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SYSTEMS OF DIFFERENTIAL EQUATIONS IN THE LEBESGUE SPACES
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Herein, we investigate systems of nonautonomous differential equations with generalized coefficients
using the algebra of new generalized functions. We consider a system of nonautonomous differential equations
with generalized coefficients as a system of equations in differentials in the algebra of new generalized func-
tions. The solution of such a system is a new generalized function. It is shown that the different interpretations
of the solutions of the given systems can be described by a unique approach of the algebra of new generalized
functions. In this paper, for the first time in the literature, we describe associated solutions of the system of non-
autonomous differential equations with generalized coefficients in the Lebesgue spaces L,(T) with functions that

satisfy the linear growth condition.
Key words: algebra of new generalized functions, differential equations with generalized coefficients,
functions of finite variation.

Cucmembt oughhepenyuanvnvix ypasnenuii 6 npocmpancmaeax Jleveza

Hccredyromes cucmemvl HeasmoHoMHbIX Ouhhepenyuanvublx ypaererutl 8 aieebpe HO8bIX 0000UjeH-
Holx ynxyut. Cucmema HeagmMoOHOMHBIX OupdepeHyuanbHblX ypagHeHutl ¢ 0000ueHHbIMU KO3 duyuenmamu
paccmampusaemcs KaKk cucmema ypagHeHull 6 ouggepenyuanax 8 ancebpe HOBbIX 0000WEHHBIX DYHKYUIL.
Pewenuem maxux cucmem sagnsemes Hosas 06oowjennas Gyukyus. Ilokazamno, umo pasiuynvie uHmepnpemayuu
peutenuti OaHHBIX CUcmeM Mozym Oblmb ONUCAHBL NPU NOMOWU eOUHCINBEHHO20 NOOX00d, UCHOTL3VIOWE20 HOBble
0bobwennvle Gynkyuu. B cmamve, 6 omauuue om npeduecmayiowux pabom, OnUCAHbl ACCOYUUPOBAHHbIE D e-
wieHusi cucmem HeagmoHOMHLIX OUupepeHyuaivubix ypasHenutl ¢ 00006weHHbIMU KOIpduyueHmamu 6 npo-
cmpancmeax Jlebeea | (T), codepacawue dynryuu, yoosremsopaiouue yeaosuio IUHEH020 pocmd.

Knroueswvte cnosa: ancebpa Hosvix 060ouennvix yukyuil, ouggepenyuanvrvle ypasrenus ¢ 0600ujeH-
HbIMU KO puyuenmamu, GyHKyuu 02paHudenHol 6apuayuu.

Introduction
In this paper, we will consider the following system of equations with generalized
coefficientson T €[0;a] = R

KO =3 1 XOL 0, i=1p )
X(0) = Xy, (2)

where fU i=1p, j=Lq are some functions, xX(t)=[x'(t),x*(t),...,x"(t)] and L(t),
j =1,q are functions of finite variation on T. LI (t) are derivatives in the distributional sense
or we can say that L!(t) are derivatives in the Schwartz space. In general, since LI(t) is the

distribution and f Y (t,x(t)) not smooth functions, the products f U (t,x(t))L(t) are not well
defined and the solution of system (1) essentially depends on the interpretation. System (1)


mailto:aizhuk85@mail.ru
mailto:shvichkina@tut.by
mailto:3kati_2007@mail.ru

MATOMATHIKA 113

can describe the model of the rocket flight process or the model of the control problems with
impulse actions. Let us recall some approaches to the interpretation of system (1).

The first approach is concerned with considering the system of equations in the
framework of the distribution theory. According to this approach, once the product of distri-
butions from some classes is defined, then one tries to find the solution of the system of equa-
tions (1) in these classes of distributions. For example, in papers [1; 2] the product of some
distributions and discontinuous functions was defined. See also monograph [3] for another
definition. Notice that the solutions of system (1) obtained using the products from [1-3] are
different.

