_{ez} + \Phi_{k_t}, i = 1,...,n. \end{cases}$$
(3.4)

3.2 ЗАДАНИЕ З Динамика относительного движения материальной точки

3.2.1 Условие задания

Шарик М, прикрепленный к пружине, закрепленной в точке О, перемещается по цилиндрическому каналу тела А. Тело А равномерно вращается (ω = const) вокруг неподвижной горизонтальной оси x_1 или вертикальной оси z_1 . В момент времени t=0 точка, находившаяся в покое, начинает движение при заданных начальных условиях x_0 , v_0 .

При заданном значении угловой скорости получить закон относительного движения точки x = x(t). Определить амплитуду a и период T_1 собственных колебаний. Определить координату x и скорость v точки, а также давление точки на стенку канала N в заданный момент времени $t = t_1$. Построить графики x = x(t); v = v(t); N = N(t) для интервала $[0, T_1]$.

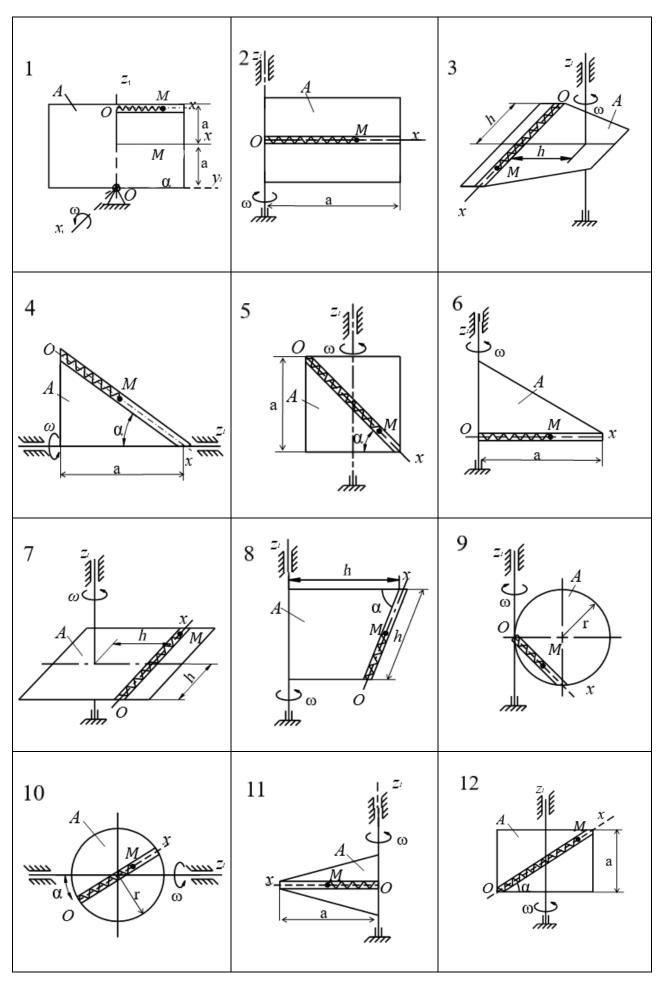
Размеры, необходимые для расчета следует определять по формуле $a,R,l,h=x_0\cdot n$, где n – коэффициент, который задается преподавателем при выдаче задания. Полученное значение a,R,l,h округляется до большего, согласно следующему правилу: при n=2: $a,\{R,l,h\}=x_0\cdot 2=0,12\,\mathrm{M}$, то принимаем $a\{R,l,h\}=0,15\,\mathrm{M}$; если $a,\{R,l,h\}=1,02\,\mathrm{M}$, принимаем $a\{R,l,h\}=1,05\,\mathrm{M}$.

В задании приняты следующие обозначения: m — масса точки; ω — постоянная угловая скорость тела A; c — коэффициент жесткости пружины; l_0 — длина недеформированной пружины; x_0 — начальная координата точки; v_0 — начальная скорость точки; t_1 —время, для которого производятся необходимые вычисления.

Числовые данные для каждого варианта выбираются по таблице 3.1. Схемы приведены на рисунке 3.1 и выбираются в соответствии с порядковым номером студента в группе.

