МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАФЕДРА ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по проектированию режущих инструментов в дипломных проектах для студентов специальности 1-36 01 01 «Технология машиностроения»

Методические указания предназначены для помощи студентам специальности 1-36 01 01 «Технология машиностроения» при выполнении раздела дипломного проекта, связанного с проектированием режущего и вспомогательного инструмента.

В настоящих методических указаниях с целью унификации требований к указанному разделу проекта изложены основные положения по расчету режущих инструментов и оформления их чертежей. Приведен пример расчета наружной протяжки. Содержание методических указаний соответствует учебным программам по дисциплине «Режущий инструмент» специальности 1-36 01 01 «Технология машиностроения», требованиям кафедры. Методические указания предназначены для студентов дневной и заочной форм обучения.

Составитель: Медведев О.А., доцент, к.т.н. Левданский А.М., старший преподаватель

1. ЦЕЛИ И ЗАДАЧИ ПРОЕКТИРОВАНИЯ ИНСТРУМЕНТОВ В ДИПЛОМНЫХ ПРОЕКТАХ

Целями проектирования инструмента в дипломном проекте являются:

- 1) обобщение и закрепление теоретических знаний, полученных студентами при изучении дисциплины "Режущий инструмент";
- 2) приобретение навыков применения этих знаний для решения конкретных производственных задач в области проектирования режущего инструмента и сложных инструментальных систем;
- 3) проявление профессиональных компетенций, полученных в ходе освоения образовательных программ учебного плана специальности 1-36 01 01 «Технология машиностроения».

Основные типовые задачи, решаемые при проектировании режущих инструментов:

- 1. Определение огибающих поверхностей для инструмента, работающего методом обката.
 - 2. Определение формы поверхности, обработанной режущим инструментом.
- 3. Определение кинематических и геометрических параметров режущей части инструмента.
 - 4. Определение состава и формы конструктивных элементов инструмента.
- 5. Определение толщины среза различными точками режущей кромки инструмента.
- 6. Определение размеров режущих кромок инструмента при обработке заданной поверхности детали при известной схеме формообразования.
 - 7. Определение точности изготовления режущего инструмента.
 - 8. Расчет инструмента на прочность.

Решение поставленных задач предусматривает применение современных методов графического, графоаналитического и аналитического проектирования с помощью ЭВМ, а также использование новых достижений отечественной и зарубежной науки и техники.

2. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

Задание на дипломный проект включает раздел «Проектирование средств технологического оснащения техпроцесса в рамках которого выполняется разработка специальных режущих инструментов, прогрессивных сборных и регулируемых конструкций инструментов, с учетом использования новых инструментальных материалов и эффективных технологий упрочняющей обработки его рабочих поверхностей.

В задании на дипломное проектирование указывается для какого технологического перехода следует спроектировать режущий инструмент.

Инструмент разрабатывается в соответствии с типом производства и должен обеспечивать требуемое качество получаемой поверхности. При необходимости (по усмотрению руководителя проекта) задание на дипломное проектирование может предусматривать также разработку вспомогательного инструмента.

Перед началом выполнения расчетов проектант должен ознакомиться с соответствующей литературой и с аналогичными конструкциями режущих инструментов, выяснить их недостатки и наметить пути их устранения.

3. ПОРЯДОК ПРОЕКТИРОВАНИЯ РЕЖУЩИХ ИНСТРУМЕНТОВ

По результатам проведенного анализа студент должен обосновать целесообразность проектирования специального инструмента, выбрать принципиальные параметры конструкций инструментов, необходимые для дальнейшей детальной разработки.

Текстовая часть, содержащая логические и расчетные обоснования конструкции инструмента [1], располагается в соответствующем разделе пояснительной записки и оформляется в соответствии с требованиями ГОСТ 2.105-95 и, как правило, содержит до 10 страниц машинописного текста.