The second approach is to interpret system (1) as the following system of integral
equations:

_ R . —
KO =%+ [ 11X E).i=1p,
i=lo
where the integrals are understood in the Lebesgue-Stieltjes, Perron-Stieltjes, etc., sense [4; 5].
But in this approach the solution of the system of integral equations depends on the

interpretation of the integral and the definition of the functions x'(t) in the discontinuity
points of LI (t).

The third approach is based on the idea of the approximation of the solution of system (1)
by the solutions of the system of ordinary differential equations, which are constructed using
the smooth approximation of the functions L'(t). In monograph [3], it is shown that in this
case the limit of the solutions of the smoothed equations exists.

In this paper, we will consider the system of equations (1) using the algebra of new
generalized functions from [6]. Thus, we will interpret system of equations (1) as a system
of equations in the differentials in the algebra of new generalized functions. Such interpreta-
tion says that the solution of system (1) is a new generalized function. In papers [7; 8] an or-
dinary nonlinear equation with generalized coefficients in the algebra of new generalized
functions is considered.

In previous papers [9-12] the general view of system (1) were considered.
The coefficients in such systems are generalized derivatives of arbitrary functions of finite

variation LI (t). Using the given sequence of numbers h, — 0 we construct a sequence of ap-
proximating equations, and the generalized solution is defined as the limit of a sequence

of the solutions of approximating equations.
It is found that generalized solution exists only under some additional conditions for

the behaviour of the sequence h, in the case of discontinuous functions L (t) and different

generalized solutions exist for different sequences h,.
In papers [13; 14] the system of nonlinear differential equations, the coefficients
of which are generalized derivatives of the continuous function of finite variation L’(t)

is investigated.

The main purpose of this article is to show that under some conditions this new gener-
alized function associates with some ordinary function, which is natural to call the solution
of system ().

We will describe associated solutions of the approximated systems used in previous
similar articles, we will obtain the main results in the Lebesgue spaces L (T)as in [15], but

we will consider that functions 9, i =1,_p, ] =1,_q are functions that satisfy the linear growth
condition.
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The algebra of new generalized functions
In this section, we recall the definition of the algebra of new generalized functions

from [6]. At first, we define an extended real line R using a construction typical for non-
standard analysis.

Let R={(x,)>, X, €R for all ne N} be a set of real sequences. We call two se-
quences {x,}e R and {y,} e R equivalent if there is a natural number N such that x, =y,
forall n> N.

The set R of equivalence classes is called the extended real line, and any of the clas-
ses a generalized real number.

It is easy to see that R =R because one may associate with any ordinary number
X € R a class containing a stationary sequence with X, = X. It is evident that R is an algebra.
The product Xy of two generalized real numbers is defined as the class of sequences equiva-
lent to the sequence {x,y,}, where {x,} and {y,} are the arbitrary representatives of the
classes X and Y, respectively.

For any segment T =[0;a] = R one can construct an extended segment T inasimilar
way. Let H denote the subset of R of nonnegative ,,infinitely small numbers”:

H={h eR:h =[{h,}],h, >0 for all ne N, lim h, =0}. )
N—o0

Consider the set of sequences of infinity differentiable functions {f,(x)} on R. We
will call two sequences {f,(x)} and {9, (X)} equivalent if for each compact set K — R there
is a natural number N such that f,(x)=g,(x) forall n>N and x € K. The set of classes
of equivalent functions is denoted by J(R) and its elements are called new generalized func-
tions. Similarly one can define the space 3(T) for any interval T =[0;a].

For each distribution f we can construct a sequence {f,} of smooth functions such
that f, convergesto f (i.e., one can consider the convolution of f with some ¢ -sequence).

This sequence defines the new generalized function that corresponds to the distribution f .

Thus the space of distribution is a subset of the algebra of new generalized functions. Howev-
er, in this case, infinitely many new generalized functions correspond to one distribution
(e. g. by taking a different o -sequence). We will say that the new generalized function

f =[{f,}] associates with the ordinary function or distribution f if f_, converges to f
in some sense.