Табл	шпа 3 1	– Числовые	- панице
-1 aon	ина э. і	— Числовы	: ланныс

№ n/n	т, кг	о, paд/c	с, Н/м	l ₀ , м	<i>x</i> ₀ , <i>M</i>	V₀, м/с	о, град
1	2	3	4	5	6	7	8
1	0,01	9	1	0,05	0,01	0	30
2	0,02	8	1,5	0,06	0,02	0,01	_
3	0,04	7	2,5	0,08	0,04	0,03	_
4	0,05	6,5	3	0,09	0,05	0,04	30
5	0,07	5,5	4	0,11	0,16	0,06	45
6	0,09	4,5	5	0,13	0,18	0,08	_
7	0,11	7,2	7	0,16	0,2	0,1	_
8	0,12	7,4	8	0,17	0,22	0,15	60
9	0,13	7,6	9	0,18	0,23	0,2	_
10	0,14	7,8	10	0,19	0,24	0,25	30
11	0,15	8	11	0,2	0,25	0,3	_
12	0,17	8,2	13	0,22	0,35	0,4	30
13	0,18	8,3	14	0,23	0,4	0,45	_
14	0,19	8,4	15	0,24	0,45	0,5	30
15	0,2	8,5	16	0,25	0,5	0,55	45
16	0,21	8,6	18	0,26	0,49	0,6	60
17	0,25	9	26	0,3	0,45	1	_
18	0,26	9,2	28	0,31	0,4	1,5	_
19	0,28	9,6	32	0,33	0,2	2,5	_
20	0,29	9,8	34	0,34	0,1	3	_
21	0,3	10	36	0,35	0,05	4	45



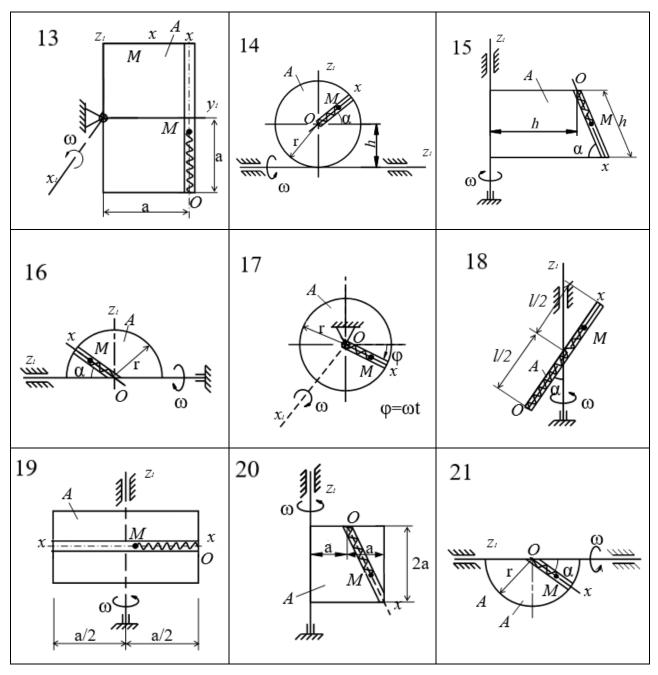


Рисунок 3.1 – Варианты схем

3.2.2 Пример решения

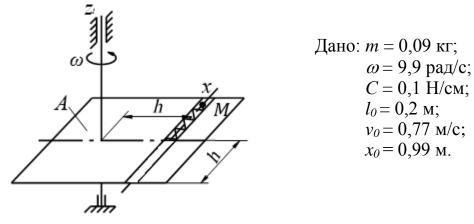


Рисунок 3.2 – Исходная схема

Решение.

Вращение пластинки вокруг оси z_1 является для точки M переносным движением, движение точки по каналу пластинки — относительным движением. Свяжем с пластинкой подвижную систему отсчета Oxyz, выбрав начало в точке O крепления пружины и направив ось x вдоль оси канала. Начало отсчета оси x примем в точке O. Ось y — в плоскости рисунка.

Приложим к точке вес $\overline{P} = m\overline{g}$, силу упругости пружины \overline{F}_{ynp} и реакцию стенки канала \overline{N} . Так как стенка гладкая (отсутствует трение), то \overline{N} лежит в плоскости, перпендикулярной оси x (плоскость Oyz). Направление ее неизвестно, поэтому разложим \overline{N} на составляющие Ny, Nz в направлении осей y, z.

