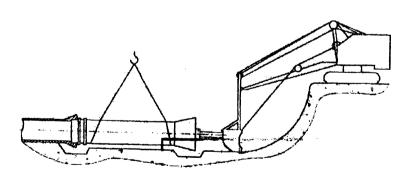
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»


Кафедра технологии строительного производства

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ КУРСОВОГО И РАЗДЕЛА ДИПЛОМНОГО ПРОЕКТОВ
«ПРОИЗВОДСТВО ЗЕМЛЯНЫХ И МОНТАЖНЫХ РАБОТ ПРИ СТРОИТЕЛЬСТВЕ
ВОДОПРОВОДНО-КАНАЛИЗАЦИОННЫХ ТРУБОПРОВОДОВ»

ПО КУРСУ «ТЕХНИКА И ТЕХНОЛОГИЯ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ»
ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ

1-70 04 03 «ВОДОСНАБЖЕНИЕ, ВОДООТВЕДЕНИЕ И ОХРАНА ВОДНЫХ РЕСУРСОВ»
ДНЕВНОЙ И ЗАОЧНОЙ ФОРМ ОБУЧЕНИЯ

Брест 2009

УДК 69.057

Настоящие методические указания составлены в соответствии с требованиями, заложенными в рабочих программах курсов «Технология и организация строительномонтажных работ» для студентов специальности 1-70 04 03 «Водоснабжение, водоотведение и охрана водных ресурсов» дневной и заочной форм обучения.

В указаниях изложены вопросы разработки технологической карты на производство земляных и монтажных работ при строительстве водопроводно-канализационных трубопроводов в курсовом и дипломном проектировании.

Составители: П.П. Ивасюк, доцент, С.М.Семенюк, доцент, к.т.н., В.Н.Пчелин, доцент, Ю. П. Ивасюк, ст.препод.

Рецинзент..начальник отдела технологии ОАО "Строительный трест №8 "г.Брест Ребров Г.Я.

1. ЦЕЛЬ И ЗАДАЧИ ПРОЕКТИРОВАНИЯ

Методические указания устанавливают методику выполнения курсового проекта по технологии строительных и монтажных работ, имеющего конечной целью закрепление, углубление и обобщение знаний, полученных студентами в лекционном курсе, и применение этих знаний для решения конкретных вопросов строительства водопроводно-канализационных сетей.

В процессе проектирования студенты должны решить следующие задачи:

- изучить типовые технологические карты;
- выбрать основные машины и механизмы, используемые при производстве земляных и монтажных работ, на основе вариантного проектирования;
- разработать технологическую карту на монтаж водопроводно-канализационного трубопровода.

2. ИСХОДНЫЕ ДАННЫЕ И СОСТАВ ПРОЕКТА

Исходными данными для проектирования являются выдаваемые руководителем: схема трассы, назначение трубопровода, его диаметр и материал, вид грунта, условия производства работ, продолжительность работ.

Проект состоит из графического материала (один лист формата А1) и расчетно-пояснительной записки, оформленных в соответствии со Стандартом университета.

Курсовой проект выполняется согласно выданному заданию по графику, прилагаемому к заданию.

3. ОПРЕДЕЛЕНИЕ ОБЪЁМОВ РАБОТ

3.1. СОСТАВЛЕНИЕ СПЕЦИФИКАЦИИ СБОРНЫХ ЭЛЕМЕНТОВ Осуществляем в форме таблицы 1.

Таблица 1. Спецификация сборных элементов

Nº n/n	Наименование	Марка	Общее кол-	Разм	Размеры, мм		Масса, т		
1	эл ем ента	эл-та	во, шт.	7	b	h	одного эл-та	всех эл-тов	
1	2	3	4	5	6	7	8	9	
	 			L	L				
- 1		1	i	l	ĺ				

где I - длина элемента; b - ширина элемента (для трубы наружный диаметр); h - высота элемента.

Трубы подбираем по [1], главы 1-7, причем длину труб назначаем по [2], «Вводная часть», п.З.

Для подбора конструкций сборных колодцев необходимо предварительно установить внутренние размеры колодца: для канализации по [3], п.4.14-4.16; для водоснабжения по [4]. п.8.63.

Высоту рабочей части колодца надлежит принимать: для канализации -1,8 м; для водоснабжения -1,5 м. Конструкция колодцев и количество типоразмеров сборных элементов колодца принимаются по [1], глава 54. Количество труб определяется по выражению

$$K = (L-Z^{2}C)/(I-a), \mu m., \tag{1}$$

где L -длина трассы, м; Z - количество колодцев, шт.; C - величина зазора между трубами в колодце, м; I - длина трубы, м; a - глубина раструба. Количество колодцев определяется после построения продольного профиля трассы (рис.1).

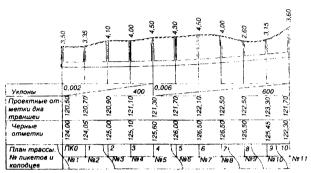


Рис. 1 Продольный профиль трассы

Круглые колодцы состоят из: плиты днища, нижнего кольца рабочей камеры с отверстиями, колец рабочей камеры, плиты перекрытия, колец горловины, опорного кольца. Прямоугольные колодцы состоят из: плит днища, стеновых панелей, плит перекрытия, колец горловины, опорного кольца.

3.2. ОПРЕДЕЛЕНИЕ ОБЪЁМОВ ЗЕМЛЯНЫХ РАБОТ

1. При разработке траншеи.

Порядок расчётов при определении объемов следующий:

а) Определяем минимальную глубину заложения трубопровода: для канализации по [3], п.4.8

$$h_{min} = max\{h_{np}-m;0,7+D_{H}\},$$
 (2)

для водоснабжения по [4], п.8.42, 8.44

$$h_{min} = \max\{h_{no} + 0.5; 0.5 + D_{H}\}. \tag{3}$$

где h_{np} - глубина промерзания, м; D_{H} - наружный диаметр труб, м; m = 0,3 при диаметре < 500 мм; m = 0.5 при диаметре > 500 мм;

- б) Строим продольный профиль поверхности земли (рис.1) по точкам пересечения горизонталей с осью трассы. Черная отметка данной точки равна отметке горизонтали.
- в) Устанавливаем минимальные уклоны трубопровода: -для канализации по [3], п.2.41: диаметром 150 мм 0,008; 200 мм ,007; > 1250 мм -0,0005; -для водоснабжения по [4], п.8.13 равен 0,001; при плоском рельефе местности допускается снижать уклон до 0,0005.
- r) Размещаем колодцы по трассе в местах поворота трубопровода и на концах трассы, а также в местах подключений. Кроме того, колодцы располагаются:
- для канализации в соответствии с [3], п. 4. 1 4;
- для водоснабжения в соответствии с [4], п. 8.9.
- д) Строим красную линию (устанавливающую проектное положение трубопровода) с соблюдением минимальной глубины заложения трубопровода, минимального уклона и обеспечением минимального объема земляных работ и количества колодцев (рис. 1).
- е) Располагаем пикеты по трассе, которые совпадают с расположением колодцев (номера колодцев ставятся на профиле под осью трассы (рис.1), а номера пикетов над осью). Дополнительные пикеты устанавливаем в местах излома рельефа и нумеруем по номеру левого пикета (колодца) со штрихами. Кроме того, дополнительный пикет ставится на границе городской и загородной зоны.
- ж) Определяем черные отметки пикетов (отметки поверхности земли) интерполяцией, экстраполяцией двумя способами: графическим (рис.2) или графоаналитическим (рис.3).

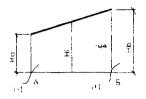


Рис. 2 Графический способ определения черных отметок

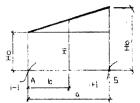


Рис. 3 Графоаналитический способ определения черных отметок

$$H_i = (H_b - H_a)^* b/a + H_a, \tag{4}$$

где H_a – отметка левой горизонтали, м, H_b – отметка правой горизонтали, м, a – расстояние между горизонталями, м, b – расстояние от левой горизонтали до точки, отметка которой находится, м.

з) Определение красной отметки (отметка дна траншеи) пикетов по выражению: $H_{\kappa\rho i} = H_{or} + i^* l_i,$ (5)

где H_{on} – красная отметка определяющей точки (на рис.1 определяющей точкой является пикет 1, поэтому H_{on} = H_1 - h_{min}), м; i – уклон трубопровода; l_i – расстояние от определяющей точки до пикета, отметка которого находится, м.

и) Определяем рабочие отметки:
$$h_i = H_{\kappa oi} - H_i$$
, м

Рабочие отметки записываем напротив пикетов над профилем (рис. 1).

к) Определяем ширину траншеи по дну:

- при разработке траншеи с откосами (как правило, в загородной зоне) по выражению (рис. 4):

$$b^0_{mp} = n_m * D_H + c(n_m - l) + 2 * f, M$$
 (7)

где n_m – количество параллельно прокладываемых ниток трубопровода;

с – расстояние в свету между нитками трубопровода, м;

- при разработке траншей с вертикальными стенами (часто в городской черте) определяем (рис. 5) по формуле:

$$b^{0}_{mp} = n_{m} * D_{H} + c(n_{m} - l) + 2 * d + b_{\kappa p}, M, \tag{8}$$

где d – запас между стенкой траншеи (либо крепления) и трубой (принимаем по табл. 2), м; $b_{\kappa\rho}$ – двойная толщина крепления (принимаем по табл. 3).

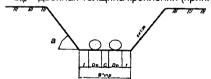
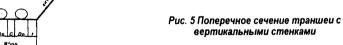
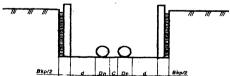




Рис.4. Поперечное свчение траншей с откосами

(6)

Таблица 2. Наименьшая ширмна траншей по лну для укладки трубопроводов

таолица 2. паимень	ьшая ширина транше	и по дну для укладки т	руоопроводов			
Способ укладки тру- бопроводов	в крепления					
•	стальных и пластмас- совых	раструбных чугунных, бетонных, железобетон- ных и асбестоцементных	бетонных, железобетон- ных на муфтах и фаль- цах и керамических			
Плетями или от- дельными секциями при наружном диа- метре D труб, м до 0,7 более 0,7	D+0,3, но не менее 0,7 1,5*D		·			
Отдельными трубами при наружном диаметре D, м: до 0,5 от 0,5 до 1,6 от 1,6 до 3,5 (общих и водосточных коллекторов)	D+0,5 D+0,8 D+1,4	D+0,6 D+1,0 D+1,4	D+0,8 D+1,2 D+1,4			

Примечания:

- Ширина по дну траншей для укладки трубопроводов диаметром свыше 3,5 м, а также на кривых участках трассы устанавливается проектом.
- участках грассы устанавливается проектом Ширина по дну траншей, разрабатываемых с откосами в грунтах, расположенных выше уровня грунтовых вод, должна быть (независимо от диаметра труб) не менее: D+0,5 при укладке трубопроводов из отдельных труб и D+0,3 при укладке из плетей.
- Ширина траншей для трубопроводов в грунтах, расположенных ниже уровня грунтовых вод и разрабатываемых с открытым водоотливом, должна приниматься с учетом размещения водосборных и водоотливных устройств согласно указаниям проекта.
 Ширина траншей для прокладки тепловых сетей и магистральных трубопроводов устанавливается в соответствии с требованиями соответствующих глав части 3 СНиП.
- - л) Определяем объемы участков траншеи между пикетами для участков трассы, в пределах которых поверхность земли меняется по одному закону, а красная линия не имеет изломов:

- для участков траншеи с откосами (рис. 6) по формуле Мурзо:
$$V_{ij} = L_{ij} \left[F_0 + \frac{m(h_i - h_j)^2}{12} \right], \mathbf{M}^3, \tag{9}$$

где L_{ij} – длина участков траншеи между пикетами $i, j, m; h_i, h_j$ – рабочие отметки на границах участка і-j, м; F_0 – площадь среднего сечения, м².

$$F_0^0 = (b_{mp}^0 + m^* h_{cp})^* h_{cp}, \, \mathbf{M}^2 \tag{10}$$


$$b_{cp} = (h_i + h_j)/2$$
, M, (11)

где *m* – коэффициент откоса для временных выемок, принимаемый по табл. 4.

Рис. 6 Схемы к определению объемов земляных работ для участка траншеи с откосами

- для участков траншеи с вертикальными стенками (рис. 7):
$$V_{ij}^b = \frac{F_i + F_j}{2} L_{ij} = \frac{h_i + h_j}{2} b_{\textit{mp}}^b \times L_{ij}, \textit{м}^3 \tag{12}$$

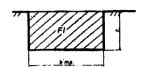
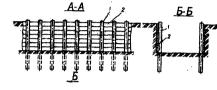
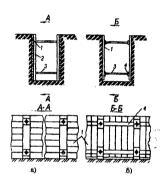




Рис. 8 Схемы к определению объемов земляных работ для участка траншеи с вертикальными стенками

Рис. 8 Консольное безраспорное трубчатое крепление:

1 – стальная труба (свая), 2 - забирка

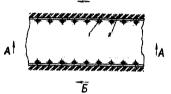


Рис. 9 Крепление щитов: а – горизонтальное, б – вертикальное, 1 – доски (брусья), 2 – стойки, 3 – распорки, 4 - прогоны

Таблица 3. Двойная толщина крепления

Nº	Вид крепления	При гл	При глубине копани	
n/n	,	2м	3м	4м
1	2	3	4	5
1	Горизонтальное и вертикальное сплошное или с прозорами	0,1	0,2	0,4
2	Шпунтовое	0,4	0,6	0,8

Таблица 4. Крутизна откосов котлованов и траншей

Грунты	Крутизна откосов при глубине выемки, м, не более					
	1,5 м	3 M	5 M			
1	2	3	4			
Насыпные	1:0,6	1:1	1:1,25			
Песчаные и гравийные	1:0,5	1:1	1:1			
Супесь	1:0.25	1:0,67	1:0,85			
Суглинок	1:0	1:0,5	1:0,75			
Глина	1:0	1:0,25	1:0,5			
Лессы и лессовидные	1:0	1:0,5	1:0,5			

- 2. При разработке котлованов под колодцы.
- а) Устанавливаем размеры котлована по низу:
- для котлованов с откосами:

$$b_k{}^0 = b + 0.6$$
, $a_k{}^0 = a + 0.6$,

где b - ширина плиты днища (диаметр), м; a - длина плиты днища (диаметр), м; $b_k{}^0$ - ширина котлована по низу, м, $a_k{}^0$ - длина котлована по низу, м .

