ПРИМЕНЕНИЕ МЕТОДА МАТРИЦ ПЕРЕНОСА ДЛЯ РАСЧЕТОВ ГЕТЕРОСТРУКТУР InGaAs/AlGaAs/GaAs

<u>Н. П. Тарасюк</u>, А. В. Лазарчук

Брестский государственный технический университет, Брест, Беларусь, tarasiuk@bstu.by

The method of transfer matrices for calculating optical properties of InGaAs/AlGaAs/GaAs heterostructures with different number of quantum wells is considered. The maximum optical confinement factor depending on the number of quantum wells and thicknesses of waveguide layers are calculated.

Введение

Для эффективного создания приборов оптоэлектроники необходимо применение сложных многослойных гетероструктур. В данном случае для расчета используются численные методы. Одним из методов расчета многослойных гетероструктур является метод матриц переноса (ММП).

Метод матриц переноса и его применение для расчета многослойных гетероструктур

Рассмотрим многослойную волноводную структуру [1]. Рассмотрим случай ТЕ – мод, распространяющихся в направлении оси z, направленной вдоль слоев. Выражение для напряженности электрического поля имеет вид:

$$E_{v}(x,z,t) = E_{v,j}(x) \exp[i(\omega t - \beta z)]$$
(1)

для *j*-го слоя. Амплитуда напряженности электрического вектора $E_{y, j}(x)$ удовлетворяет волновому уравнению:

$$\frac{\partial^2 E_{y,j}(x)}{\partial x^2} - (\beta^2 - k_0^2 \tilde{n}_j^2) E_{y,j}(x) = 0, \qquad (2)$$

где $\beta = \beta_{re} + i\beta_{im}$ – проекция волнового вектора $k_0 = \frac{2\pi}{\lambda}$ на плоскость структуры, $\tilde{n}_j = n + ik$ – комплексный показатель преломления *j*-го слоя. Решение уравнения (2) имеет вид

$$E_{y,j}(x) = A_j \exp[\gamma_j (x - L_j)] + B_j \exp[-\gamma_j (x - L_j)], \qquad (3)$$

где $\gamma_j = \sqrt{\beta^2 - k_0^2 \tilde{n}_j^2}$, L_j – координаты границы между *j* и *j*+1 слоями, A_j и B_j – комплексные коэффициенты, определяемые из граничных условий.

Граничные условия следуют из непрерывности тангенциальной составляющей вектора напряженности электромагнитного поля и его производной вдоль нормали к поверхности. В данном случае они будут выглядеть следующим образом:

$$A_{j} \exp[\gamma_{j}d_{j}] + B_{j} \exp[-\gamma_{j}d_{j}] = A_{j+1} + B_{j+1}$$

$$A_{j} \frac{\gamma_{j}}{\gamma_{j+1}} \exp[-\gamma_{j}d_{j}] - B_{j} \frac{\gamma_{j}}{\gamma_{j+1}} \exp[\gamma_{j}d_{j}] = A_{j+1} - B_{j+1}, \quad (4)$$

где d_j – толщина *j*-го слоя. Выражения (4) можно представить в матричном виде:

$$\begin{bmatrix} A \\ B \end{bmatrix}_{j+1} = T_j \begin{bmatrix} A \\ B \end{bmatrix}_j,$$
(5)
rge $T_j = \begin{bmatrix} (1 + \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[\gamma_j d_j]}{2} & (1 - \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[-\gamma_j d_j]}{2} \\ (1 - \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[\gamma_j d_j]}{2} & (1 + \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[-\gamma_j d_j]}{2} \end{bmatrix}.$

Рекурсивные соотношения для коэффициентов первого и последнего слоев имеют вид:

$$\begin{bmatrix} A \\ B \end{bmatrix}_{m} = T_{m-1}T_{m-2}\cdots T_{3}T_{2}T_{1}\begin{bmatrix} A \\ B \end{bmatrix}_{1} = T_{tot}\begin{bmatrix} A \\ B \end{bmatrix}_{1}$$
(6)

Для направляемых мод напряженность электромагнитного поля на бесконечности стремится к нулю $E_y(x \to \pm \infty) \to 0$. Поэтому $B_1 = 0$, $A_m = 0$.

В результате получаем:

$$\begin{bmatrix} 0\\ B_m \end{bmatrix} = T_{tot} \begin{bmatrix} A_1\\ 0 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12}\\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} A_1\\ 0 \end{bmatrix}$$
(7)

В итоге граничные условия сводятся к уравнению:

$$t_{11}(\beta) = 0 \tag{8}$$

Для решения уравнения (8) использовался алгоритм скоростного спуска.

По известной величине *β*, определялся фактор оптического ограничения структуры. Он выражается следующей формулой [2]:

$$\Gamma = \frac{\substack{x_b \\ \int E_y^2(x)dx}}{\prod_{y \in V} E_y^2(x)dx},$$
(9)

где в числителе интегрирование производится по области квантовых ям.