Так как система отсчета Oxyz неинерциальная (пластинка вращается), для исследования относительного движения точки к силам, действующим на точку, добавим переносную $\overline{\Phi}_e$ и кориолисову $\overline{\Phi}_k$ силы инерции (рисунок 3.3). При этом:

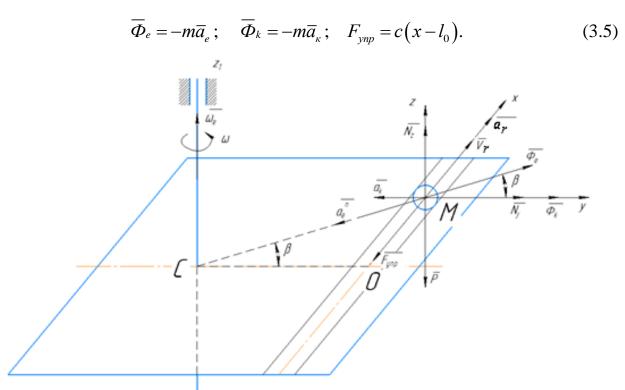


Рисунок 3.3 – Расчетная схема

Вектор \overline{a}_{κ} перпендикулярен плоскости векторов $\overline{\omega}_e$ и \overline{v}_r , т. е. перпендикулярен z.

$$a_{\kappa} = 2\omega_{e} \cdot v_{r} \sin 90^{\circ} = 2\omega_{e} \cdot v_{r};$$

$$\omega_{e} = \omega; \ v_{r} = \dot{x};$$

$$\Phi_{\kappa} = 2 \cdot m \cdot \omega_{e} \cdot v_{r}, \ a_{e}^{n} = \omega^{2} \cdot CM,$$
(3.6)

Из треугольника ΔCOM (прямоугольный)

$$\sin \beta = \frac{x}{CM}, \quad CM = \frac{x}{\sin \beta},$$

$$a_e^n = \omega^2 \cdot \frac{x}{\sin \beta}, \quad \Phi_e = \Phi_e^n = m \cdot \omega^2 \cdot \frac{x}{\sin \beta}.$$
(3.7)

Векторное уравнение относительного движения точки имеет вид:

$$m\overline{a_r} = \overline{P} + \overline{F_{ynp}} + \overline{N_y} + \overline{N_z} + \overline{\Phi_e} + \overline{\Phi_k}.$$
 (3.8)

Составим дифференциальные уравнения относительного движения точки в проекциях на оси *Oxyz*:

$$\begin{cases} m\ddot{x} = -F_{ynp} + \Phi_e \sin \beta, \\ 0 = N_y + \Phi_e \cos \beta + \Phi_\kappa; \\ 0 = N_z - P. \end{cases}$$
 (3.9)

При этом учтено, что $a_{r,y} = 0$, $a_{r,z} = 0$ (движение вдоль оси x).

Из второго и третьего уравнений определяется реакция N.

Для определения Φ_e и Φ_κ необходимо найти решение первого уравнения системы. Оно принимает вид:

$$m\ddot{x} = -F_{ynp} + \Phi_e \sin \beta = -c \cdot (x - l_0) + m \cdot \omega^2 \cdot \frac{x}{\sin \beta} \cdot \sin \beta;$$

$$m\ddot{x} = -c \cdot x + c \cdot l_0 + m \cdot \omega^2 \cdot x;$$

ИЛИ

$$\ddot{x} = -\frac{c}{m} \cdot x + \frac{c}{m} \cdot l_0 + \omega^2 \cdot x;$$

$$\ddot{x} = \left(\omega^2 - \frac{c}{m}\right) \cdot x + \frac{c}{m} \cdot l_0;$$

$$\ddot{x} + \left(\frac{c}{m} - \omega^2\right) \cdot x = \frac{c}{m} \cdot l_0.$$

При заданных числовых значениях

$$\frac{c}{m} \cdot l_0 = \frac{10}{0,09} \cdot 0, 2 = 22,22 \frac{M}{c^2};$$

$$\frac{c}{m} - \omega^2 = \frac{10}{0,09} - 9,9^2 = 13,1 \frac{\text{рад}}{c^2};$$

Так как $\frac{c}{m} - \omega^2 > 0$, получим

$$\ddot{x} + 13, 1 \cdot x = 22, 22. \tag{3.10}$$

Получено обыкновенное неоднородное линейное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.

Его общее решение имеет вид:

$$x = x^* + x^{**}, (3.11)$$

где x^* — общее решение однородного уравнения $\ddot{x} + 13, 1 \cdot x = 0$; x^{**} — частное решение неоднородного уравнения (3.10).

Характеристическое уравнение для данного однородного дифференциального уравнения имеет вид:

$$\lambda^2 + k^2 = 0.$$

Его корни – $\lambda_{1,2} = \pm ki$.