Для котлованов с вертикальными стенками длина $a_k{}^0$ и ширина $b_k{}^0$ определяются

$$a_k^b = a + 1.4 + b_{\kappa p}, \quad b_k^b = b + 1.4 + b_{\kappa p}$$

б) Определяем объёмы выступающих за траншею частей котлована:

- ДЛЯ КОТЛОВАНОВ С ОТКОСАМИ:
$$v_{ii}^0 = (a_k^0 + m \times h_i)(b_k^0 - b_{mp}^0)h_i, \mathbf{M}^3,$$

где h_i - рабочая отметка в і-ом колодце, м.

- для котлованов с вертикальными стенками:
$$v_{li}^{b} = (b_{k}^{b} - b_{mp}^{b}) \times \alpha_{k}^{b} \times h_{l}, \, \mathbf{M}^{3}$$

в) Определяем дополнительные объёмы крайних котлованов:

- для котлованов с откосами

$$V_{2i}^{0} = \frac{h_{i}}{12} \left[a_{k}^{0} \times b_{k}^{0} + c \times d + (a_{k}^{0} + c)(b_{k}^{0} + d) \right] M^{3}, \tag{15}$$

где c и d – размеры котлована по верху, м:

$$c = a_k^0 + 2 \times m \times h_i; \qquad d = b_k^0 + 2 \times m \times h_i$$

для котлована с вертикальными стенками

$$V_{2i}^b = a_k^b \times b_k^b \times h_i / 2, M^3 \tag{16}$$

(13)

(14)

3. При подчистке дна траншеи.

Для участка траншеи с откосами:

$$V_{II}^{0} = (h_{neo} \times m + b_{mp}^{0}) L_{0} \times h_{neo}, M^{3}, \qquad (17)$$

где h_{Hed} - величина недобора, которую принимаем по табл.5, м; L_0 - длина участка траншеи с откосами, м.

Для участка траншеи с вертикальными стенками

$$V_{II}^{b} = b_{mp}^{b} \times h_{med} \times L_{b}, M^{3}$$
 (18)

где L_b - длина участка траншеи с вертикальными стенками, м. При разработке грунта экскаваторами с гидроприводом величина недобора должна быть сокращена на 30-40%.

Таблица 5. Недоборы грунта при работе одноковшовых экскаваторов

	acriaga c. magecopor ipymia npm	Pace to office and pace of the pace
-	Рабочее оборудование экскаватора	Допустимые недоборы грунта при работе одноковшовым
		экскаватором, см
	Прямая лопата	10
	Обратная лопата	15
	Драглайн	20

4. При разработке приямков под стыки трубопровода.

Размеры приямков назначаем по табл. 6.

Таблица 6. Размеры приямков

Трубы	Тип соединения	Наружный диаметр	Размеры приями		MKOB
		трубопровода, м	Длина	Ширина	Глубина
Стальные	сварное	для всех диаметров	1	+1,2	0,7
Чугунные	раструбное	до 326	0,55	+0,5	0,3
Асбестоце-	муфтовое	более 326	1,0	+0,7	0,4
ментные	1	до 325	0,7	+0,5	0,2
	İ	более 325	0,9	+0,7	0,3
Бетонные и ж/б	раструбное и муфтовое	до 640	1	+0,5	0,3
	1	более	1	+1,0	0,4
Пластмассовые	все виды стыковых соединений	для всех диаметров	0,6	+0,5	0,2
Керамические	раструбное	для всех диаметров	0,5	+0,6	0,3

Объём приямков равен:

$$V_{np}=I_{np}*b_{np}*h_{np}(N-Z), \qquad (19)$$

где I_{np} — длина приямка, м; b_{np} — ширина приямка, м; h_{np} — глубина приямка, м; N – количество труб, шт.

5. Определение общего объёма разрабатываемого грунта

$$V_{..} = \sum_{i=1}^{p} V_{ij}^{0} + \sum_{i=1}^{p} V_{b}^{0} + \sum_{n=1}^{n} V_{ij}^{b} + \sum_{n=1}^{n} V_{b}^{b} + V_{2i}^{0}/2 + V_{2i}^{b}/2 - V_{II}^{0}/2 - V_{II}^{b}/2 + V_{np},$$
(20)

 $V_{a}=\sum_{i=1}^{p}V_{ij}^{a}+\sum_{i=1}^{p}V_{b}^{a}+\sum_{p=1}^{n}V_{b}^{b}+\sum_{p+1}^{n}V_{b}^{b}+V_{2i}^{a}/2+V_{2i}^{b}/2-V_{II}^{a}/2-V_{II}^{b}/2+V_{np},$ (20) где p - последний номер пикета (колодца) в загородной зоне; n - последний номер колодца (пикета).

6 Определение объёма отвозимого грунта.

Объём отвозимого грунта V_{ome} , м³, равен:

$$V_{ome} = V_0 - V_{o\delta p}, \tag{21}$$

где V_{c6p} - объём обратной засыпки, м³.

$$V_{06p} = (V_0 - V_T - V_K)/(1 + K_{0p}),$$
 (22)

где V_7 - объём трубопровода, м³; V_8 - объём колодцев, м³ ; K_{op} - коэффициент остаточного разрыхления, в долях [19]

$$V_{T} = -\frac{\pi \cdot D_{H}^{2}}{4} \left[L - (Z - 1)a_{\text{gor}} \right] \cdot K, \tag{23}$$

 $V_T = -rac{\pi\cdot D_n^2}{4}[L-(Z-1)a_{\kappa\sigma r}]\cdot K,$ (23) где $a_{\kappa\sigma r}$ длина колодца (наружный диаметр), м; K - коэффициент, учитывающий увеличение объёма за счёт раструбов (K=1,05).

$$V_{k} = \sum_{i=1}^{n} F_{k} \cdot \min \{ h_{i}; h_{p} + \delta_{nx} + \delta_{nx \cdot nn} \} + \sum_{i=1}^{n} F_{i} [h_{i} - (h_{p} + \delta_{nx} + \delta_{nx \cdot nn})]$$
 (24)

где F_K - площадь колодца в плане по наружным обмерам, м²; h_p - высота рабочей камеры, м. δ_{nn} - толщина плиты перекрытия, м, $\delta_{nn,\partial n}$ - толщина плиты днища, м, h_i - рабочая отметка і - го колодца.

Если в (24) h_i - $(h_\rho + b_{nn} + b_{nn,\partial H}) < 0$,

то выражение (25) принимаем равным нулю. Площади колодца F_K и горловины F_Γ определяются по выражениям, зависящим от их формы в плане.

4. ВЫБОР МЕТОДОВ ПРОИЗВОДСТВА ЗЕМЛЯНЫХ РАБОТ

4.1. ПРЕДВАРИТЕЛЬНЫЙ ВЫБОР ВАРИАНТОВ РАЗРАБОТКИ ТРАНШЕИ

Выбор возможных вариантов (не менее 2-х) разработки траншей производится исходя из конкретных условий производства работ: вида разрабатываемого грунта, объёма работ, размеров поперечного сечения траншеи, заданных сроков и времени года выполнения работ, гидрогеологических условий. Возможна разработка траншеи одноковшовыми экскаваторами со сменным оборудованием обратная лопата, драглайн и с телескопическим рабочим оборудованием, а также многоковшовыми экскаваторами (применение ограничено видом грунта и размерами траншеи).

4.2. ВЫБОР ОДНОКОВШОВЫХ ЭКСКАВАТОРОВ ПО ТЕХНИЧЕСКИМ ПАРАМЕТРАМ

Основным параметром одноковшовых экскаваторов является ёмкость ковша, которая устанавливается исходя из 3-х условий:

а) Выполнение работ в заданные сроки (по заданным темпам производства работ). Требуемая сменная производительность экскаватора определяется по формуле:

$$n_{\gamma,c,u}^{mp} = V_0^{\gamma}/(T_{\gamma} \cdot \mathbf{M} \cdot K_c), \tag{26}$$

где V_{0^3} - общий объём грунта, разрабатываемого экскаватором, м³;

T₃ -заданный срок выполнения работ, дни;

м - количество смен в дне (механизированные процессы рекомендуется выполнять в две смены, M = 2);

 K_c - коэффициент, учитывающий совмещение работ ($K_c = 0.6$).

Исходя из требуемой производительности (26), по табл.7 устанавливаем соответствующую ей ёмкость ковша экскаватора д, м3.

Таблица 7. Зависимость произволительности экскаваторов от емкости ковща о

	donada 1. Sabronmocta riponsbodi i cintocta sacraba ropos of cintocta Robina q							
Γ	Производитель-ность экс-	Драглайн	-	156	205	328	456	
	каватора, м ³ /см	Обратная лопата	78	164	206	373	469	
	Емкость ковша экскаватора, m ³		0,15	0,25	0,30,35	0,5	0,650,75	

Примечание: данные приведены для II группы грунта, ковша с зубьями при работе навымет.

б) Набор ковша с "шапкой" за одно черпание.

Для экскаватора «обратная лопата» ёмкость ковша подбираем таким образом, чтобы $h_{min} > h_{min}$, где: h_{min} - минимальная рабочая отметка по трассе, м; h_{min} - наименьшая глубина забоя, обеспечивающая наполнение ковша за одно черпание (табл. 8).

Таблица 8. Наименьшие параметры проходок экскаватора, оборудованного

обратной попатой

Вместимость ковша	Наименьшая глубин	а забоя, м при грунтах	Наименьшая ширина торцевог		
M ³	сухих	мокрых	забоя, м		
0,25	1,0	1,5	1		
0,40,5	1,2	1,8	1		
0,650,8	1,5	2,0	1,3		
11,25	1,7	2,3	1,5		

Для экскаватора «драглайн» - чтобы $I_{e min} \ge I_{e min}$ - минимальная длина пути волочения ковша (соответствует минимальной рабоче отметке трассы), м; 1_{6H}^3 - нормальная длина пути волочения ковша драглайна в забое, обеспечивающая полное заполнение (табл. 9).

Таблица 9. Нормальная длина пути волочения ковша драглайна в забое,

обеспечивающая полное заполнение, м

Business various avairances as	Характер грунтов				
Вместимость ковша экскаватора, м ³	легкий	средний	тяжелый		
0,25	2	3	2,5		
0,5-0,65	2,5	3,5	3		
1	3	4	3.5		
1,5-2	3,5	5	4		

$$l_{s \min} = h_{k \min} / \sin \alpha'$$
,

где α' - угол внутреннего откоса забоя (табл.10).

Таблица 10. Угол внутреннего откоса забоя

radinaga 70. 71631 Biry i politici e e ilicea dacesti					
Вид грунта	песок	супесь	суглинок	глина	
Угол внутреннего откоса забоя	40-45	40-45	30-35	20-30	

в) Обеспечение заданной ширины траншеи по дну. Емкость ковша подбирается таким образом, чтобы:

$$b^{\circ} \leq \min\{b_{mp}^{\circ};b_{mp}^{b}\}$$

 $b^{\circ} \leq \min \left\{ b^{o}_{mp}; b^{b}_{mp} \right\}$ где b^{o} - ширина режущей кромки ковша экскаватора, м (табл.11).

Наиболее важным при выборе ёмкости ковша являются условия б) и в). На основании выбранной ёмкости устанавливаем марку экскаватора по [19], Е2-1-7, табл. 1 (для драглайна) и Е2-1-11, табл. 1, 5 (для обратной лопаты) с обеспечением условия $H_{0 \text{ max}} > \tilde{h}_{i \text{ max}}$, где $H_{0 \text{ max}} = \tilde{h}_{i \text{ max}}$ максимальная глубина резания экскаватора, м; h_{imax} -максимальная глубина траншеи, м.

Таблица 11. Ширина режущей кромки ковша, м

Вид оборудования экскаватора	Объём ковша, м ³	Средняя ширина режущей кромки ковша, м
1	2	3
Обратная лопата	0,15	0,7
·	0,250,3	0,85
	0,35	0,95
	0,5	1,0
	0,65	1,15
	1,0	1,2
Драглайн	0,250,3	0,65
1.7	0,35	0,95
	0,5	1,0
	0,75	1,25
	1,0	1.4

4.3. ОПРЕДЕЛЕНИЕ ЭКСПЛУАТАЦИОННОЙ СМЕННОЙ ПРОИЗВОДИТЕЛЬНОСТИ ОДНОКОВШОВЫХ ЭКСКАВАТОРОВ Пэ см

$$\Pi_{3 \text{ cm}} = 60 \text{ q t}_{\text{cm}} \text{ n K}_{8} \text{ K}_{E}, \text{ M}^{3}/\text{cM},$$
 (27)

где q - ёмкость ковша экскаватора, м³; $t_{\rm cM}$ - продолжительность смены в часах ($t_{\rm cM}$ =8 ч);

 Ω - количество циклов экскаватора, табл. IV.32 [26]; K_E - коэффициент использования ёмкости ковша (K_E = K_H/K_P) (табл.12);

 K_E - коэффициент использования емкости ковша (K_E - K_F K_B) (табл. 12), K_H - коэффициент наполнения ковша грунтом; K_F - коэффициент разрыхления грунта в ковше, (табл. 18); K_B - коэффициент использования экскаватора по времени ([19] приложение 3) или прил.5.