В начале расчета, наряду с указанием цели проектирования и кратким описанием решаемых задач, приводится обзор существующих конструкций инструментов, применяемых для выполнения операций, аналогичных заданным, и обоснование выбранных конструкций. В описаниях расчетов инструментов должны приводиться формулы с расшифровкой входящих в них параметров. Затем формула записывается с численным значением параметров и приводится результат расчета. Используемые нормативные, табличные и другие данные необходимо сопровождать ссылкой на источники. Для этого рекомендуется использовать ГОСТы и другие официальные справочные материалы. Все решения, принимаемые студентами по выбору конструктивных элементов, проектируемых инструментов и материала их режущих частей, должны быть обоснованы.

В тексте рекомендуется помещать графики и схемы, поясняющие текст и расчеты.

В записке необходимо дать обоснование выбору материала разработанных режущих инструментов, учитывая экономию дорогостоящих инструментальных материалов и используя для этого сварные и сборные конструкции. Следует указать сведения по термической обработке инструмента.

На основании требований к обрабатываемой детали и ГОСТов на технические условия аналогичных конструкций необходимо разработать технические условия для спроектированных инструментов.

4. ОФОРМЛЕНИЕ КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ НА РЕЖУЩИЕ ИНСТРУМЕНТЫ

Графическая часть дипломного проекта включает в себя рабочие чертежи режущих и (или) вспомогательных инструментов, которые дополняются построением профиля сложных фасонных инструментов. Состав листов графической части должен соответствовать заданию на дипломное проектирование.

Рабочие чертежи спроектированных инструментов выполняются в масштабе 1:1 или 2:1 на листах указанного формата (в зависимости от размеров инструментов). Каждый рабочий чертеж инструмента имеет основную надпись в соответствии с ГОСТ 2.104.

Форматы и оформление графического материала должны соответствовать стандартам ЕСКД.

Рабочие чертежи инструментов должны содержать минимально достаточное число проекций, необходимые разрезы и сечения, полностью раскрывающие

его конструкцию. Размеры необходимо указывать с соответствующими предельными отклонениями. На чертежах должны быть представлены обозначения шероховатости поверхностей, мест сварки и пайки, данные о материале и твердости отдельных частей инструмента, а также приведены технические требования к готовому инструменту и сведения по регулировке, переточке, содержанию маркировки и т. п.

Графические построения сложно-профильных инструментов выполняются в увеличенном масштабе, который выбирается в зависимости от требуемой точности построения. На сборную конструкцию инструмента составляется спецификация, которая подшивается в конце пояснительной записки в разделе «Приложения».

5. ПРИМЕР ПРОЕКТИРОВАНИЯ ИНСТРУМЕНТА

В качестве примера выполнения подраздела по проектированию режущего инструмента рассмотрим проектирование наружной протяжки, для обработки наклонных плоскостей призмы (рисунок 1).

Протяжка — многолезвийный режущий инструмент, работающий с одним главным движением, как правило, поступательным, реже вращательным, движение подачи отсутствует. Распостранение процесса резания на новые слои металла осуществляется за счет увеличения высоты или ширины последующего зуба протяжки по отношению к предыдущему.

Достоинства протяжек:

- высокая производительность, несмотря на малые скорости резания (обычно 5...10 м/мин), которая объясняется большой суммарной длиной режуших кромок, одновременно участвующих в работе;
- высокое качество обработки поверхностей деталей: точность размеров до 6...8 квалитетов, шероховатость до Ra 0,4 мкм;
- высокая стойкость, как между переточками (благодаря малым скоростям резания), так и суммарная (вследствие достаточно большого числа возможных переточек).

Недостатки протяжек:

- сложность изготовления и высокая стоимость;
- узкая специализация по форме и размерам обрабатываемых поверхностей;
- малая технологичность конструкции из-за большой длины при относительно малых размерах поперечного сечения.