Let f = [{f.}] and § =[{g,}] be generalized functions. Then the composition f o §
is defined by fo g =[{f, >g,} € 3(R). Similarly, one can define the value of the new gene-
ralized function f at the generalized real point X = [{x,}] eR as F(i) =[{f, (X}

For each h =[{h,}]e H and f =[{f,}] € 3(R) we define a differential d f e I(R)

by dﬁfz[{fn(x+hn)— f,(X)}]. The construction of the differential was proposed by

Lazakovich (see [6]).
Now we can give an interpretation of system of equations (1) using the introduced
algebras. Let L(t),t €[0;a]=T be a right-continuous function of finite variation. We replace
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ordinary functions in system (1) by corresponding new generalized functions and then write
differentials in algebra.
So we have

d-x"(F) = ij FIEXENL(@),i=Lp @)

with the initial value Y‘[a;ﬁ):io, where ﬁz[{hn}]eH,fz[{tn}]eT,iz[{xn}],

f~:[{fn}], Xy =[{*o,}] and L =[{L,}] are elements of 3(R). Moreover f and L are as-

sociated with f and L, respectively. If X is associated with some function x then we say
that x is a solution of system (3).

The following theorem from [16] gives necessary and sufficient conditions for the ex-
istence and uniqueness of the solutions of system (3).

Theorem 2.1. If the following equality holds for some representatives

{fiye I {Ukell, ((3eX', {4}k,
for all sufficiently large ne N and forall 1 =0,1, ....

Iim(;jT[X(i)n (h, =) = X5, (] - Zq:;jT[fn” (t, Xon (ODIL, (h, +1) = Ly (D11 =0,

t—0* i
then a solution of system (3) exists and is unique.

The purpose of the present paper is to investigate the case when the solution X of sys-
tem (3) is associated with some function and to describe all possible associated solutions.

Main results
In this section, we will formulate the main results of this article.
In this paper, we consider specific types of representatives of the new generalized

functions (mnemofunctions). We take the following convolutions as representatives of L
from system (3)
1
i)

L= *ph)O) = [L(t+s)pl(s)ds, (@)
0

where
pl®) =y (Mp! () (M), p! 20,5upp! <[01], [ p(s)ds =1

and f, = f 55, 5eC™(R™),  [B(Xi Xy X, )AXotyotX, =1, 520, 50p5 [0,

(U
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If the function »!(n) is some monotonic function such as lim y1(n) =, we will
nN—o0
hn—0
assume that for j=1,w lim y ! (n)h, = and for j=w+1,q lim ;/j(n)hn =0.
nN—o0 n—o0

hn —0 hp—0

Using representatives, we can rewrite system (3) in the following form:

K () X0 = Y 1%, )Lt +h,) L@, i =12

X, (t)‘ [o:h,) = Xon t)

()

The solution X of system (3) is associated with some function if and only if the
sequence {X,} of the solutions of system (5) converges.

Therefore, we have to investigate the limiting behavior of the sequence {x,}.
Let t be an arbitrary point of T. There exist m, e N and 7, €[0;h,) such that

t=z,+mh,. Set t, =7, +kh, for k=0,1...,m,. Then the solution of system (5) can be
written as
: : aml o : : o
Xn (1) = Xon (7) + D > T (G X, (G )[Ly () — La (t)) i =1 2 (6)
j=1 k=0

Let Li(t), j=1q,teT =[0;a] be a right-continuous function of finite variation. We

will assume that L'(t)=L(a) if t>a and L'(t)=L(0) if t<0. Let us denote by
q .

var L(u) = ZvaTrLJ (u) the total variation of the function L =[L",L?,...,L%] on the interval T .
ue j=1 ue

Suppose that f is a function that satisfy the linear growth condition with a constant M then
forall xeR and teT:

(%) <ML+[X). (7)

In order to describe the limits of the sequence X, , we consider the following system of
integral equations