При разработке траншеи челночным способом производительность экскаватора повышается на 25- 30%.

Таблица 12. Коэффициент использования емкости ковша одноковшовых экскаваторов

Наименование работы	Емкость ковша,			руппа грунта		
и вид оборудования	M ³	1	II, IM	III, IIM	1V	V, IIIM
1	2	3	4	5	6	7
Разработка грунта экскаватором –драглайн а) ковш с зубьями б) ковш со сплошной режущей кромкой	0.25-0.35 0.5-1.5 2 0.4-1.1	0.9 0.9 0.85 0.9	0.8 0.8 0.8 0.8	0.7 0.7 0.7 0.7	0.65 0.60	0.5 0.5
Разработка грунта экс- каватором обратная попата а) ковш с зубьями б) ковш со сплошной режущей кромкой	0.15 0.25-0.3 0.5 -1.25 0.4 0.65-0.8	0.85 0.85 0.85 0.85 0.85	0.8 0.8 0.8 0.8	0.65 0.7 0.65 0.7	- 0.6 -	- 0.5 - -

4.4. ПОДБОР ТРАНСПОРТНЫХ СРЕДСТВ

Рекомендуемую грузоподъемность транспортных средств принимаем по табл. 13, 14 в зависимости от дальности транспортирования и емкости ковша экскаватора, на основании которой по табл. Х.1, Х.2 [26] устанавливаем марку транспортного средства (следует отдавать предпочтение самосвалам).

Количество ковшей, загруженных в транспортное средство, равно

M=P/(q Ke y), (28)

где *P* - грузоподъемность транспортного средства, т; у - объёмный вес грунта (см. [19], раздел1, ТЧ, табл.1), т/м³. Полученное количество ковшей округляем до целого таким образом, чтобы перегрузка составляла не более 5%, а недогрузка - не более 10%, в противном случае необходимо менять грузоподъёмность транспортного средства.

Таблица 13. Рациональная грузоподъёмность автосамосвалов

Дальность перемещения грунта, км	Объём ковша экскаватора, м								
дальность перемещения групта, км	0.4	0.75	1	1.25	1.6	2.6			
0.5	4.57	4.5	7.0	7.0	10				
1	7.0	7.0	10	10	10	12			
1.5	7.0	7.0	10	10	10	25			
2	7.0	7.0	10	12	25	25			
3	7.0	10	12	12	25	25			
4	10	10	12	18	25	25			
5	10	10	12	18	25	25			

Таблица 14. Наименьшая грузоподъемность автосамосвалов

Объем ковша экскаватора, м ³	0,4-0,65	1-1,6	2,5	4,6
Минимальная грузоподъёмность автосамосвалов, т	4,5	7,0	12	18

Требуемое количество транспортных средств $n_{\tau p}$ определяем по выражению $n_{mp} = T_u/t_H$

(29)где T_u - время одного цикла транспортного средства, мин, t_H - время загрузки транспортного средства, мин,

$$t_H = M - t_u / 60, \tag{30}$$

где $t_{\rm sp}$ и $t_{\rm n}$ - время движения груженого и порожнего транспорта соответственно, мин; $t_{\rm P}$ время разгрузки, мин; $t_{\rm M}$ - время маневрирования, мин , $t_{\rm u}$ -продолжительность рабочего цикла экскаватора (см. [26], т. IV.32); $n = 60/t_{\rm q}$ - количество циклов экскаватора в минуту при работе в транспорте.

$$t_{zp} = t_n = 60L/V_{cp,} \tag{31}$$

где L - расстояние транспортирования грунта, км; V_{cp} - средняя скорость движения транспорта (см. [26] табл. Х.З), км/ч;

 $t_{\rm M}=t_{\rm yw}+t_0+t_{\rm np},$ где $t_{\rm yw}$ - время установки транспорта под погрузку, мин; $t_{\rm yp}$ - то же, под разгрузку, мин; $t_{\rm op}$ время на ожидание транспорта, мин, $t_{\rm np}$ - время на пропуск встречного транспорта (учитываем при ширине дорог ≤3м), мин, t_P , t_{yp} , t_0 , t_{np} принимаем по [26] табл. X.4, X.5.

При параллельной работе экскаватора в транспорт и навымет необходимо учесть поправку

 $\delta = T_{mp} / (T_{mp} + T_{Ham}),$

где T_{mp} и $T_{\text{нав}}$ время разработки грунта при работе экскаватора в транспорт и навымет соответственно, см.

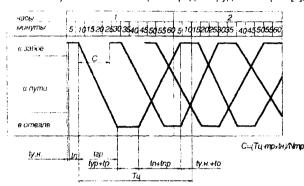
 $T_{\text{Hall}} = V_{\text{Hall}} / \Pi_{\text{Hall}}$ 3CM, где Vome и Vна - объёмы грунта, разрабатываемого экскаватором в транспорт и навымет соответственно, м³, Π^{mp}_{3cm} и Π^{has}_{3cm} - производительность экскаватора при работе в транспорт и навымет, м³/см [25].

С учётом поправки $N_{TP} = n_{mp}^* \delta$ (полученное количество транспортных средств округляется до целого).

Сменный пробег транспорта L_{CM} в км равен $L_{CM} = 2L^*V_{oms}/(T_{mp} + T_{Hae})M^*q^*K_e^*N_{mp}$

$$L_{CM} = 2L^*V_{oms}/(T_{mp} + T_{Hae})M^*q^*K_e^*N_{mp}$$
 (33)

График движения транспортных средств представлен на рис. 10, он составляется на одну смену (при большом количестве N_{mp} на половину смены).


4.5. ВЫБОР МЕХАНИЗМОВ ДЛЯ РЫХЛЕНИЯ ПЛОТНЫХ И МЕРЗЛЫХ ГРУНТОВ

Разработка траншей в мерзлых грунтах без предварительного рыхления допускается одноковшовыми экскаваторами $q = 0.5...0,65 \text{ м}^3$ – при глубине промерзания до 0,25 м, q=1...2 м³ – до 0,4 м и на полную глубину роторными, многоковшовыми экскаваторами. Причем для повышения эффективности разработки мерзлого грунта применяется ковш с активными, виброударными зубьями ([8]б с.170-171).

При большой глубине промерзания необходимо предусматривать специальные мероприятия для рыхления или оттаивания (наиболее дорогой способ) грунта [8]

Наиболее рациональными являются:

- рыхление взрывным способом при h_{np} >1...1,3 м, применение которого в черте населенных пунктов связано с целым рядом трудностей (см. [8], с.6...10);

Puc. 10 График движения транспортных средств

- рыхление грунта навесными рыхлителями РМГ-3, Д-652 АС на базе трактора ДЭТ-250 с глубиной рыхления за несколько проходов до 1,3 м (при h_{np} до 0,4 м Π_{3H} =250...300 м 3 /см, при h_{np} до 1,3 м Π_{3H} =80...100 м 3 /см).

- разрушение грунта крупным сколом при помощи трехклинного рыхлителя ЦНИИОМТП при глубине промерзания до 1,5 м (см. [8], с.133, Π_{3cw} =150...180 м³/см).

Рыхление плотных грунтов осуществляем аналогично рыхлению мерзлых грунтов.

4.6. ПОДБОР МАШИН ДЛЯ ПОДЧИСТКИ ДНА ТРАНШЕИ

Разработку недоборов осуществляем в соответствии с [5]. Выбор машин производится по [24], табл. IX.52 – IX.64.

4.7. ВЫБОР МАШИН ДЛЯ ОБРАТНОЙ ЗАСЫПКИ ТРАНШЕИ

Засыпка траншей с уложенными трубопроводами должна производиться в два приема присыпка мягким грунтом и последующая засыпка, после испытания трубопроводом, любым грунтом (см. [5]).

Присыпка грунта может осуществляться одноковшовым экскаватором грейфер, краном с подачей грунта в бадьях или вручную. Последующая засыпка - бульдозером.

Бульдозер подбираем по [19] § 2-1-22, § 2-1-34 таким образом, чтобы их производительность, (исходя из нормы времени) была больше или равна требуемой производительности Π^{mp}_{3cM} при обратной засыпке

$$\Pi^{3.mp}_{3cM} = V_{obp}/(T_3 \ m \ K_c) \tag{34}$$

При засыпке траншеи бульдозером расстояние перемещения грунта L_{δ} равно расстоянию между центрами тяжести кавальера и траншеи при средней рабочей отметке (рис. 12). 4.8. ВЫБОР ТЕХНИЧЕСКИХ СРЕДСТВ ДЛЯ УПЛОТНЕНИЯ ГРУНТА.

Грунт присыпки уплотняется ручными и навесными электро- или пневмотрамбов-ками слоями по 0,1...0,5 м (прил.4) и [26], [19]. Как правило, грунт последующей засыпки уплотняется только в пределах городской черты, где не допускается его осадка в процессе эксплуатации. Уплотнение связного грунта может осуществляться катками на пневматических шинах, кулачковыми катками, трамбующими машинами, несвязного катками на пневматических шинах, виброкатками, гладкими катками и трамбующими машинами, табл. IX.32-IX.58 [26]. При выборе механизмов для уплотнения грунта желательно обеспечение равенства их производительности и производительности машин для обратной засыпки.

5. РАСЧЕТ ЭКСКАВАТОРНОГО ЗАБОЯ

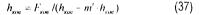
1. Устанавливаем размеры кавальеров.

Требуемая площадь кавальеров:

$$F^{mp}_{\kappa oe} = F^{max}_{mp} K_p V_{o6p} / (V_{o6p} + V_{ome}), M^2, \tag{35}$$

где F^{max}_{mp} - максимальная площадь траншеи для участка траншеи с откосами, м 2

 K_{p} - коэффициент, учитывающий первоначальное разрыхление грунта [19], прил. 2.


 $V_{oбp}$ и V_{ome} - объёмы обратной засыпки и отвозимого грунта соответственно, м³.

 $F^{max}_{mp} = (b^0_{mp} + m \; h_{max}) \dot{h}_{max}$ - максимальная рабочая отметка на участке граншей с откосами, м.

В случае треугольной формы кавальеров (рис. 11) высота кавальеров при условии односторонней отсыпи:

$$h_{\text{ros}}^{mp} = \sqrt{F_{\text{ros}}^{mp} / m'} \,, \tag{36}$$

где m' - коэффициент откоса для временных насыпей (табл. 16). Если $h_{\kappa oe} > H_e$ -0.5, где H_e - высота выгрузки грунта при работе навымет в м, принимаем трапециевидную форму кавальера (рис. 12). В этом случае, задавшись высотой кавальеров: $h_{\kappa oe}$ = H_e -0.5, определяем требуемею высоту кавальеров

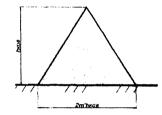


Рис. 11 Сечение треугольного кавальера

- 2. Устанавливаем длину передвижки Іп экскаватора:
- обратная лопата по табл. 15
- драглайн из условий передвижки за один раз на длину, не превышающую 1/5 длины стрелы [23], п. 8.8.

Таблица 15. Рекомендуемая длина передвижки экскаватора «обратная лопата»

'	аолада 10. г екомендуемая длина передвия	inn shekabatopa woopathan nonata
	Емкость ковша экскаватора, м ³	Длина передвижки экскаватора, м
- [0,15	1,1
- 1	0,25	1,5
- 1	0.4	1.4
- 1	0.65	1,55
ļ	1,0	1,75
- 1	1.6	2
	2,5	2,3

3. Выбираем способ разработки грунта экскаватором.

При

$$\sqrt{R_s^2 - l_n^2} \ge b_{mp}^0 / 2 + m \cdot h + a + m' \cdot h_{\kappa o \theta} + b_{\kappa o \pi} = A, \tag{38}$$

разработку ведем лобовыми (продольными) проходками (рис. 12), где a – ширина бермы (a≥0,5 м, a в случае устройства водопонизительных установок a≥1,2 м), R_e – радиус выгрузки экскаватора. В этом случае экскаватор движется вдоль оси траншеи (см. [7], рис. 14, a).

При
$$\sqrt{R_{\star}^2 - l_n^2} < A$$
, но

$$D = A + b_{mp}^{0} / 2 + m \cdot h \le \sqrt{R_{n}^{2} - l_{n}^{2}} + \sqrt{R_{p}^{2} - l_{n}^{2}}$$
(39)

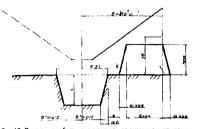
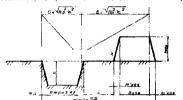



Рис.12. Схема разработки траншей при движении экскаватора по её оси

(рис. 13) разработку ведем боковыми (поперечными) проходами, где R_ρ – радиус резания (принимается в размере 0,8...0,9 максимального радиуса резания), м. При этом экскаватор движется вдоль траншеи между осью траншеи и кавальером [7], рис. 6.