Наружные протяжки применяются, как правило, при обработке разнообразных по форме поверхностей деталей, имеющих незамкнутый контур. В отличие от внутренних протяжек наружные протяжки не имеют направляющих частей и хвостовиков. Это объясняется тем, что наружные протяжки, а также заготовки точно базируются и закрепляются на рабочих органах вертикально-протяжных или горизонтально-протяжных станков, за счет чего и обеспечивается определенное относительное расположение и движение протяжки и заготовки в процессе обработки. Из наружных протяжек наиболее распространены плоские протяжки для обработки одной или нескольких плоских поверхностей. Конструкция протяжки и ее размеры в значительной степени предопределяются при-

нятой схемой резания. Для удаления небольших припусков и напусков с коротких поверхностей широко используются плоские протяжки с профильной схемой резания, при которой все зубья протяжки имеют профиль идеинтичный профилю обрабатываемой поверхности.

Расчет протяжки для наружного протягивания

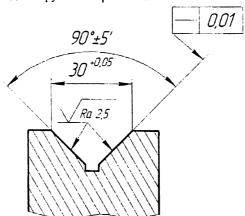


Рисунок 1 – Профиль обрабатываемой поверхности

Исходные данные. Профиль и размеры обрабатываемой поверхности представлены на рисунке 1. Материал заготовки - сталь 35Л ГОСТ 1050-88; 207...243 НВ. Длина протягивания $l=50\,$ мм; тип производства — крупносерийный. Для заданных профиля и размеров не существует стандартных или унифицированных протяжек. Поэтому для обеспечения высокой производительности обработки данного профиля в условиях крупносерийного производства принимаем решение о необходимости применения специальной протяжки. Несмотря на высокую стоимость специального инструмента, его применение представляется рентабельным при большом объеме выпуска деталей.

Станок предварительно был принят в технологическом разделе проекта: горизонтально-протяжной полуавтомат мод. 7А523, имеющий возможность оснащения приспособлениями для протягивания наружных поверхностей.

Номинальное тяговое усилие \dot{Q} =100000 H и максимальной длиной хода рабочих салазок L_{max} = 1250 мм.

Принимаем профильную схему резания. Она позволяет получить необходимую точность и качество поверхности. Необходимый профиль зубьев будет подобен профилю окончательно обработанных поверхностей.

В качестве материала режущей части протяжки, учитывая сложность её конструкции, принимаем быстрорежущую сталь Р6М5 ГОСТ 19265-73, более технологичную по сравнению с твердыми сплавами. В конструкции протяжки не будет направляющих и хвостовика, так как протяжка будет базироваться и закрепляться на специальном вспомогательном инструменте.

При наружном протягивании припуск на сторону рекомендуется принимать в пределах 0,025...1,0 мм [4, стр. 286]. Принимаем А=1 мм.

Подача на зуб S_z =0,03...0,06 мм определяется в зависимости от обрабатываемого материала [4, стр. 275]. Принимаем S_z =0,06 мм.

Определяем параметры профиля зуба и стружечных канавок в продольном сечении протяжки.

Коэффициент заполнения стружечной канавки определяется по формуле:

$$k = \frac{F_k}{F_c},$$

где F_{κ} – площадь продольного сечения канавки, мм²;

F_c - площадь продольного сечения металла, срезаемого одним зубом, мм².

По рекомендациям [4, табл. 107] к=2...5. Принимаем к=3.

$$F_k = \kappa \cdot F_c$$

Величину F_c определим как произведение длины протягивания и подачи на зуб.

$$F_c=1 \cdot S_z$$

$$F_c = 50.0,06 = 3 \text{ mm}^2$$
.

Тогда

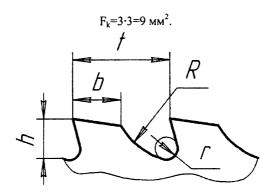


Рисунок 2 – Профиль зуба и стружечной канавки протяжки в продольном сечении

С учетом рассчитанного значения F_{κ} принимаем по [4, табл. 106] типовую криволинейную форму профиля спинки зуба и дна стружечной канавки с размерами:

$$F_{\kappa}$$
=12,6 mm²; t=10 mm; h=4 mm; b=3 mm; r=2 mm; R=7 mm.

