ВЛИЯНИЕ ДИНАМИЧЕСКОГО ФАКТОРА НА ФИЛЬТРАЦИОННЫЕ И КОМПРЕССИОННЫЕ СВОЙСТВА НАМЫВНЫХ ГРУНТОВ

К.Н. Пироговский

Белорусский государственный университет транспорта г.Гомель, Республика Беларусь

В статье приведены некоторые результаты исследований влияния вибрации на фильтрационные свойства намывных грунтов и частоты и длительности вибрации на критическое ускорение и осадки штампа виброкомпрессионного прибора.

Ключевые слова: вибрация, грунт, фильтрация, ускорение, частота, пористость.

Для исследования влияния вибрации на фильтрационные свойства грунта использовался фильтрационный прибор IIB, доработанный в лаборатории механики грунтов БелГУТа таким образом, что стало возможным приложение к нему динамических нагрузок.

Для возможности сравнения опыт проводился следующим образом. Прибор с образцом грунта устанавливался на вибростенд и подвергался вибродинамическому нагружению при частоте 50 Гц с ускорением 0,1g в течение 15 мив для уплотнения грунта и перераспределения частиц. Затем проводилось определение коэффициента фильтрации при действии вибрации. Затем стенд выключался и проводилось определение коэффициента фильтрации в статических условиях. Аналогичные циклы проведены для ускорений 0,3g; 0,5g; 0,7g; 0,9g.

Исходные данные для расчета коэффициентов фильтрации приведены в табл 1

Таблица 1 Исходные значения для определения коэффициента пористости.

Началь-	Конечный	Понижение	Среднее зна-	Гидравлический	Расход во-
ный на-	напор Нк,	уровня Н _н -	чение напора	градиент	ды
пор, Н _н ,	СМ	Нк, см	$\overline{H} = \frac{H_{\star} - H_{\star}}{H_{\star}}$	$J \equiv \overline{H} / l$	$G=S(H_{II}-H_{K})$
СМ			2		
34,5	14,5	20	24,5	6,13	12,4

Результаты экспериментов приведены в виде графиков изменения коэффициентов фильтрации от ускорения, которые показаны на рис. 1.

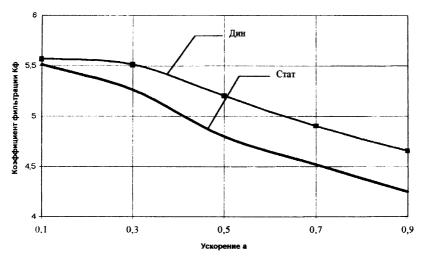


Рис. 1 – График изменения коэффициента фильтрации от ускорения

Работы по определению изменения пористости проводились на специально разработанном виброкомпрессионном приборе. По принципу работы он близок к обычному компрессионному прибору, но к образцу приложена вибродинамическая нагрузка. Схема прибора показана на рис. 2.

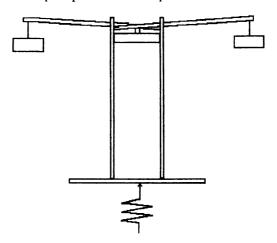


Рис. 2 - Схема виброкомпрессионного прибора

Испытывались грунты – песок крупный плотностью ρ =1,58 г/см³, с влажностью w=0,08, коэффициентом пористости e=0,835 и песок средней крупности с аналогичными характеристиками.

Для данных грунтов определена величина критического ускорения (т.е. такого, при котором начинается осадка штампа) при давлении P=0,1; 0,2 и 0,3 МПа. Критическое ускорение для данных уровней определялось при трех значениях частоты — 50, 100 и 150 Гц. Величина критического ускорения определялась путем постепенного увеличения амплитуды виброперемещений стола. Полученные в результате эксперимента зависимости приведены в табл. 2 и на рис. 3.

Анализ результатов позволяет сделать вывод, что уровень критических ускорений для песков с одинаковыми характеристиками не остается постоянным, если изменяется частота вибрационного воздействия. На рис. 3 видно, что наибольшие критические ускорения отмечены на частоте 150 Гц. При этом рост частоты в 3 раза вызывает рост ускорения в 1,94 раза для крупных песков и в 1,24 – для песков средней крупности.

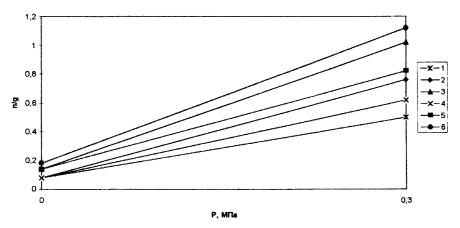


Рис. 3 — Зависимость критического ускорения от статического давления Р для крупного песка при частоте 1–150, 2–100, 3–50 Γ ц; для песка средней крупности при частотах 4–150, 5–100, 6–50 Γ ц.

Таблица 2 Значения критических ускорений $\eta_{\kappa p}$ и величин осадки Δh N при различных частотах f и степени неоднородности C_v крупного песка f, Показа- $C_v = 2,6$ $C_v = 5,3$ $C_v = 8,6$

f,	Показа-	$C_{v} = 2,6$		$C_{v} = 5,3$		$C_{v} = 8,6$	
Гц	тель	P=0	P=0,3	P=0	P=0,3	P=0	P=0,3
150	$\eta_{\kappa p}$	1,33	10,11	1,46	11,71	1,58	12,11
100		1,03	7,:4	1,21	7,93	1,35	8,42
50		0,89	5,21	1,06	5,81	1,17	6,11
150		4,27	5,11	4,49	5,27	4,68	5,37
100	Δh	4,63	5,53	4,85	5,81	5,07	6,01
_ 50		4,97	6,55	5,13	6,71	5,31	6,95

Зависимость критического ускорения от статического давления удовлетворительно описывается корреляционным линейным выражением вида

$$\eta_{f\kappa p} = a_f P + \eta_{H}$$

где η_{fkp} – критическое ускорение исследуемого грунта для определенной частоты;

Р – давление, передаваемое поршнем на образец, МПа;

а_f - коэффициент, учитывающий влияние частоты;

 $\eta_{\text{н}}$ – начальное ускорение, характеризующее начало процесса уплотнения у ненагруженного образца при определенной частоте;

Выволы:

- При воздействии вибрации происходит увеличение коэффициента фильтрации в среднем примерно на 10%.
- Величина критического ускорения, при которой начинается виброуплотнение грунта, не является четко фиксированной, а есть функция от частоты колебаний.
- 3. Пески, имеющие большую крупность, начинают уплотняться при меньших значениях виброускорений, что можно объяснить меньшим числом точек контакта частиц и уменьшением, в свою очередь, сил внутреннего трения.
- 4. На критическое ускорение для песка наряду с его крупностью определенное влияние оказывает его неоднородность: чем больше неоднородность, тем больше критическое ускорение и количество циклов вибрации до полной стабилизации.

Литература

- 1. Пироговский К.Н. Влияние подвижного состава на осадки зданий // XXIX СНТК вузов республик Прибалтики, Белоруссии и Молдавии: Тез. докл. конф. – Каунас, 1985.
- 2. Кудрявцев И.А., Пироговский К.Н. Влияние вибрации на свойства песчаных грунтов// XXVII НТК "Научно-технический прогресс в строительстве": Тез. докл. конф. Пенза, 1993.