Рис. 13 Схема разработки траншеи при движении экскаватора со смещением относительно ее оси

В случае, если $D > \sqrt{R_s^2 - l_n^2} + \sqrt{R_\rho^2 - l_s^2} \hspace{1cm} (e^{-\frac{1}{2}} - e^{-\frac{1}{2}} - e^{-\frac{1}{2}})$

применяется поперечный уширенный забой [7], рис. 12,г с движением по зигзагу или комбинированный способ [7], рис. 12,е за несколько проходов экскаватора.

Таблица 16. Углы естественного откоса и отношения высоты к заложению

Грунт	Значен			оса и отношений вы ичной влажности гр		коса к его заложе-	
		сухой		влажный	мокрый		
	угол в	отношение высо-	угол в	отношение высо-	угол в	отношение высо-	
	град	ты к заложению	град	ты к заложению	град	ты к заложению	
Глина	45	1:1	35	1:1,5	15	1:3,75	
Суглинок средний	50	1:0,75	40	1:1,25	30	1:1,75	
легкий	40	1:1,25	30	1:1,75	20	1:1,75	
Песок мелкозернистый	25	1:1,25	30	1:1,75	20	1:2,75	
среднезернистый	28	1:2	35	1:1,5	25	1:2,25	
крупнозернистый	30	1:1,75	32	1:1,6	27	1:2	
Растительный грунт	35	1:1,5	45	1:1	27	1:2	
Гравийный	40	1:1,25	40	1:1,75	35	1:1,5	
Галька	35	1:1,5	45	1:1	25	1:2,25	

Таблица 17 Минимально допустимое расстояние от подошвы откоса выемки до ближайшей опоры машины F. м

Глубина выемки, м	Грунт									
	песчаный	супесчаный	суглинистый	глинистый						
1	2	3	4	5						
1	1.5	1.25	1	1						
2	3	2.4	2	1.5						
3	4	3.6	3.25	1.75						
4	5	4.4	4	3						
5	6	5.3	4.75	3.5						

Таблица 18. Коэффициент разрыхления грунта в ковше одноковшовых экскаваторов

raonaga ro. Nos	ффицисті разр	віжісния групта в ковше одноковшоввіх экс	жаваторов
Группа грунта	Κ _p	Группа грунта	Кp
1	2	3	4
	1.1	III	1.25
!!	1.2	IV (МЕПКОРАЗДРОБЛЕННАЯ ПОРОДА)	1.35-1.4

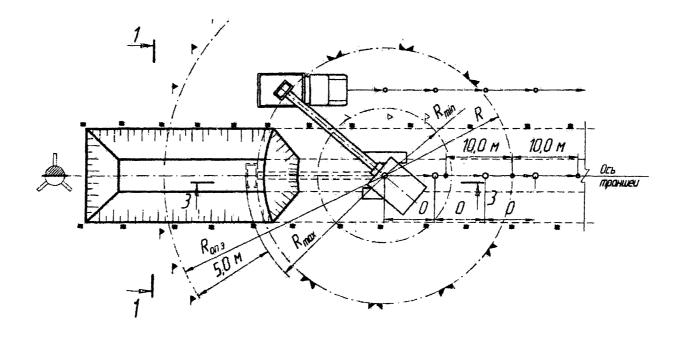


рис 14 Общая схема разработки траншей экскаватором обратная полата в транспорт и навымет

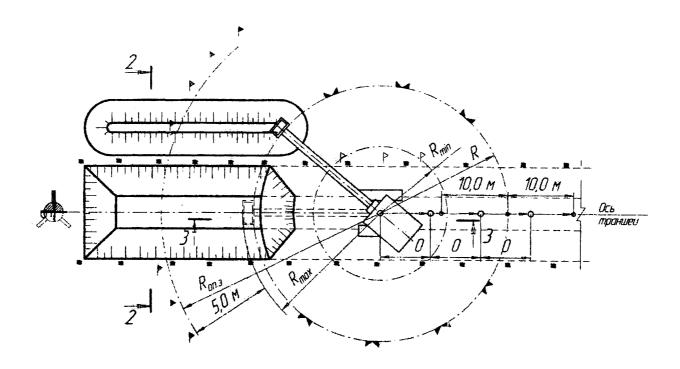
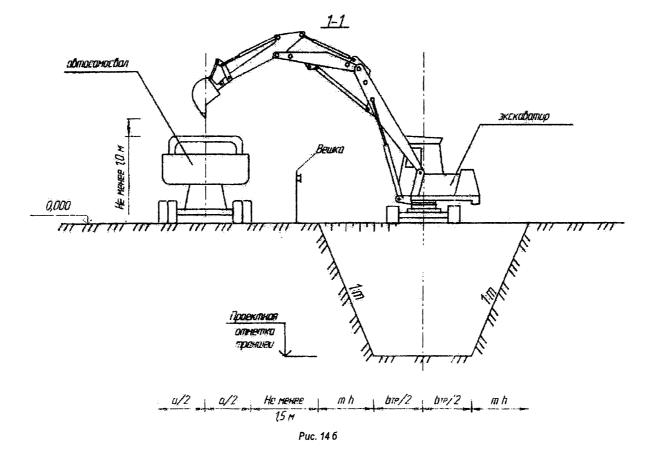



рис. 14а Общая схема разработки траншей экскаватором обратная лопата навымет

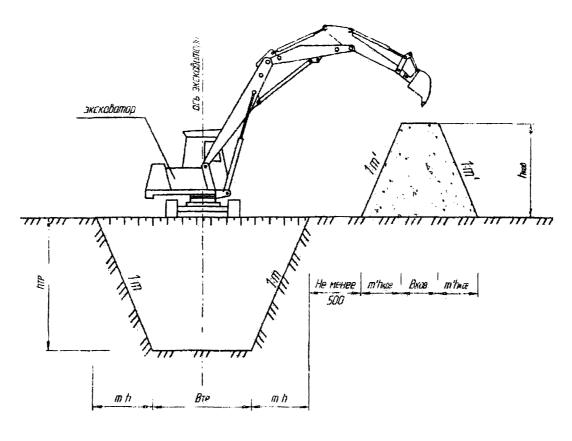


рис. 14в

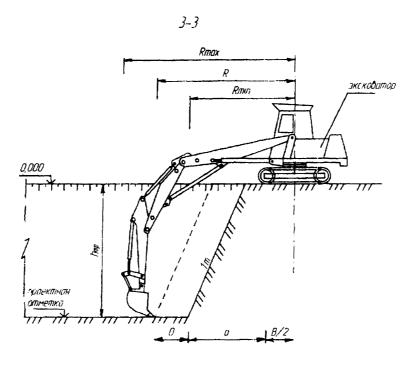


рис. 14г

6. РАСЧЕТ ИСКУССТВЕННОГО ГЛУБИННОГО ВОДОПОНИЖЕНИЯ ПРИ ЗАЩИТЕ СТРОИТЕЛЬНЫХ ВЫЕМОК ОТ ГРУНТОВЫХ ВОД

Искусственное глубинное понижение уровня грунтовых вод является наиболее эффективным способом уменьшения водонасыщенности грунтов, при котором вода откачивается из скважин, расположенных вдоль или по контуру выемки. При этом в грунте образуется депрессионная воронка, размеры которой должны превышать размеры котлована.

Для глубинного водопонижения используем

а) легкие иглофильтровые установки (ЛИУ) - при коэффициенте фильтрации грунта κ =1...50 м/сут и необходимо понижение уровня грунтовых вод в точках погружения иглофильтров $h_n < 6.5$ м.

б) установки вакуумного водопонижения (УВВ) - при $\kappa = 0.05...2$ м/сут и $h_0 < 6...7$ м.

По глубине может использоваться одноярусная и многоярусная схемы установки водопонизительной системы.

В настоящее время промышленность серийно выпускает установку ЛИУ-6Б, в комплект которой входят: два насосных агрегата, всасывающий коллектор длиной 105 м, 100 иглофильтров и комплектующие детали. Оба насосных агрегата укомплектованы вакуум-насосами и могут работать совместно на одной станции или раздельно каждый с комплектом иглофильтров. Производительность насосных агрегатов - 140 - 65 м³/ч.

Всасывающий коллектор диаметром 150 мм и длиной 105 м собирается из 20 звеньев (длина каждого звена 5,25 м). У двух звеньев есть патрубки диаметром 150 мм для подключения насосов, 9 звеньев имеют через 0,75 м патрубки для подключения иглофильтров и 9 звеньев не имеют патрубков. Максимальная длина коллектора на один насосный агрегат или на одну насосную станцию зависит от притока воды и не должна превышать 105 м.

Иглофильтр имеет общую длину до 8,5 м и состоит из фильтрового звена длиной 980 или 1260 мм и надфильтровой трубы, которая собирается из одного звена длиной 1,5м и двух звеньев по 3 м.

Расчет ЛИУ заключается в определении требуемого числа насосных установок, шага иглофильтров и глубины их погружения. Значение этих параметров зависит от величины притока грунтовых вод к водопонижающей системе, который определяется для линейной системы по формуле

$$Q_c = \frac{mk(H-Y)l}{R-x},\tag{41}$$

 $Q_c = \frac{mk(H-Y)l}{R-x},$ где Q_c - суммарный приток воды к системе, м 3 /сут; m - средняя толщина потока, равная $\frac{H+Y}{2}$, при безнапорной фильтрации, м;

к - коэффициент фильтрации, м/сут;

Н- напор грунтовых вод, м;

У- напор в расчетной точке, м;

R - радиус депрессии (влияния), м;

S - требуемое понижение грунтовых вод, м;

А - приведенный радиус водопонизительной системы, м;

І-длина расчетного участка линейной системы, м.

$$R = A + 2S\sqrt{kH}, \tag{42}$$

$$4 = \sqrt{\frac{F_u}{\pi}},\tag{43}$$

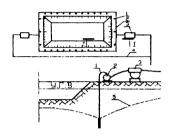
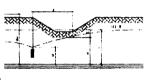
где F_u – площадь, ограниченная иглофильтрами, м².

$$S=h_{20}+e+0.5$$
, M; (44)

$$Y=H-S$$
, M. (45)

где $h_{\it 28}$ – глубина котлована от непониженного уровня грунтовых вод, м; e – высота капиллярного поднятия грунтовых вод, м.

$$e = \sqrt{\frac{1}{k}},\tag{46}$$

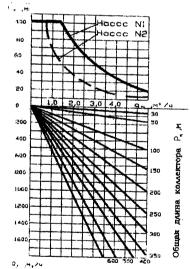

Рис. 16 Расчётные схемы лёгких иглофильтровых установок а – линейной; б - контурной

Рис. 15 Лёгкая иглофильтровая установка: 1 – иглофильтр, 2 – всасывающий коллектор, 3 – насосный агрегат, 4 – сбросный трубопровод, 5 – пониженный уровень грунтовых вод (депрессионная кривая)

Зная общую длину коллектора системы Рк и суммарный приток воды к системе Qc, по графикам (рис. 17) определяем предельную длину коллектора на один насосный агрегат L_к.

Рис. 17 Графики предельной длины всасывающего коллектора на один насосный агрегат установки ЛИУ-6:

Q_с – суммарный приток воды к системе; L_к – предельная длина коллектора на один насосный агрегат; q_{уд} – удельный приток воды на 1м коллектора.

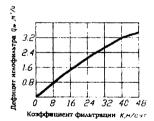


Рис. 18. Предельно допустимый дебит одного иглофильтра в зависимости от коэффициента фильтрации грунта водоносного слоя

Тогда число установок в системе равно:

$$N = \frac{P_k}{L_k} \tag{47}$$

При округлении числа установок в большую сторону проектируемая длина коллектора на каждую из установок будет равна (должна быть кратна 5,25 м):

$$L_k = P_k/N$$
, M (48)

Приток воды к одной установке

$$Q_{v} = \frac{Q_{c}}{N}, m^{3} / cym \tag{49}$$

$$Q_{v} = \frac{Q_{c}}{N}, M^{3}/cym$$

$$Q_{v}' = \frac{Q_{y}}{24}, M^{3}/cym$$

$$(50)$$

Далее, принимая шаг иглофильтрации кратным 0,75 м, для каждого случая определяют число иглофильтров в установке и приток воды к каждому из них по формулам:

$$n = \frac{L_k}{2G},\tag{51}$$

$$q = \frac{Q_y}{n}, m^3 / cym, \tag{52}$$

ток воды к одному иглофильтру, м³/сут.

Максимально возможный шаг принимаем из условия, чтобы приток воды не превышал предельно допустимого дебита иглофильтра, определяемого по графику (рис. 18).

Для каждого значения п определяют высоту от водоупора до сниженного уровня грунтовых вод у иглофильтров. Расчет выполняют по двум уравнениям: первое уравнение характеризует условия движения воды в иглофильтровой системе, второе – условия фильтрации воды в грунте.