Число и размеры стружкоразделительных канавок [4, табл. 108]:

число канавок на боковом лезвии зуба n=3;

ширина канавки т=1 мм;

глубина канавки h=0,5 мм;

радиус дна канавки г=0,2 мм.

Углы резания зубьев протяжки принимаем по [4, стр. 190]:

задний угол режущих зубьев α=7°;

задний угол калибрующих зубьев α_{κ} =4°;

передний угол режущих и калибрующих зубьев $\gamma=15^{\circ}$.

Число одновременно работающих зубьев определим по формуле: где 1 – длина протягиваемой поверхности;

t - продольный шаг зубьев протяжки.

Определяем максимальную продольную составляющую силы резания по формуле:

$$P_{\text{max}} = P_{yn} \cdot \Pi \cdot Z_{\text{max}},$$

$$Z \max = \frac{l}{l} + 1$$

где $P_{v\pi}$ — сила резания, приходящаяся на 1 мм длины режущей кромки при $S_z = 0.06$ мм $P_{v\pi} = 195$ H/мм [5, карта Π -3];

$$Z \max = \frac{50}{10} + 1 = 6$$

 Π – периметр режущей кромки одного зуба протяжки, Π =35,36 мм.

$$P_{\text{max}} = 195.35,36.6 = 41371 \text{ H} = 4217 \text{ kgc.}$$

Сила резания ограничивается тяговой силой станка $P_{\rm cr}$:

$$P_{cT} = (0.8 \div 0.9)Q$$

где Q – паспортная тяговая сила станка = 100000 H.

$$P_{cr} = 0.8 \cdot 100000 = 80000 \text{ H}.$$

 $P_{\text{max}} = 41371 \text{H} < P_{\text{ст}} = 80000 \text{H}$, следовательно, обработка проектируемой протяжки на данном станке возможна, корректировка станка не требуется.

Определяем число зубьев, которое зависит от типа протяжки согласно рекомендациям [1, стр. 156], принимаем 1 зачищающий зуб и 5 калибрующих.

Шаг до зачищающего зуба t_3 принимаем равным шагу режущих зубьев t_p . Число режущих зубьев:

$$Z_p = \frac{A}{S_z} = \frac{1}{0.06} = 16.67$$

Окончательно принимаем 16.

Шаг калибрующих зубьев принимаем равным шагу режущих зубьев:

$$t_{\kappa} = t_{p},$$
 $t_{\kappa} = 10 \text{ MM}.$

Припуск удаляемый зачистным зубом (совпадает с подачей на зуб):

$$S_z = A_3 = 1 - 16.0,06 = 0,04 \text{ MM}.$$

Общая длина зубьев протяжки:

$$L = t_p \cdot Z_p + t_3 \cdot Z_3 + t_\kappa \cdot Z_\kappa ,$$

$$L = 10 \cdot 16 + 10 \cdot 1 + 10 \cdot 5 = 220 \text{ mm}.$$

Ширина срезаемого слоя равна длине главной режущей кромки зуба протяжки, которая в данном случае принимается с учетом максимального значения на заготовке ($30,05\pm0,02$ мм) [7, стр. 30].

Предельное отклонение зуба – по [7, табл. 2.3].

Расчет на прочность уязвимого элемента.

Протяжка в корпусе поз. 1 удерживается от действия сил резания 6 винтами M6×30 ГОСТ11738-84, а корпус, в свою очередь, удерживается четырьмя болтами M16 поз. 10. Необходимо определить наиболее уязвимый элемент.

Болт 7002-0366 ГОСТ12201-66 М16 длиной 80 мм с диаметром впадин D_2 =13,546 мм при шаге 2 мм имеет плошадь сечения по минимальному диаметру:

$$S=\pi R^2=3,14\cdot (13,546/2)^2=144,12 \text{ mm}^2$$
.

Для четырех болтов: 576,48 мм².