: R : _ R
X'(0) =%+ 2 [ 75, X())dL (8) + DS (. X(1t, ), AL(r)), =L, 2 ®)
i=lo Hpst
where L(t) is the continuous part and L™ (t) is discontinuous part of the function L’(t),
M, r=12,..- discontinuity ~ points  of  the  function L' (1), i=1q,
AL (1) = L® (u,+)— L™ (2,-), j=1q is the size of the jump
Si (,Ll, X,U) = §0i (11 H, X,U) _goi (O! H, X,U),

where @' (t, 1, x,u) is the solution of the integral equation

ot 1, %00) = X +iujj £ (11, (5, 1, X,U))dH (s —1) +

j=1
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a Lo _
+ > ulj £, (s, 1, X,u))ds, i =1, 2.
j=w+l 0
Here and in what follows all integrals are understood in the Lebesgue-Stieltjes sense.
Theorem 3.1. Let fU i=1 7z, j=1q are functions that satisfy the linear growth con-
dition (7) and L' right-continuous functions of finite variation. Suppose that
[[X,0(z,) = %, |dt — 0 in the space L,(T) a8 n—o, h =0, y'(n) > and »’'(n)h, -

J
for j=1,w and y’(n)h, -0 for j=w+1,q, then the solution x_(t) of (5) converges to the

solution x(t) (8)in L (T).
Theorem 3.2. Under the condition of theorem 2.1. let f¥ i=1z, j=1q are func-

tions that satisfy the linear growth condition (7) and L' right-continuous functions of finite
variation.

Suppose that |

!
and y’(n)h, > o for j=1,w and »’'(n)h. — 0 for j=w+1,q, then the associated solution
of (3) is the solution of (8) in the space L (T).

Similar results for the system of nonautonomous differential equations in the space
L, (t) have been obtained in [10].

Definition 3.3. We say that the function x(t) is an I-associated (S-associated) solution
of the system of equations in differentials (3) if it is associated solution (3) under conditions
that ,!i_TOVj (n)h, = (n"ﬂl‘/j (mh, = 0.) and the representatives of the functions f and L

hn—0 hpn—0

Xq0(7,) = X,|dt — 0 in the space L (T) as n—>o0, h, >0 »7(n) — oo

are set by formula (4). In this case, we name dﬁEj as an l-associated (S-associated) coeffi-

cient.
Let f :R* > R.We set

LM =(F+5)0)= [ft+s)5,(s)ds,

[0,.1/n]?

where g, (t) e C*(R?), p,(t) =0, supp 5, <[01/n]*, [p,(s)ds=1, neN.
[0,1/n1?

Consider the case when y'(n)=n then p_ (t) e n*p(nt), p,(t) e C*(R?), supp
pcl0l’, [p,(s)ds=1 neN.

(0.1
Remark 3.4. Let ' (n) =n, then we can define the set H from (2) using the following
subsets:

| ={h e H :lzo(hn),n —,h, —0, for all h, eh},
n
S={heH:h =o(1),hn —>0,n—>, for all h, eh}.
n

We name the generalized differential d- as I-generalized (S-generalized) differential
and denote d! (d2),if hel (heS).
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Note, that the I-generalized (S-generalized) differential makes sense only for the new
generalized function L’ with representatives (4), where »/(n) =n.

According to equation (3), we will consider the systems of equations with
I-generalized and S-generalized differentials:

X =3 TIE RN D) ©)
X| o5,= X"

X' (1) ZQ:F Tx(@)dLi (D), (10)
‘[Oh) X",

Remark 3.5. In case »'(n)=n definition 3.3 will take the following form: we will
say that the function x(t) is the I-associated (S-associated) solution of a system of equations
in differentials (3) if it is associated solution (9) ((10)).