Первое уравнение имеет вид

$$y_{z}^{'}=y_{H}-h_{e}+\xi\frac{Q_{y}}{k_{0}n}+1.34\cdot10^{-7}\xi_{1}Q_{y}^{2},$$
 (53) где $y_{z_{1}}^{'}$ - высота от водоупора до сниженного уровня воды у расчетного иглофильтра, **м**;

 y_{H} - высота расположения оси насоса над водоупором, м;

 \dot{h}_{e} - расчетная вакуумметрическая высота всасывания насоса, м (для ЛИУ не более 6 м); ξ - величина, зависящая от срока службы установки на данном объекте, м $^{ ext{-}1}$ (при 1 - 6 месяцах равна 0,4);

 k_0 - коэффициент фильтрации грунта в прифильтровой зоне или обсыпке, м/сут;

ξ₁ - коэффициент потерь напора во всасывающей системе, сут² / м⁵

Второе уравнение имеет вид для линейной системы:

$$y_{c} = H - S \frac{R + 2\sigma \Phi m'}{R - x},\tag{54}$$

 $y_z = H - S \frac{R + 2\sigma \Phi m'}{R - x},$ (54) где Φ - коэффициент фильтрационного сопротивления, м-1 (равный 1; 0,8; 0,7, 0,6 м-1 при шаге иглофильтров соответственно 0,75; 1,5; 2,25; 3,0 м);

m' - толщина потока на линии иглофильтров, м (при напорном потоке m' = m, при безнапорном *m'=y*);

2G - расстояние между иглофильтрами.

Значения y'_{z} и y_{z} определяют для всех значений n (2G) и строят кривые.

Если кривые пересекутся в интервале построения между двумя значениями 2G, то за расчетное следует принять меньшее из значений 2G и соответствующее ему y_{ϵ} .

Если кривые не пересекутся в интервале построения и значения $y_z' > y_z$, то из этого следует, что насос установлен высоко и не может обеспечить понижение воды до требуемой отметки. В таком случае необходимо опустить насос, установить два яруса иглофильтров или применить другой способ водопонижения.

По величине у₂ определяют глубину погружения иглофильтров в грунт:

$$l_{\nu} \ge y_{\mu} - y_{z} + l_{\phi} + 0.5,$$
 (55)

где l_u - глубина погружения иглофильтров в грунт от оси насоса, м

 l_{ϕ} - длина фильтрового звена с наконечником (принимаем 0,98 м)

При этом верх иглофильтров будет находиться на высоте 10 - 20 см над уровнем земли.

По оптимальной длине иглофильтров подбираем их истинную длину, которая определяется из выражения:

$$l_u = l_{\phi} + 1, 5n + 3n_1,$$
 (56)

где n, n_1 - количество надфильтровых звеньев длиной 1,5 и 3,0 м.

Насосные установки устанавливаем в середине коллектора. Каждая установка должна состоять из рабочего и резервного насоса с подводом к ним электроэнергии от двух независимых источников.

При двух и более рабочих насосах количество резервных насосов должно быть не менее 50% (2*0,5 = 1 шт).

7. ВЫБОР МЕТОДОВ ПРОИЗВОДСТВА ТРУБОУКЛАДОЧНЫХ РАБОТ

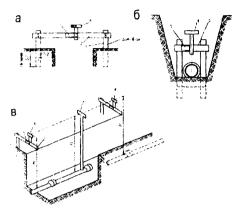
7.1. ПРЕДВАРИТЕЛЬНЫЙ ВЫБОР ВАРИАНТОВ УКЛАДКИ ТРУБ В ТРАНШЕЮ

Чугунные трубы диаметром до 200 м, стальные диаметром до 100 м (при укладке отдельными трубами) могут укладываться в траншею вручную на лямках или канатах, мягких тросах. В остальных случаях предусматривается только механизированная укладка труб при помощи талей, лебедок, самоходных стреловых кранов (автомобильных, пневмоколесных, гусеничных) и кранов-трубоукладчиков.

Укладка труб в траншею может осуществляться:

- а) отдельными трубами (стальные, чугунные, асбестоцементные, бетонные, железобетонные, керамические трубы):
 - б) секциями (стальные, асбестоцементные, керамические, пластмассовые трубы);
 - в) плетями (стальные, пластмассовые трубы);

Укладка плетей и секций из стальных труб в траншею разрешается при наличии не менее двух кранов. Сборные элементы колодцев монтируются кранами.


7.2. ПОДБОР ТРЕБУЕМЫХ ЗАХВАТНЫХ И ВСПОМОГАТЕЛЬНЫХ ПРИСПОСОБЛЕНИЙ

Захватные приспособления должны обеспечивать: необходимую грузоподъемность, прочность, надежное закрепление трубы и недопустимость ее повреждения. Кольцевой (универсальный) строп применяется при погрузочно-разгрузочных работах и при монтаже трубопроводов из чугунных, бетонных (малого диаметра), железобетонных и керамических труб. Асбестоцементные трубы укладываются посредством трубчатой траверсы, а при укладке секциями - траверсы для монтажа секций. Секция из керамических труб укладывается при помощи специальной траверсы. Монтажная скоба используется для монтажа бетонных, железобетонных труб (диаметры 1000...3500 мм) и керамических труб. Для укладки стальных и асбестоцементных труб применяется тросовый захват-полотенце (приложение 3)

Подбор вспомогательных приспособлений, необходимых для введения трубы в раструб ранее уложенной трубы, надвижки муфт и т.д., производим по прил. 3 на основании табл.1 в форме табл.19.

Таблица 19. Захватные и вспомогательные приспособления

nn	Наименование приспособления	Назначение	Эскиз	Грузоподъемность, т	q _c , кг	h₀, M
1	2	3	4	5	6	7
						<u> </u>

Puc. 19 Укладка трубопровода при помощи неподвижных визирок

а – при укладке в траншею с вертикальными стенками;

при укладке труб в траншею с откосами; в – общий вид участка траншеи с установленными визирками;

1 — столбы обноски; 2 — доска; 3 — полочка; 4 — неподвижные визирка; 5 подвижная визирка.

7.3. ВЫБОР КРАНОВ ПО ТЕХНИЧЕСКИМ ПАРАМЕТРАМ

Монтажные краны подбираются по трем параметрам:

а) требуемая грузоподъемность

$$Q=q+q_c, \mathbf{M}, \tag{5}$$

где q – вес мотируемого элемента (трубы), принимаемый по табл. 1, т; q_c – вес захватного приспособления (табл. 19), т.

При работе двух кранов

$$Q=q/2+q_c \tag{58}$$

б) требуемый выдет стрелы L_{mp} , м:

- при раскладке труб между бровкой и краном (рис. 20) L_{mp} =b/2+ a_3 + a_2 + a_1 +mh+f+ $(n_m$ - $0.5)D_n$ + $(n_m$ -1)I,

(59)

где b — ширина крана (в случае укладки труб краном-трубоукладчиком принимаем b=0), принимаемая в предварительных расчетах 3 м; a_2 — ширина места занимаемого трубами, м; a_3 — расстояние от труб до крана (0,5...1 м), м; a_1 — расстояние от бровки траншеи до трубы (1...1,5 м), м; f — минимально допустимое расстояние от подошвы откоса выемки до ближайшей опоры машины (табл. 17), n_m , D_{H} , c, m, h, причем рассматривается участок траншеи с максимальной рабочей отметкой;

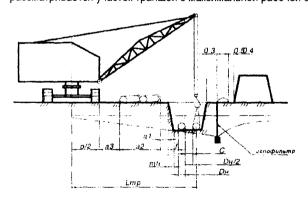


Рис. 20 Схема монтажа труб при расположении между бровкой и краном

- при раскладке труб впереди крана (рис. 21)

$$L_{mp} = b/2 + a + mh + f + (n_m - 0.5)D_H + (n_m - 1)c$$
(60)

где a – расстояние от бровки до крана (1,5...2 м), м;

в) требуемая высо-та подъема крюка крана $H_{n\kappa}$ при укладке труб в траншею существенного значе-ния не имеет.

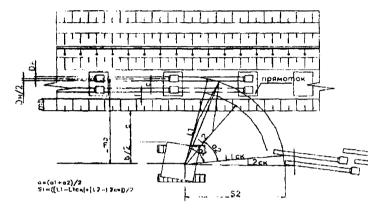


Рис 21 Схема монтажа труб при расположении перед краном (план)

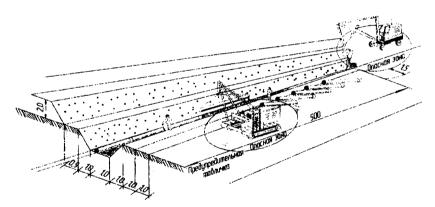


Рис. 22 Организация строительной площадки при монтаже трубопровода

7.4.ОПРЕДЕЛЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ МОНТАЖНЫХ КРАНОВ

 $\Pi_{3CM}=60 t_{CM} \kappa_1 \kappa_2 / T_4$ (61)

где $T_{\rm u}$ - время одного монтажного цикла, мин; κ_1 - коэффициент использования кранов по времени (см. [20], с.7); κ_2 - коэффициент перехода от производственных норм к сметным ($\kappa 2 = 0.75$).

$$T_{\mathsf{u}} = T_{\mathsf{m}} + T_{\mathsf{p}},\tag{62}$$

 $T_{\rm u} = T_{\rm m} + T_{\rm p},$ (62) где $T_{\rm m}$ - машинное время цикла, мин; $T_{\rm p}$ - ручное время цикла, включающее время, затрачиваемое на строповку, установку, вырезку, заделку стыков, расстроповку (определяется по [2]). 26

$$T_p = \frac{(0,6...0,7) \cdot H^{mp} \cdot 60}{N_{mp}}$$
, (63) где N_{mp} - количество рабочих трубоукладчиков, H^{mp}_{sp} - норма времени чел.-час., см. [2].

$$T_{ii} = \frac{H_{ii}}{v_1} + \frac{H_{on}}{v_2} + \left(\frac{2\alpha}{360 \cdot n_{om}} + \frac{S_1}{v_3}\right) k_c + \frac{S_4}{v_4}, \tag{64}$$

 $T_{n}=\frac{H_{n}}{v_{1}}+\frac{H_{on}}{v_{2}}+\left(\frac{2\alpha}{360\cdot n_{om}}+\frac{S_{1}}{v_{3}}\right)k_{c}+\frac{S_{4}}{v_{4}},$ (64) где H_{n} - высота подъема крюка, м; H_{on} - высота опускания крюка, м; α - угол поворота стрелы крана, град, S_{1} - расстояние перемещения крана, приходящееся на один монтируемый элемент (равно длине трубы или секции за вычетом глубины раструба), м; v1 скорость подъема крюка, м/мин; v2 - скорость опускания крюка, м/мин, n - число оборотов крана в мин: уз - скорость перемещения груза при изменении вылета стрелы (для автомобильных кранов 50-80; пневмоколесных 20-50; гусеничных 15-40), м/мин, и - скорость перемещения крана (для самоходных стреловых кранов 30-50), м/мин; k_c - коэффициент, учитывающий совмещение рабочих операций крана ($k_c = 0.75$).

Рабочие скорости v_1 , v_2 , Π_{om} принимаем по [20] или [1]. Параметры S_1 , S_2 , α - определяются на основе разработанных схем монтажа труб (см. рис. 21).

$$H_n = H_{on} = h + h_3 + h_{on}, \tag{65}$$

где h_3 - высота запаса ($h_3 \ge 0,5$ м), м; h_{CR} - величина стравливания стропа для обеспечения строповки ($h_{cm} \ge 0.5+1$ м), м

При монтаже секции труб или плети двумя кранами определяемая производительность уменьшается в 2 раза.

8. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ СРАВНЕНИЕ ВАРИАНТОВ ПРОИЗВОДСТВА РАБОТ

Из множества возможных вариантов производства земляных и трубоукладочных работ необходимо выбрать наиболее экономичные путем технико-экономического сравнения вариантов. Предварительно составляется ведомость сравнения вариантов в форме таблицы 20.

Таблица 20. Ведомость сравнения вариантов

Nº	Наименова- ние работ	Ед. изм.	Объ- ем работ	П₃∞м Еи/с м	Обос- нова- ние	Н _{ер} чел.– ч.	Расц З₃в Руб.	Состав звена, прим. маш.	Тм маш см.	Q, чел- см.	З _{р,} руб.	С _{мом} руб.	С _{мом} *Тм, руб.
1	2	3	4	5	6	7	8	9	10	11	12	13	14

Сравнение выполняем по следующим показателям:

$$T_{j} = \frac{1}{2} \left(\sum T_{i} + \sum T_{ni} \right), \tag{66}$$

1. Продолжительность выполнения работ T_j , по j-му варианту, см $T_j = \frac{1}{c} \left(\sum T_i + \sum T_{si}\right)$, где c - коэффициент совмещения работ; T_i - время выполнения j-го вида работ, см; $T_{\rm si}$ - продолжительность выполнения вспомогательных работ (монтаж машин, их проблуск и т.д.), которы... ыми работами, см. Для механизированных процессов $T = \frac{P_i}{K_n} H_{\text{.x.ml}} \cdot n_{\text{wi}},$ ный пуск и т.д.), которые можно не учитывать в случае совмещения их по времени с основными работами, см.

$$T = \frac{P_i}{K_{in}} H_{iscati} \cdot n_{soi}, \tag{67}$$

где P_i - объем i-го вида работ, ед.; K_n - коэффициент выполнения норм (K_n = 1,0...1,3); n_{Mi} - количество машин, выполняющих і-ый вид работ; $\Pi_{\text{эсм}i}$ - эксплуатационная сменная производительность машины, ед/маш-см.

Для транспортных средств $T_i = T_{mp} + T_{Hall}$ где T_{mp} и T_{нае} см. (28).

Для работ, выполняемых вручную

$$T_{r} = \frac{H_{epi} \cdot P_{i}}{K_{n} \cdot n_{pi} \cdot n_{mi} \cdot t_{eu}},$$
 (68) где H_{epi} - норма времени (принимается по соответствующему ЕНиРу) на і-ый вид работ.

чел.-час.; n_{gi} , - количество рабочих в звене (берется из ЕНиР), чел.-час.; n_{sei} - количество звеньев.