В качестве примера применения ММП [3-5] покажем на расчете фактора оптического ограничения и удельного фактора оптического ограничения (фактора, приходящегося на одну яму) гетероструктур InGaAs/AlGaAs/GaAs, содержащих 1–11 квантовых ям InGaAs толщиной 8 нм каждая с барьерами GaAs толщиной 12 нм. Переходные слои GaAs слева и справа от квантовых ям равны по 36 нм.

Геометрия гетероструктуры с двумя квантовыми ямами приведена на рисунке 1.

Рисунок 1 – Профили показателя преломления и интенсивности моды нулевого порядка гетероструктуры, содержащей две квантовые ямы

Фактор оптического ограничения и удельный фактор оптического ограничения рассчитывался для длины 980 нм. Для получения максимального значения фактора оптического ограничения изменялись толщины волноводных слоев d1 и d2. Результаты моделирования приведены на рисунке 2 и в таблице 1.

Рисунок 2 – Зависимость удельного фактора оптического ограничения Γ^* от количества квантовых ям

Таб	лица	1 –	Зависимость	фактора	оптическог	о ограничен	ия и	удель	ного
фактор	а опт	ичес	кого огранич	ения в зав	исимости от	количества	квант	говых	ям и
толщин	і волн	овод	цных слоев						

Количество		d2, нм	Фактор	Удельный фактор оптического	
квантовых	d1, нм		оптического		
ЯМ			ограничения, %	ограничения, %	
1	885	410	1,128	1,128	
2	685	370	2,757	1,379	
3	540	330	4,806	1,602	
4	440	285	7,145	1,786	
5	365	250	9,638	1,928	
6	305	210	12,168	2,028	
7	260	180	14,647	2,092	
8	225	150	17,015	2,127	
9	200	120	19,237	2,137	
10	175	95	21,291	2,129	
11	155	75	23,171	2,106	

На рисунке 1 видно, что максимальное значение удельного фактора оптического ограничения соответствует гетероструктуре с 9 квантовыми ямами и равно 2,14 %. Однако, начиная с гетероструктур с 6 квантовыми ямами прирост удельного фактора замедляется и составляет 5 % и менее по отношению к максимальному значению. А структура с меньшим количеством квантовых обладает меньшими механическими ЯМ

деформациями за счет рассогласования постоянных кристаллических решеток.

Из таблицы 1 видно, что суммарная толщина волноводных, переходных слоев и активной области для гетероструктур с 1 и 6 квантовыми ямами соответственно в 2,5 и 1,2 раза больше, чем у гетероструктуры с 9 квантовыми ямами и составляет соответственно 1375 нм и 695 нм.

Заключение

Расмотрен ММП для расчета оптических свойств гетероструктур InGaAs/AlGaAs/GaAs с различным количеством квантовых ям. Рассчитаны максимальные фактор оптического ограничения и удельный фактор оптического ограничения в зависимости от количества квантовых ям и толщин волноводных слоев.

Список использованных источников

1. Bergmann, M. J. Optical-field calculations for lossy multiple-layer AlxGa1-xN/InxGa1-xN laser diodes / M. J. Bergmann, and H. C. Casey, Jr. // J. Appl. Phys. – 1998. – Vol. 84, Iss. 3. – P. 1196–1203.

2. Адамс, М. Введение в теорию оптических волноводов / М. Адамс. Москва: Мир, 1984. – 512 с.

3. Богатов, А. П. Оптимизация волноводных параметров лазерных гетероструктур InGaAs/AlGaAs/GaAs с целью найбольшего увеличения ширины пучка в резанаторе и получения максимальной лазерной мощности / А. П. Богатов, Т. И. Гущик, А. Е. Дракин, А. П. Некрасов, В. В. Поповичев // Квантовая электроника. –2008. –Т. 38, № 10. –С. 935939.

4. Lutsenko, E. V. Investigation of photoluminescence, stimulated emission, photoreflectance and 2DEG properties of double heterojunction Al-GaN/GaN/AlGaN HEMT heterostructures grown by ammonia MBE. / E. V. Lutsenko, M. V. Rzheutski, A. G. Vainilovich, I. E. Svitsiankou, N. P. Tarasuk, G. P. Yablonskii, A. Alyamani, S. I. Petrov, V. V. Mamaev, A. N. Alexeev // Phys. Stat. Sol. (a). -2018. -V.215, Iss.9. -1700602.

5. Lutsenko, E. V. Optically pumped InGaN/GaN MQW lift-off lasers grown on silicon sustrates / E. V. Lutsenko, A. V. Danilchyk, N. P. Tarasuk, L. Rahimzadeh Khoshroo, H. Kalisch, R. H. Hansen, Y. Dikme, B. Schineller, M. Heuken // Superlattices and Microstructures. – 2007. – V.41, Iss.5–6. – P. 400–406.