Винт M6×30 ГОСТ11738-84 с диаметром впадин D_2 =4,918 мм при шаге 1 мм имеет площадь сечения по минимальному диаметру:

$$S=\pi R^2=3,14\cdot(4,918/2)^2=19 \text{ mm}^2$$
.

Для шести винтов: 114 мм^2 .

Таким образом, наиболее уязвимым элементом будет винт М6 ГОСТ11738-84.

Проверим прочность винта на срез и смятие при приложенной силе $F = P_{max} = 41371H = 41,371 \kappa H$.

Материал винта – закалённная (твердость 48 HRC₃) сталь 40X ГОСТ 4543-71, при переменной нагрузке имеет допускаемые напряжения: на растяжение $[\sigma_p] = 3300$ МПа, на срез $[\tau_{cp}] = 1950$ МПа, на смятие $[\sigma_{cm}] = 4900$ МПа [8].

Винт M6×30 ГОСТ11738-84 испытывает срез по одной плоскости, которая равна площади поперечного сечения.

Из условия прочности на срез [8]:

$$\tau_{cp} = \frac{Q}{A_{cp}} \le \left[\tau_{cp}\right].$$

Так как $Q = \frac{F}{6} = 41371/6 - 6895,2 \text{ H, a } A_{cp} = S$:

$$\tau_{cp} = \frac{6895.2}{19} = 362.9 \le 1950 \, (M\Pi a),$$

Корпус поз. 1 оказывает давление на поверхность болта, поэтому смятию подвергается цилиндрическая поверхность болта по площади А см.

Из условия прочности на смятие [8]:

$$\sigma_{cp} = \frac{Q}{A_{cu}} \le [\sigma_{cu}],$$

площадь смятия определим по наименьшему сечению согласно формуле:

$$A_{c,v}=D_2\cdot \varepsilon,$$

где в — участок смятия. Винт $M6\times30$ ГОСТ11738-84 установлен на высоту 17 мм в корпусе поз.1; на высоту 3 мм в пластине поз. 4; на высоту 10 мм в протяжке. Таким образом, учаток, подвергаемый смятию в месте установки винтов, принимаем по наибольшему значению B=17 мм. Тогда

$$\sigma_{\text{CM}} = \frac{6895,2}{4.918 \cdot 17} = 82,5 \le 4900 \ (M\Pi a).$$

На основании расчётов выполняем сборочный чертеж протяжки.