Количество машин n_{mi} и звеньев n_{3ei} принимается из условия обеспечения $T_i \!\! \leq \! T_{\mathit{3m}},$ причем время выполнения вспомогательных работ не должно быть больше времени выполнения основных работ

Ввиду сложности нахождения с, как правило, определяют время выполнения каждого вида работ, после чего строят примерный график выполнения работ с их макси мальным совмещением во времени.

2. Трудоемкость выполнения единицы объема работ θ_{ej} , чел./см./ед.

$$\theta_{ej} = \frac{1}{P_0} \left(\sum T_i \cdot n_{p_i} \cdot n_{p_i} + \sum \theta_{ei} \right), \tag{69}$$

где $\theta_{\rm st}$ - трудоемкость выполнения вспомогательных работ (монтаж, демонтаж, пробный пуск машин, устройство временных дорог и т. д.); P_0 - общий объем выполняемых работ, ед. Для транспортных средств $n_{3ei} = N_{mp}$

3. Прямые денежные затраты C_{npj} , руб./ед.

$$C_{npj} = \frac{1}{P_0} \left(\sum_{w_{cwl}} T_{w_i} \cdot K_{v_i} + \sum_{j} 3_{pi} \cdot K_{4} \right),$$
 где $C_{\text{мсм}i}$ - стоимость машино-смены, руб.; $T_{\text{мi}}$ - затраты машиного времени, маш.-см;

 3_{pi} - заработная плата на работы, выполняемые вручную, руб; K_3 , K_4 -коэффициенты, учитывающие изменения цен.

$$C_{\text{\tiny MCM}i} = \frac{E_i}{T} + \frac{T_i \cdot t_{cu}}{T} + \Im_i \cdot t_{cu}, \tag{71}$$

 $C_{_{\mathit{мсмi}}} = \frac{E_{_{i}}}{T_{_{i}}} + \frac{T_{_{i}} \cdot t_{_{\mathit{cM}}}}{T_{_{\mathit{cM}}}} + \Im_{_{i}} \cdot t_{_{\mathit{cM}}},$ (71) где E_{i} - единовременные затраты прил.5 или [20], руб; T_{i} - годовые амортизационные отчисления по прил.5 или [20], руб; T_{aodi} - число часов работы машины в году по прил.5 или по [20]: Э, - эксплуатационные часовые затраты на содержание и обслуживание персонала, техническое обслуживание, текущий ремонт, сменную оснастку, материалы и т.д. по прил.5 или [20], руб.

Стоимость машино-смены по согласованию с руководителем проекта может быть определена по прил. 5, [17], [21].

Для транспортных средств

$$C_{\text{MCM}i} = C_{li} t_{\text{CM}} + C_{2i} L_{\text{CM}}, \tag{72}$$

где Сії - затраты, не зависящие от пробега на машино-час (переброска машин, амортизационные отчисления, содержание водителя), руб. (см. табл. 20); C_{2i} - затраты, зависящие от пробега (капитальный ремонт, техническое обслуживание и ремонт, топливо и т.д.), на 1 км пробега (см. табл. 18), руб; $L_{\text{см}}$ - см. [29]. По согласованию с руководителем проекта стоимость машино-смены транспортных средств можно определить по [21].

$$M_i = P_i / K_n - \Pi_{3CMi}$$
, (73)

$$3_{pi} = Pacu * P_i \tag{74}$$

где Расц - расценка на выполнение і-го вида работ (см. [2,11,19] и др. ЕНиР), руб.

$$n_{O,DH} = C_{DPJ} + H_{eJ} - \Im_m - \Im_{\theta_j}$$
 (75)

4. Полные денежные затраты $C_{nonнj}$, руб./ед. $C_{non+j} = C_{np} + H_{ej} - 3_m - 3_{\theta}$ (75) где H_{ej} - накладные расходы, руб./ед; 3_m - экономия накладных расходов за счет сокращения продолжительности выполнения работ, руб./ед.; Θ_{θ} - экономия накладных расходов за счет сокращения трудоемкости выполненных работ, руб/ед

$$H_{c_i} = \left(K_s \cdot \sum C_{nc,in} \cdot T_{ni} + K_{c_i} \cdot \sum 3_{pi}\right) / P_{ii}, \qquad (76)$$

$$\Theta_{m} = 0.5 H_{eq} \left(1 - \frac{T_{1}}{T_{2}} \right), \tag{77}$$

 $\Im_{_{m}} = 0.5 H_{_{c2}} \left(1 - \frac{T_1}{T_2} \right),$ где $H_{_{62}}$ - накладные расходы варианта с большей продолжительностью, см; K_5 -норматив накладных расходов на стоимость эксплуатации машин; K_6 - норматив накладных расходов на заработную плату.

 $\theta_0=0,6(\theta_{e1}-\theta_{e2})$

 \mathfrak{I}_m и \mathfrak{I}_0 учитываются только в одном из вариантов (только в варианте по которому идет экономия).

5. Капитальные вложения на приобретение машин K_i , руб./ед.

$$K_{j} = \frac{1}{P_{0}} \sum \frac{C_{unw} \cdot t_{cu} \cdot T_{ui}}{T_{conv}} K_{7} , \qquad (79)$$

 $K_{_{I}}=rac{1}{P_{_{0}}}\sumrac{C_{_{\mathit{nim}}}\cdot t_{_{\mathit{cut}}}\cdot T_{_{\mathit{vir}}}}{T_{_{.oor}}}K_{_{\mathit{T}}}$, (79) где C_{une} - инвентарно-расчетная стоимость машины (см. [21]), K_{T} -коэффициент, учитывающий изменение цен.

Коэффициенты принимаются по данным организаций, осуществляющих строительство, или выдаются руководителем проекта.

6. Удельные приведенные затраты Пуді, руб./ед.

$$\Pi_{V0i} = C_{nonHi} + E_H K_i \tag{80}$$

 $\Pi_{y \partial j} = C_{nonnj} + E_H K_{j}$ (80) где E_H - нормативный коэффициент эффективности применения машин в строительстве

При окончательном выборе вариантов производства работ самым важным показателем являются удельные приведенные затраты, после нахождения которых определяется экономия денежных средств

$$\Im = \Pi_1 - \Pi_2 \tag{81}$$

В случае, если экономия Э не превышает 5% (находится в пределах точности расчетов) от максимальных удельных приведенных затрат, то за основу можно принимать любой вариант, причем предпочтение следует отдавать вариантам с меньшей продолжительностью и трудоемкостью выполнения работ.

Таблица 21. Справочные данные для определения технико-экономических

показателей работы автомобилей

Характеристика	Инвентарно-расчетная	Эксплуатационные рас-	Эксплуатационные расходы
и марка	стоимость, руб.	ходы за час работы в руб.	на 1 км пробега
		Самосвалы	
ГАЗ-53 Б	1580	1,71	0,061
3ИЛ-ММ3-555	3610	2,71	0,11
MA3-503 A	6420	3,7	0,144
KAMA3-5510	9009	5,07	0,23
	Борто	овые автомобили	
3ИЛ-130	3320	1,99	0,105
MA3-500	6217	2,38	0,158
KpA3-257	9950	3,94	0,309
		Автомобиль	
МАЗ-529 с при-	10935-1958	4,1 -1,01	0,19-0,043
цепом			
	Приц	епы-тяжеловозы	
ЧМЗАП-5208	6955	2,23	0,147
ЧМЗАП-5530	51900	10,41	0,473
ЧМЗАП-5521	11380	3,62	0,205

9. СОСТАВЛЕНИЕ КАЛЬКУЛЯЦИИ ТРУДОВЫХ И ДЕНЕЖНЫХ ЗАТРАТ

Осуществляем на основании [2], [11], [12], [19] в форме табл.22, в которую сводим все работы по принятому экономичному варианту. Порядок составления:

а) устанавливаем требуемый ЕНиР;

- б) устанавливаем § ЕНиР, соответствующий наименованию работ (графа 5);
- в) уточняем наименование работ (графа 2);
- г) устанавливаем по соответствующему § ЕНиР единицу измерения (графа 3), норму времени (графа 8), расценку (графа 9), состав звена (графа 6);
 - д) записываем объем работ (графа 4) в единицах измерения;
- е) определяем затраты труда (графа 10) путем перемножения нормы времени на объем работ;

ж) определяем заработную плату на весь объем (графа 11) путем перемножения расценки на объем работ.

В случае применения новых эффективных машин, для которых отсутствуют нормы в ЕНиР, норма времени и расценка определяются расчётом, при этом состав звена устанавливается ЕНиР для подобных машин.

$$H_{ep} = \frac{E \cdot t_{cu} \cdot \Pi_p}{\Pi_{cu}},\tag{82}$$

$$P_{o \delta u_{i}} = \frac{H_{o p}}{\Pi_{p}} \sum Y_{\kappa} \cdot N_{k}, \tag{83}$$

где $\forall \kappa$ - часовая тарифная ставка рабочего k-разряда (см. тарифную сетку), руб.; Nk - количество рабочих κ - разряда в звене; np - количество рабочих в звене.

Таблица 22. Калькуляция трудовых и денежных затрат

Nº	Наиме-	EД.	1 -	Обосно-	l .	Прим.	Затраты і	Затраты на единицу		весь объем
nn	нование работ	МЕМ	работ	вание	звена	и мех- машины	Нвр, Чел.	Расц, руб.	труда, челч.	з/пл, руб.
1	2	3	4	5	6	7	8	9	10	11
									Σ	Σ

10. ПОСТРОЕНИЕ ЦИКЛОГРАММЫ ВЫПОЛНЕНИЯ РАБОТ

Для обеспечения максимального совмещения работ, непрерывного и равномерного их выполнения, с целью организации потока трасса трубопровода разбивается на захватки длиной, обеспечивающей выполнение ведущих работ (отдельно частного потока) на захватке не менее чем за одну смену (обычно > 100 м). Желательно, чтобы объёмы работ по захваткам были примерно равны, что трудно обеспечить для земляных работ. Построение циклограммы производится на основе ведомости расчётов к циклограмме (табл. 23), графы 1-11 которой заполняются на основе калькуляции (табл. 22) с учётом разбивки на захватки.

Нормативная продолжительность выполнения работ определяется по формуле:

$$T_{mi} = \frac{\theta}{\Pi_{pi}} \cdot \Pi_{jei}, \tag{84}$$

где θ і- затраты труда по і-му виду работ (графы 9-11), чел.-см.

Нормативная продолжительность округляется до числа, кратного одной смене (допускается 0,5 смены). При этом % выполнения норм не должен превышать 120%. Механизированные процессы должны выполняться в две смены. При построении циклограммы недопустимы пересечения графиков частных потоков. Шаг потока, как правило, назначается не менее одной смены. Приямки для труб диаметром до 300 мм отрывают непосредственно перед укладкой труб, для труб больших диаметров разрешается рыть приямки за 1-2 дня до укладки труб. Предварительное испытание составляет 60% от общих затрат труда на испытание. Как правило, укладка труб, заделка стыков труб, устройство колодцев выполняются одной комплексной бригадой. Обратная засыпка и уплотнение грунта должны выполняться послойно. Общая продолжительность производства работ не должна превышать заданного срока строительства трубопровода.

Таблица 23. Веломость расчетов к циклограмме

	i auj	iuya 25. i	оедо	MUL	ID P	acy	етов к ци	клюі рам	MC						
[Νō	Наиме-	Ед.	06	Объем ра-		Состав	Прим.	38	Затраты		Нормат	ивная (ч	нисли-	%
-	n/n	нование	изм.	бо	}		звена и	машины	труда по за-		тель) и принятая (зна-			вып.	
-		работ		XI	затка	M	их коли-	и механ.	хваткам,		менат.) п	норм			
-						че-ство		челсм.		работ, см					
				1	2	m			1	2	m	1	2	m	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

11. ПОДБОР ТРАНСПОРТНЫХ СРЕДСТВ

Подбор транспортных средств для доставки сборных элементов (см. табл. 1) на трассу трубопровода осуществляем на основании [25] и приложения 5 в форме табл. 24.

Таблица 24. Ведомость потребных транспортных средств

	7444 - 7. 					· panonopi	TOWN OP OF	10.0	
Nº	Наименование	qэ	Гери	иетич	ные	Наимено-	Грузо-	Число перево-	Требуемое кол-
n/n	перевозимых	Т	размеры, м		i, M	вание	подъём-	зимых элемен-	во трансп.
1	элементов					транспор-та	ность, т	тов	средств, шт.
	57,0111,011,102			b	h	(марка)	1,0010,1	, , ,	ородото, шт
1	2	3	4	5	6	7	8	9	10
ĺ	ļ ,			1					

12. РАЗРАБОТКА УКАЗАНИЙ ПО ПРОИЗВОДСТВУ РАБОТ

Указания по производству работ должны содержать подробное описание технологии выполнения процессов, организации рабочих мест при монтаже трубопровода, колодцев и при производстве земляных работ.

При выполнении работ в зимнее время в указаниях по производству работ должны быть представлены специальные мероприятия по выполнению производственных процессов при отрицательных температурах.

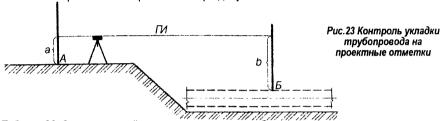
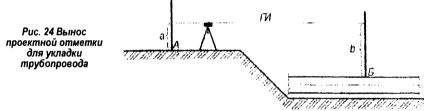

Необходимые для производства работ инструменты, инвентарь, приспособления приводятся в форме табл. 25.