Let »'(n)=n. In order to describe the limits of the sequence x, we consider the fol-
lowing system of integral equations

X' (t) = x! +Z j f(s,x(s))dL! (s), i =1 z (11)

Theorem 3.6. Let f7,i=1z, j=1q are functions that satisfy the linear growth con-
dition (7) and L’ continuous functions of finite variation. Suppose that [|x ,(z,) - x0|dt -0
T

in the space L (T) than the solution x, (t)of (5) converges to the solution x(t) from (11)
in the space L (T) as n—oo, h, —>0.
Theorem 3.7. Under the condition of theorem 2.1. let f9 i=1z, j=1q are func-

tions that satisfy the linear growth condition (7) and L' continuous functions of finite varia-
tion. Suppose that jxno(rt)—x0|dt — 0 in the space L (T), than the associated solution
T

of (3) is the solution of (11) in the space L, (T) as n — oo, h —0.

The proof of a similar theorem in another space and in an autonomous case can be
seen in [11].

Let L’be right-continuous functions of finite variation, »'(n)=n and 1:o(hn)
n

as n — oo, h. — 0. In order to describe the limits of the sequence x,, we consider the follow-
ing system of integral equations

X' (t) = X +Z j £ (s, x(s-))dL (s), i =L, (12)

Theorem 3.8. Let f i=17z, j=1q are functions that satisfy the linear growth con-
dition (7) and L' right-continuous functions of finite variation. Suppose that
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]

T

X,0(7,) = X,|dt — O in the space L,(T) than the solution x (t)of (5) converges to the solu-

tion x(t) inthe space L (T) (12)as n—oo, h, —0,and 1 =o(h,).
n

Theorem 3.9. Under the condition of theorem 2.1. let 7 i=1z j=1q are func-
tions that satisfy the linear growth condition (7) and L' right-continuous functions of finite
variation. Suppose that [|x,,(z,) - X,|dt — 0 in the space L,(T)as n—oo, h, —0 than the

T

I-associated solution of (3) is the solution of (12) in the space L (T) as n—oo, h —0.
Similar results for the system of autonomous differential equations in other spaces
have been obtained in [12].

Let L'be right-continuous functions of finite variation, y'(n)=n and h_ :0(1)
n

as n—oo, h. — 0. In order to describe the limits of the sequence X, we consider the follo-
wing system of integral equations

_ ooat _ _ —
X (©) =%+ [ 11 (s X)L () + X' (t, X(s1, ). AL(w,)), i =L 2 (13)
i=lo <t
where S'(u, x,u) = @' (4, 1, X,u) — @' (0, 1, %,u), and @' (t, 2, x,u) is the solution of the integral
equation

. R _

o' (t, 1, x,u) =x' +Zu’j 9w, (s, i1, x,u))ds, i =1, z.
=0

Theorem 3.10. Let f¥ i=1z j=1,q are functions that satisfy the linear growth

condition (7) and L’ right-continuous functions of finite variation. Suppose that
[[X,6 (z,) = X, |dt — O in the space L, (T), then the solution x,(t) of (5) converges to the solu-

T

tion x(t) from (13) in the space L (T) as n—oo, h, —>0and h = 0(1).
n

Theorem 3.11. Under the condition of theorem 2.1. let f¥ i=1z j=1q

are functions that satisfy the linear growth condition (7) and L' right-continuous functions
of finite variation.

Suppose that |

xno(rt)—x0|dt — 0 in the space L (T) as n—oo, h, —0, then the

S-associated solution of (3) is the solution of (13) in the space L (T) as n —oo, h —0.

Similar results for such a system of autonomous differential equations in another
spaces have been obtained in [17; 18].

Conclusion

The systems of nonautonomous differential equations with generalized coefficients
using the algebra of new generalized functions are investigated. It is shown that different in-
terpretations of the solutions of the given systems can be described by a unique approach of
the algebra of new generalized functions.
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In this paper, for the first time in the literature, we describe associated solutions of the
system of nonautonomous differential equations with generalized coefficients in the Lebesgue
spaces L, (T) with functions that satisfy the linear growth condition.
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