Так как корни мнимые, то общее решение x^* имеет вид:

$$\overline{x} = C_1 \cos(kt) + C_2 \sin(kt). \tag{3.12}$$

Частное решение ищем в виде

$$x^{**} = A,$$
 $\dot{x}^{**} = 0,$
 $\ddot{x}^{**} = 0.$
(3.13)

Подставив частное решение в дифференциальное уравнение, получим:

$$0+13, 1\cdot A=22, 22,$$

$$A = \frac{22,22}{13,1} = 1,7 M.$$

Уравнение относительного движения точки получает вид:

$$x = C_1 \cos(kt) + C_2 \sin(kt) + 1,7. \tag{3.14}$$

Скорость точки:

$$v = \frac{dx}{dt} = -kC_1 \sin(kt) + kC_2 \cos(kt). \tag{3.15}$$

Постоянные интегрирования C_1 и C_2 определим из начальных условий: при t=0: $x_0=0.99$ м, $\dot{x}_0=0.77$ м/с.

$$\begin{cases} 0.99 = C_1 + 1.7, \\ 0.77 = 3.62 \cdot C_2, \end{cases}$$

$$\begin{cases} C_1 = 0.99 - 1.7 = -0.71 \text{ m}, \\ C_2 = \frac{0.77}{3.62} = 0.21 \frac{\text{m}}{\text{c}}. \end{cases}$$

Тогда:

$$x = -0.71\cos(3.62t) + 0.21\sin(3.62t) + 1.7;$$

$$\dot{x} = 2.57\sin(3.62t) + 0.76\cos(3.62t).$$
(3.16)

Представим общее решение однородного уравнения в амплитудной форме, для чего введем следующую подстановку:

$$C_1 = a \sin \beta; \quad C_2 = a \cos \beta.$$

Тогда решение примет вид:

$$x = a \sin \beta \cos kt + a \cos \beta \sin kt = a \sin(kt + \beta)$$

При этом a — амплитуда колебаний, $kt + \beta$ — фаза колебаний, β — начальная фаза колебаний.

Подставим числовые значения:

$$a = \sqrt{C_1^2 + C_2^2} = \sqrt{0,71^2 + 0,21^2} = 0,74 \text{ m};$$

$$\beta = arctg \frac{C_1}{C_2} = arctg \frac{-0,71}{0,21} = -73,5^{\circ}.$$

Закон движения точки:

$$x = 0,74 \cdot \sin(3,62t - 73,5^{\circ})$$

Определим координату x и скорость \dot{x} в момент времени $t = t_1 = 0.16$ с.

$$x(0,16) = -0.71\cos(3,62 \cdot 0.16) + 0.21\sin(3,62 \cdot 0.16) + 1.7 = 1.22 \text{ m};$$

$$\dot{x} = 2.57\sin(3,62 \cdot 0.16) + 0.76\cos(3,62 \cdot 0.16) = 2.04 \text{ m/c}.$$
(3.17)

Строим графики движения точки за время $0 \le t \le T_1$, где период колебаний T_I определяется по формуле

$$T_1 = 2 \cdot \frac{\pi}{k} = \frac{6,28}{3,62} = 1,73$$
 c.

Из уравнений системы определим модули составляющих реакции \overline{N} : N_y и N_z для момента времени $t_I=0,16$ с.

$$\begin{cases}
0 = N_{y} + \Phi_{e} \cos \beta + \Phi_{K}; \\
0 = N_{z} - P;
\end{cases}$$
(3.18)

$$N_{y} = -\Phi_{e} \cos \beta - \Phi_{\kappa} = -m \cdot \omega^{2} \cdot \frac{x}{\sin \beta} \cdot \cos \beta - 2 \cdot m \cdot \omega \cdot \dot{x} =$$

$$= -0.09 \cdot 9.9^{2} \cdot \frac{x}{\frac{x}{h}} - 2 \cdot 0.09 \cdot 9.9 \cdot \dot{x} = -0.09 \cdot 9.9^{2} \cdot h - 2 \cdot 0.09 \cdot 9.9 \cdot \dot{x} =$$
(3.19)

$$= -0.09 \cdot 9.9^{2} \cdot 0.3 - 2 \cdot 0.09 \cdot 9.9 \cdot (2.57 \sin(3.62t) + 0.76 \cos(3.62t)),$$

$$N_{z} = P = mg = 0.09 \cdot 9.81 = 0.88 \,\text{H}.$$
 (3.20)

$$tg\beta = \frac{x}{h}$$

при $t_1 = 0.16$ c:

$$N_{y} = -0.09 \cdot 9.9^{2} \cdot 0.3 - 2 \cdot 0.09 \cdot 9.9 \cdot 2.04 = -6.28 \text{ H.}$$
 (3.21)

Таким образом, модуль реакции стенки трубки

$$N = \sqrt{N_y^2 + N_z^2} = \sqrt{0.88^2 + (-6.28)^2} = 6.34 \text{ H}.$$
 (3.22)

Построение графиков в среде *MathCAD* показано на рисунке 3.4.