Таблица 25. Ведомость потребного инструмента, инвентаря, приспособлений


№ пп	Наименование	Марка, ГОСТ	Количество, шт.
1	2	3	4

13. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО КОНТРОЛЮ КАЧЕСТВА ПРОИЗВОДСТВА РАБОТ

Операционный контроль качества выполняемых работ при производстве земляных работ, монтаже трубопровода и сборных элементов колодцев назначаем в соответствии с требованиями СНиП 3.02.01-87, СНиП 3.03.01-87, СНиП 3.05.04-85 [14]. Примерный перечень работ, подлежащих операционному контролю приводится в табл. 26. Разрабатываются также мероприятия по операционному контролю, качества СМР при производстве отдельных видов работ в соответствии с [26], заключающиеся в составлении схем операционного контроля качества работ и замера допусков.

гаолица 26. Операц	ионныи контроль ка	чества раос	om									
наименование опера-	контроль качества выполняемых операций											
ций, подлежащих	состав контроля	способ кон-	время контроля	привлекаемые								
контролю	·	троля		службы								
1	2	3	4	5								
подготовительные	правильность склади-	визуально,	до начала работ									
работы	рования материалов,	стальным										
	наличие паспортов	метром										
земляные работы	отметка дна траншеи	нивелир	до начала монтажа трубопровода	геодезическая								
и.т.д.												

14. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО БЕЗОПАСНОМУ ПРОИЗВОДСТВУ РАБОТ

Разработку мероприятий по охране труда и технике безопасности производим в соответствии с требованиями [10].

Мероприятия по технике безопасности должны обеспечить безопасное ведение ра-бот в конкретных условиях строительной площадки.

В данном разделе должны быть предусмотрены и приведены:

- необходимые приспособления, обеспечивающие безопасность выполнения работ;
- способы обеспечения устойчивости земляных сооружений;
- технологическая последовательность безопасного выполнения процессов;
- мероприятия по обеспечению безопасности рабочих;
- обозначены границы опасных зон машин и механизмов;
- направление перемещения грунта, машин;
- мероприятия, обеспечивающие безопасную совместную работу машин и механизмов; ограждение площадки от посторонних.

15. ТЭП КУРСОВОГО ПРОЕКТА

- 1. Продолжительность выполнения работ, см (принимается по циклограмме).
- 2. Трудоемкость единицы объема работ чел.-см/м (общие трудозатраты по табл. 6. графа 10 делятся на длину трубопровода)
 - 3. Выработка на одну чел.-см. (величина обратная трудоемкости), м/чел.-см.
 - 4. Полная плановая себестоимость, руб./м (см. раздел 8).
 - 5. Полные денежные затраты, руб./м (см. раздел 8).
 - 6. Удельные капитальные вложения, руб./м (см. раздел 8).
 - 7 Удельные приведенные затраты, руб./м (см. раздел 8).

16. ЛИТЕРАТУРА

- 1. Справочник строителя. Монтаж систем внешнего водоснабжения и канализации. Под ред.
- К. Перешивкина. 4-е изд., М: Стройиздат, 1988. 653 с., ил.
- ЕНиР. сб. 9, Строительство наружных сетей водопровода, канализации, Е 9, вып. 2. 1987.-95 с. СНиП 2.04.03.85. Канализация. Наружные сети и сооружения. М.: Госстройиз-дат, 1986.-72 с.
- СНиП 2.04.02.84. Водоснабжение. Наружные сети и сооружения. М.: Гос-стройиздат, 1985. -136 с.
- 5. СНиП 3.02.01.87. Земляные сооружения. Правила производства и приемки работ. М.: Стройиздат, 1987
- К. С. Марионков. Основы проектирования производства строительных работ-М.: Стройиздат, 1980. 231 с., ил.
 В. Г. Ясинецкий, Н. К. Фенин. Организация и технология гидромелиоративных работ. М.: Агро-
- промиздат, 1986.
- 8. В. А. Черкашин. Разработка мерзлых грунтов. Л.: Стройиздат, 1977. -215 с.
- 9. В. А. Бондарик, С. В. Овчинников. Производство земляных работ. Минск: Вышейшая школа, 1979. 10. ТКП 45-1.03-40-2006. Безопасность труда встроительстве. Общие требования. Минск-2007.
- 71. ТКП 45-1.03-44-2006.Безопасность труда в строительстве. Строительное производство. Минск-2007. 12. ТКП 45-1.03-63-2007.Монтаж зданий. Правила механизации.Минск-2008.
- 13. О. О. Литвинов и др. Технология строительного производства.-Киев: Вища школа, 1985. 475 с.
- 14. СНиП 3.05.04-85. Водоснабжение, канализация и теплоснабжение. Наружные сети и коммуни-
- тальных машин. Постройиздат, 1985. 15. Ю. 3. Салов, Г. В. Замятин. Инженерные сооружения и основы строительного производства-Л: Стройиздат, Ленинградское отделение, 1980. 366 с. 16. СНиП IV-3-82. Приложение. Сборник сметных цен эксплуатации строительных машин. Госстрой
- 16. СНИГТV-3-82. Приложение. Соорник сметных цен эксплуатации строительных машин. Госстрои СССР. М.: Стройиздат, 1982 40 с.
 17. Строительное производство в 3 т. Т.2. Организация и технология работ. (Л. П. Аблязов, В. А. Анзичитов, К. И. Башлай и др./Под редакцией И. А. Онуфриева. М.: Стройиздат, 1989. 527 с., ил.)
 18. ЕНИР, Е 2. Земляные работы. Вып. 1. Механизированные и ручные земляные работы. Госстрой СССР. М. Стройиздат, 1988. 224 с.
- 19. Машины для монтажных работ и вертикального транспорта (В. И. Поляков, А. И. Альперович, М. Д. Полосин, А. Т. Чистяков / Под ред. С. П. Епифанова и др. 2-е изд., перераб. и доп.) М.: Стройиздат, 1981. 531 с. ил. Справочное пособие по строительным машинам.
- 20. С. К. Хамзин, А. К. Карасев. Технология строительного производства. Курсовое и дипломное проектирование. Уч. пособие для строит. спец. вузов. -М.:Высш. шк. -1989. 216 с., ил.
- 21. В. Ф. Баришполов. Строительство наружных трубопроводов. Уч. для ПТУ. 3-е изд., перераб., 4 доп. - М.: Высш. шк., 1991. - 208 с., ил.
- 22. А. К. Рейш. Основы технологии выполнения земляных работ одноковшовыми экскаваторами. -Киев: Вища школа, 1987. -174 с.
- 23. Технология строительного производства в зимних условиях. / Под ред. В. А. Евдокимова. Л.: Стройиздат, 1984. - 264 с.
- 24. А. К. Рейш и др. Земляные работы. Справочник строителя. М.: Стройиздат. 1984. 324 с., ил.
- 25. Руководство по перевозке автомобильным транспортом строительных конструкций. М.: Стройиздат, 1980. 114 c.
- 26. Схемы операционного контроля качества строительно-монтажных работ. Минск: РТЦ, 1988. 88 с.

ПРИЛОЖЕНИЕ 1

1.1 ТРУБЫ НАПОРНЫЕ ИЗ ПОЛИЭТИЛЕНА

 $\it T$ аблица 1.1 Размеры и максимальные рабочие давления труб из полиэтилена ПЭ 63, в мм

Средний наруж- ный диаметр		SDF S	R 41 20		₹ 26 2,5		17,6 8,3	SDI S	Оваль-			
		Максимальное рабочее давление воды при 20 °C, МПа										
		0,:	25	0,	4	0	,6		после экстру- зии, не			
		Толщина стенки										
номин.	пред, откл.	номин.	пред, откл.	номин.	пред, откл.	номин.	пред, откл.	номин.	пред, откл.			
40	+0,4	_	_	2,0*	+0,4	2,3	+0,5	3,7	+0,6	1,4		
50	+0,5		_	2,0	+0,4	2,9	+0,5	4,6	+0,7	1,4		
63	+0,6	2,0*	+0,4	2,5	+0,5	3,6	+0,6	5,8	+0,9	1,5		
75	+0,7	2,0*	+0,4	2,9	+0,5	4,3	+0,7	6,8	+1,1	1,6		
90	+0,9	2,2	+0,5	3,5	+0,6	5,1	+0,8	8,2	+1,3	1,8		
110	+1,0	2,7	+0,5	4,2	+0,7	6,3	+1,0	10,0	+ 1,5	2,2		
125	+1,2	3,1	+0,6	4,8	+0,8	7,1	+1,1	11,4	+1,8	2,5		
140	+1,3	3,5	+0,6	5,4	+0,9	8,0	+1,2	12,7	+2,0	2,8		
160	+1,5	4,0	+0,6	6,2	+1,0	9,1	+1,4	14,6	+2,2	3,2		
180	+1,7	4,4	+0,7	6,9	+1,1	10,2	+1,6	16,4	+2,5	3,6		
200	+1,8	4,9	+0,8	7,7	+1,2	11,4	+1,8	18,2	+2,8	4,0		
225	+2,1	5,5	+0,9	8,6	+1,3	12,8	+2,0	20,5	+3,1	4,5		
250	+2,3	6,2	+1,0	9,6	+1,5	14,2	+2,2	22,7	+3,5	5,0		
280	+2,6	6,9	+1,1	10,7	+1,7	15,9	+2,4	25,4	+3,9	9,8		
315	+2,9	7,7	+1,2	12,1	+1,9	17,9	+2,7	28,6	+4,3	11,1		
355	+3,2	8,7	+1,4	13,6	+2,1	20,1	+3,1	32,2	+4,9	12,5		
400	+3,6	9,8	+1,5	15,3	+2,3	22,7	+3,5	36,3	+5,5	14,0		
450	+4,1	11,0	+1,7	17,2	+2,6	25,5	+3,9	40,9	+6,2	15,6		
500	+4,5	12,3	+1,9	19,1	+2,9	28,3	+4,3	45,4	+6,9	17,5		
560	+5,0	13,7	+2,1	21,4	+3,3	31,7	+4,8	50,8	+7,7	19,6		
630	+5,7	15,4	+2,4	24,1	+3,7	35,7	+5,4	57,2	+8,6	22,1		
710	+6,4	17,4	+2,7	27,2	+4,1	40,2	+6,1	_	_	24,9		
800	+7,2	19,6	+3,0	30,6	+4,6	45,3	+6,8	_	_	28,0		
900	+8,1	22,0	+3,3	34,4	+5,2	51,0	+7,7	_	_	31,5		
1000	+9 ,0	24,5	+3,7	38,2	+5,8	56,6	+8,5		_	35,0		
1200	+10,0	29,4	+4,5	45,9	+6,9		_	_		42,0		

^{*}Трубы относят к соответствующему размерному ряду SDR (S) условно, т.к. минимальная толщина стенки труб 2,0 мм установлена, исходя из условий сварки труб.

Таблица 1.2 Размеры и максимальные рабочие давления труб из полиэтилена ПЭ 80, в мм

Средний наружный диаметр		SDR 26 S 12,5		· ·		i	17,6 8,3		R 17 ∶8	SDR 13,6 S 6,3		SDR 11 S 5		SDR 9 S 4		Оваль-
			Максимальное рабочее давление воды при 20 °C, МПа													
		0,5		0,63		0,8		8,0		1,0		1,25		1,6		после экстру-
		Толщина стенки														зии, не
номин.	пред. откл.	номин. пред. откл.		номин.	пред. откл.	номин.	пред. откл.	номин.	пред. откл.	номин.	пред. откл.	номин.	пред. откл.	номин.	пред. откл.	более
16	+0,3	_	-		-	_	_		_	_	_			2,0*	+0,4	1,2
20	+0,3	_	_		_	-	_	_	_	_	_	2,0*	+0,4	2,3	+0,5	1,2
25	+0,3	_		_	_	_	_	_		2,0*	+0,4	2,3	+0,5	2,8	+0,5	1,2
32	+0,3		_	_		_		2,0*	+0,4	2,4	+0,5	3,0	+0,5	3,6	+0,6	1,3
40	+0,4		_	2,0*	+0,4	_	-	2,4	+0,5	3,0	+0,5	3,7	+0,6	4,5	+0,7	1,4
50	+0,5	2,0	+0,4	2,4	+0,5			3,0	+0,5	3,7	+0,6	4,6	+0,7	5,6	+0,9	1,4
63	+0,6	2,5	+0,5	3,0	+0,5	3,6	+0,6	3,8	+0,6	4,7	+0,8	5,8	+0,9	7,1	+1,1	1,5
75	+0,7	2,9	+0,5	3,6	+0,6	4,3	+0,7	4,5	+0,7	5,6	+0,9	6,8	+1,1	8,4	+1,3	1,6
90	+0,9	3,5	+0,6	4,3	+0,7	5,2	+0,8	5,4	+0,9	6,7	+ 1,1	8,2	+1,3	10,1	+1,6	1,8
110	+1,0	4,2	+0,7	5,3	+0,8	6,3	+1,0	6,6	+1,0	8,1	+ 1,3	10,0	+1,5	12,3	+1,9	2,2
125	+1,2	4,8	+0,8	6,0	+0,9	7,1	+1,1	7,4	+1,2	9,2	+ 1,4	11,4	+1,8	14,0	+2,1	2,5
140	+1,3	5,4	+0,9	6,7	+1,1	8,0	+1,2	8,3	+1,3	10,3	+ 1,6	12,7	+2,0	15,7	+2,4	2,8
160	+1,5	6,2	+ 1,0	7,7	+ 1,2	9,1	+1,4	9,5	+1,5	11,8	+1,8	14,6	+2,2	17,9	+2,7	3,2
180	+1,7	6,9	+ 1,1	8,6	+ 1,3	10,2	+1,6	10,7	+1,7	13,3	+2,0	16,4	+2,5	20,1	+3,1	3,6
200	+1,8	7,7	+ 1,2	9,6	+ 1,5	11,4	+1,8	11,9	+1,8	14,7	+2,3	18,2	+2,8	22,4	+3,4	4,0
225	+2,1	8,6	+ 1,3	10,8	+ 1,7	12,8	+2,0	13,4	+2,1	16,6	+2,5	20,5	+3,1	25,2	+3,8	4,5
250	+2,3	9,6	+ 1,5	11,9	+ 1,8	14,2	+2,2	14,8	+2,3	18,4	+2,8	22,7	+3,5	27,9	+4,2	5,0
280	+2,6	10,7	+ 1,7	13,4	+2,1	15,9	+2,4	16,6	+2,5	20,6	+3,1	25,4	+3,9	31,3	+4,7	9,8
315	+2,9	12,1	+ 1,9	15,0	+2,3	17,9	+2,7	18,7	+2,9	23,2	+3,5	28,6	+4,3	35,2	+5,3	11,1
355	+3,2	13,6	+2,1	16,9	+2,6	20,1	+3,1	21,1	+3,2	26,1	+4,0	32,2	+4,9	39,7	+6,0	12,5