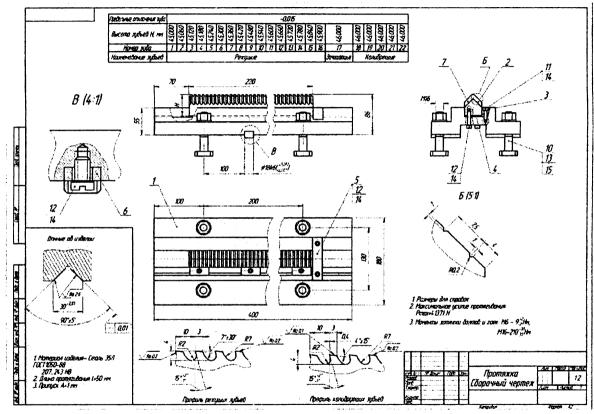


Рисунок 3 – Сборочный чертеж протяжки

	Dacmar	John J.		Обозначен	ue	Наименовани	JE	кох	Приме- чание
Перв. принен.	H	\perp				<u> Документац</u>	UЯ		
	12	+				Сборочный черте.	*		
+		1							
		1				<u>Детали</u>			
(npub. No	\parallel	1				Корпус		1	
		2				Протяжка		1	
		3				Клин		3	
		4				Пластина		1	
		5				Планка		1	
		6				Шпанка		2	
	\prod	7				Протяжка		1	
Nodn u dama						Стандартные из	аделия		
υçin	\mathbb{H}	-				7000 03// 5057	10004 (1	<u>-</u>	
тый № дибл	\square	10				59/m 7002-0366 FOCT		4	
HHŸ	\prod	11				Винт М6 х 20 ГОСТ		3	
UHD No	7.	12				BUHM M6 x 30 FOCT		9	
UHC	-	13				Γαύκα M16 ΓΟCT S		4	
Взан	-	14				<i>Ψαυδα 6 Η ΓΟΣΤ 6</i>		12	
1		15	-			Шайба 16 ГОСТ 11	א/-ו/צי	4	ļ <u> </u>
dumi	H	+-	 						
วัน บ	-	┸-	<u></u>	·	·	1			l
/Jo	1/00	A.c.	Nº ∂oxum.	Toðn Lane					
1/6	Pasi	αδ	Nº ULKUM.	14 601 (2010			Aum.	/Licm	Aucmot
рои Л	Πρου	,]			Пп	Протяжка			1
MO A	Нко	u np.			μ				
Ľ.	Ymb.				Kanua			мат	A4

Рисунок 4 – Спецификация

Список рекомендуемой литературы

- 1. Фельдштейн, Е.Э. Режуший инструмент. Курсовое и дипломное проектирование / Е.Э. Фельдштейн, М.А. Корниевич, В.И. Шагун. Издание 2-е исправленное. Минск: Дизайн ПРО, 2002. 320 с.
- 2. Кожевников, Д.В. Режущие инструменты / Д.В. Кожевников [и др.]. М.: Машиностроение, 2007. 528 с.
- 3. Проектирование и расчет металлорежущего инструмента на ЭВМ: учебное пособие для втузов / О.В. Таратынов [и др.]; под ред. О.В. Таратынова, Ю.П. Тарамыкина. М.: МГИУ, 2006 .
- 4. Нефедов, Н.А. Сборник задач и примеров по резанию металлов и режущему инструменту / Н.А. Нефедов, К.А. Осипов. М.: Машиностроение, 1990. 448 с.
- 5. Барановский, Ю.В. Режимы резания металлов. М.: НИИТавтопром, 1995. 456 с.
- 6. Справочник инструментальщика / под ред. Г.В. Боровского. М.: Машиностроение, 2007. 464 с.
- 7. Левданский, А.М. Методические указания для выполнения курсового проекта по дисциплине «Режущий инструмент» для студентов специальности 1-36 01 01 «Технология машиностроения» по теме «Проектирование специального инструмента» / А.М. Левданский, Я.В. Кудрицкий. Брест: УО "БГТУ", 2012. 76 с.
- 8. Горский, А.И. Определение допускаемых напряжений при расчетах на прочность / А.И. Горский, Е.Б. Иванов-Емин, А.И. Кареновский; НИИмаш, М., 1974.

Содержание

1. ЦЕЛИ И ЗАДАЧИ ПРОЕКТИРОВАНИЯ ИНСТРУМЕНТОВ В ДИПЛОМНЫХ ПРОЕКТАХ3	}
2. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ	}
3. ПОРЯДОК ПРОЕКТИРОВАНИЯ РЕЖУЩИХ ИНСТРУМЕНТОВ4	ļ
4. ОФОРМЛЕНИЕ КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ НА РЕЖУЩИЕ ИНСТРУМЕНТЫ4	ļ
5. ПРИМЕР ПРОЕКТИРОВАНИЯ ИНСТРУМЕНТА	5
Список рекомендуемой литературы1	2

Учебное излание

Составители:

Олег Анатольевич Медведев Алексей Маратович Левданский

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по проектированию режущих инструментов в дипломных проектах для студентов специальности 1-36 01 01 «Технология машиностроения»

Ответственный за выпуск: Левданский А.М. Редактор: Боровикова Е.А. Компьютерная вёрстка: Соколюк А.П. Корректор: Никитчик Е.В.

Подписано в печать 14.12.2016 г. Формат 60х84 ¹/₁₆. Бумага «Performer». Гарнитура «Times New Roman». Усл. печ. л. 0,93. Уч. изд. л. 1,0. Заказ № 1220. Гираж **50**экз. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.