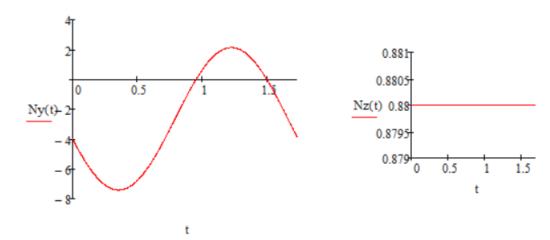
$$x(t) := -0.71 \cdot \cos(3.62t) + 0.21 \cdot \sin(3.62 \cdot t) + 1.7$$
 $v(t) := 2.57 \cdot \sin(3.62 \cdot t) + 0.76 \cdot \cos(3.62 \cdot t)$

$$\frac{2.57}{2}$$

$$\frac{x(t)}{0.5} = \frac{1.5}{0.5} = \frac{1.5}{0$$

 $\mathrm{Ny}(t) := -0.09 \cdot 9.9^2 \cdot 0.3 - 2 \cdot 0.09 \cdot 9.9 \cdot (2.57 \cdot \sin(3.62 \cdot t) + 0.76 \cdot \cos(3.62 \cdot t))$

Nz(t) := 0.88



 $N(t) := \sqrt{(Ny(t))^2 + (Nz(t))^2}$

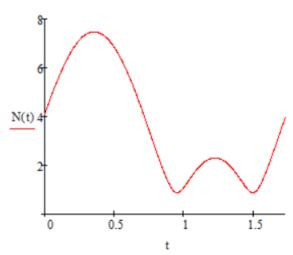


Рисунок 3.4 — Зависимости относительной координаты, скорости, реакции стенки трубки от времени

Otbet:
$$x = 0.74 \cdot \sin(3.62t - 73.5^{\circ});$$
 $a = 0.74 \text{ m};$ $T_{1} = 1.73 \text{ c};$ $x(0.16) = 1.22 \text{ m};$ $\dot{x}(0.16) = 2.04 \text{ m/c};$ $N = 6.34 \text{ H}.$

Список использованных источников

- 1. Никитин, Н. Н. Курс теоретической механики / Н. Н. Никитин. 5-е изд. М. : Высшая школа, 1990. 607 с.
- 2. Тарг, С. М. Краткий курс теоретической механики. Учебник для втузов / С. М. Тарг. 12-е изд., стереотип. М. : Высшая школа, 2002. 416 с.
- 3. Яблонский, А. А. Курс теоретической механики. Учебное пособие для технических вузов / А. А. Яблонский, В. М. Никифорова. 8-е изд., стереотип. СПб. : Лань, 2001. 764 с.
- 4. Бать, М. И. Теоретическая механика в примерах и задачах / М. И. Бать, Г. Ю. Джанелидзе, А. С. Кельзон. В 2-х т. М.: Наука, 1975.
- 5. Сборник заданий для курсовых работ по теоретической механике: учебное пособие для втузов / А. А. Яблонский [и др.]; под ред. А. А. Яблонского. 16-е изд. стер. М.: ИнтегралПресс, 2007. 382 с.

Учебное издание

Составители:

Веремейчик Андрей Иванович Хвисевич Виталий Михайлович Хеук Максим Викторович

Задания и методические указания к выполнению расчетно-графических работ по теоретической механике

для студентов специальности 6-05-0811-03 Мелиорация и водное хозяйство

Ответственный за выпуск: Веремейчик А. И. Редактор: Винник Н. С. Компьютерная вёрстка: Соколюк А. П. Корректор: Северянина А. Г.

Подписано в печать 27.12.2024 г. Формат 60х84 ¹/₁₆. Бумага «Performer». Гарнитура «Times New Roman». Усл. печ. л. 1,86. Уч. изд. л. 2,0. Заказ № 1289. Тираж 30 экз. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 3/1569 от 16.10.2017 г.