Средний наружный диаметр		SDR 26 S 12,5				,	SDR 17 S 8		SDR 13,6 S 6,3		SDR 11 S 5		SDR 9 S 4		Оваль-	
			малениаленое рассчее давление воды при 20°С, міна													ност
		0,5		0,63		0,8		0,8		1,0		1,25		1,6		
		Толщина стенки													зии, н	
номин.	пред. откл.	номин.	пред. откл.	номин.	пред. откл.	номин.	пред. откл.	номин.	пред. откл.	номин.	пред. сткл.	номин.	пред. откл.	номин.	пред. откл.	боле
400	+3,6	15,3	+2,3	19,1	+2,9	22,7	+3,5	23,7	+3,6	29,4	+4,5	36,3	+5,5	44,7	+6,8	14,0
450	+4,1	17,2	+2,6	21,5	+3,3	25,5	+3,9	26,7	+4,1	33,1	+5,0	40,9	+6,2	50,3	+7,6	15,6
500	+4,5	19,1	+2,9	23,9	+3,6	28,3	+4,3	29,7	+4,5	36,8	+5,6	45,4	+6,9	55,8	+8,4	17,5
560	+5,0	21,4	+3,3	26,7	+4,1	31,7	+4,8	33,2	+5,0	41,2	+6,2	50,8	+7,7	_		19,6
630	+5,7	24,1	+3,7	30,0	+4,5	35,7	+5,4	37,4	+5,7	46,3	+7,0	57,2	+8,6	_		22,1
710	+6,4	27,2	+4,1	33,9	+5,1	40,2	+6,1	42,1	+6,4	52,2	+7,9	_	_	_	_	24,9
800	+7,2	30,6	+4,6	38,1	+5,8	45,3	+6,8	47,4	+7,2	58,8	+8,9	_	_	_		28,0
900	+8,1	34,4	+5,2	42,9	+6,5	51,0	+7,7	53,3	+8,0	-		_	_	_		31,5
1000	+9,0	38,2	+5,8	47,7	+7,2	56,6	+8,5	59,3	+8,9	_	_	_			_	35,0
1200	+10,0	45,9	+6,9	57,2	+8,6	_	_	_	_	_	_	_		_	_	42,0

^{*} Трубы относят к соответствующему размерному ряду SDR (S) условно; минимальная толщина стенки труб 2,0 мм установлена, исходя из условий сварки труб.

1.2 Трубопроводы пластмассовые для водоснабжения

1. Геометрические характеристики

1.1 Измерение размеров

1.1 Измерение размеров
Размеры должны быть определены согласно прЕН 496.
1.2 Номинальный наружный диаметр трубы
Номинальный наружный диаметр трубы.
1.3 Средний наружный диаметр трубы и допуски
Средний наружный диаметр д_{ет} трубы должен соответствовать номинальному наружному диаметру д_п в пределах допусков, приведенных в таблице 1.3.
Допуски овальности должны соответствовать приведенным в таблице 1.3.

Таблица 1.3 Номинальный наружный диаметр трубы и допуски, в мм

Номинальный наруж-	Допуск для среднего наруж-		вальности ²⁾
ный диаметр d _n	ного диаметра d _{em} ¹⁾ , х	S 20 до S 16 ³⁾	S 12,5 до S 5 ⁴⁾
12 16 20 25 32	0,2 0,2 0,2 0,2 0,2 0,2	_ _ _	0,5 0,5 0,5 0,5 0,5 0,5
40	0,2	1,4	0,5
50	0,2	1,4	0,6
63	0,3	1,5	0,8
75	0,3	1,6	0,9
90	0,3	1,8	1,1
10	0,4	2,2	1,4
125	0,4	2,5	1,5
140	0,5	2,8	1,7
160	0,5	3,2	2,0
180	0,6	3,6	2,2
200	0,6	4,0	2,4
225	0,7	4,5	2,7
250	0,8	5,0	3,0
280	0,9	6,8	3,4
315	1,0	7,6	3,8
355	1,1	8,6	4,3
400	1,2	9,6	4,8
450	1,4	10,8	5,4
500	1,5	12,0	6,0
560	1,7	13,5	6,8
630 710 800 900 1000	1,9 2,0 2,0 2,0 2,0 2,0	15,2 17,1 19,2 21,6 24,0	7,6 8,6 9,6 — —

¹⁾ Допуски соответствуют сорту D по ИСО 11922-1:1997 для $d_n \le 50$ и сорту C для $d_n > 50$. Допуски выражаются в виде δ^x мм, где x — значение допуска.

²⁾ Допуск выражается как разница между наибольшим и наименьшим наружным диаметром в поперечном сечении трубы (например, $d_{e, max} - d_{e, min}$). ³⁾ Для d_n ≤ 250 допуск соответствует сорту N по ИСО 11922-1:1997. Требования к овальности применяют-

ся до складирования. $^{4)}$ Для d_n от 12 до 1000 допуск соответствует 0,5 сорту М по ИСО 11922-1:1997. Требования к овальности применяются только до момента отправки труб за пределы предприятия.

1.4 Толщина стенки трубы и допуски
Номинальная толщина стенки e_n трубы зависит от серии S труб. Номинальная толщина стенки соответствует минимальной допустимой толщине стенки. Номинальная толщина стенки приведена в таблице 2 в зависимости от серии труб.
Допуск для средней толщины стенки e_m трубы должен соответствовать таблице 1.4.

<i>Таблица 1.4</i> Номинальная :	(минимапьная)	топшина	стенки трубы, в	MM
1 GOMBING 1.7 HOWINITED IDITION	(IN FILL IN	, , , , , , , , , , , , ,	OLCHWI INTODIC D	MITAL

	. T I IOWINI	Номинальная (минимальная) толщина стенки грусы, в мм											
Номи-					серии S		THE P. P. P. LEWIS CO., LANSING, MICH. S. LEWIS CO., LANSING, MICH.						
нальный	S 20	(S 16,7)	S 16 (SDR 33)	S 12,5 (SDR 26)	S 10	S 8 (SDR 17)	\$ 6,3	S 5					
наруж- ный диа-	(SDR 41) Homunan			(SDR 26) сновании фу	(SDR 21)		(SDR 13,6)						
метр d _п				паса проч	ности С=2,5	` '	, , ,	'					
		PN 6 (0.6 MΠa)	PN 6 (0,6 ΜΠa)	PN 8 (0.8 M∏a)	PN 10 (1,0 M∏a)	PN 12,5 (1,25 M∏a)	PN 16 (1,6 M∏a)	PN 20 (2,0 MΠa)					
12			— —	— (0,0 ivii iu)		- 1,20 14# 14)	(1,0 1411 1d)	1,5					
16		_	_	_		_	4.5	1,5					
20 25		_	_	_	_	1,5	1,5 1,9	1,9					
32				1,5	1,6	1,9	2.4	1,9 2,3 2,9 3,7					
40 50		1.5	1,5 1,6	1,6	1,9	2,4 3,0	3,0 3,7	3,7					
63		1,9	2.0	2,5	2,4 3,0 3,6	3,8 4,5	4,7	5.8					
75		1,5 1,9 2,2 2,7	2.3	2,0 2,5 2,9 3,5	3,6	4,5	5,6	4,6 5,8 6,8 8,2					
90		2,7	2,8	3,5	4,3	5,4	6,7	8,2					
	Номинал	ьное давлені	ие PN на ос	новании фун	кционального	(проектного	о) коэффици	ента запа-					
	PN 6	PN 7,5	PN 8	са прочно PN 10	ости C = 2,0 PN 12,5	PN 16	PN 20	PN 25					
	(0,6 M∏a)	(0,75 M∏a)	(0.8 MПa)	(1,0 M∏a)	(1,25 M∏a)	(1,6 M∏a)	(2,0 M∏a)	(2,5 M∏a)					
110 125	2,7 3,1	3,2 3,7	3,4 3,9 4,3	4,2 4,8	5,3 6.0	6,6 7,4	8,1	10,0 11,4					
140	3,5	4,1	4,3	5,4	6,0 6,7	8,3	9,2 10,3	12,77					
160 180	4,0 4,4	4,7 5,3	4,9 5,5	6,2 6,9	7,7 8,6	9,5 10.7	11,8 13,3	14,6 16,4					
100	·	5,3		6,0	,	10,7	13,3	10,4					
200	4,9	5,9	6,2 6,9	7,7	9,6	11,9	14,7	18,2					
225 250	5,5 6,2	6,6 7,3	7,7	8,6 9.6	10,8 11,9	13,4 14.8	16,6 18,4						
280	6,9	8.2	8,6	9,6 10,7	13,4	16,6	20,6						
315	7,7	9,2	9,7	12,1	15,0	18,7	23,2	- !					
355	8,7	10,4	10,9	13,6	16,9	21,1	26,111	_					
400 450	9,8	11,7	12,3 13,8	15,3 17,2	19,11 21,5	23,7	29,4						
500	11,0 12,3	13,2 14,6	15.3	19,1	23,9	26,7 29.7	33,1 36,8	_					
560	13,7	16,4	17,2	21,4	26,7		_	_					
630	15,4	18,4	19,3	24,1	30,0	_	_	_					
710	17,4	20,7	21,8	27,2		_	_	_					
800 900	19,6 22,0	23,3 26,3	24,5 27,6	30,6	_	_	_	_					
1000	24,5	29,2	30,6										

Таблица 1	.5 Допу с	к на толщин	у стенки т	грубы, в м	M
-----------	------------------	-------------	------------	------------	---

٠.		-7-4				
	Номинальная	(минималь-	Допуск для сред-	Номинальная	(минималь-	Допуск для сред-
	ная) толщи		ней	ная) толщи		ней
	> e r		толщины стенки х	> e,	, ≤	толщины стенки х
	1,0	2,0	0,4	21,0	22,0	2,4
	2,0	3,0	0,5	22,0	23,0	2,5
i	2,0 3,0 4,0	4,0	0,5 0,6 0,7	23,0	24,0	2,6
	4,0	5,0	0,7	24,0	25,0	2,7
-	5,0	6,0	0,8	25,0	26,0	2,6 2,7 2,8
į	0.0	7.0				
1	6,0	7,0 8,0	0,9	26,0	27,0	2,9
i	7,0	8,0	1,0	27,0	28,0	3,0
	8,0 9,0	9,0	1,1	28,0	29,0	3,0 3,1
	9,0	10,0	1,1 1,2 1,3	29,0	30,0	3,2 3,3
	10,0	11,0	1,3	30,0	31,0	3,3
	44.0	40.0	4.4	04.0		
	11,0	12,0	1,4	31,0	32,0	3,4
	12,0	13,0	1,5 1,6 1,7 1,8	32,0	33,0	3,5 3,6 3,7
	13,0	14,0	1,0	33,0	34,0	3,6
į	14,0	15,0	1,7	34,0	35,0	3,7
	15,0	16,0	1,8	35,0	36,0	3,8
	16,0	17.0	10	20.0	27.0	
ľ	17,0	17,0 18,0	1,9	36,0	37,0	3,9 4,0
1	18,0	10,0	2,0	37,0	38,0	4,0
	19,0	19,0	2,1			
	20,0	20,0 21,0	2,1 2,2 2,3			
İ	Dougenaum 1		Z,J	7		

Примечание 1 — Допуск применяется к номинальной (минимальной) толщине стенки и выражается в виде _о* мм,

где x — значение допуска для средней толщины стенки e_m . Примечание 2 — Допуск на среднюю толщину стенки e_m соответствует сорту W по ИСО 11922-1:1997.

1.5 Длина трубыНоминальной длиной трубы считается минимальная длина, без учета глубины раструба, как показано на рисунке 1.

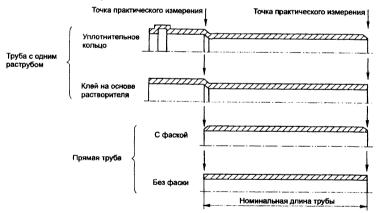


Рисунок 1.1 — Точки измерения номинальной длины трубы

Примечание — Предпочтительная номинальная длина трубы составляет 6 м. Допускается изготавливать трубы другой длины, по согласованию с потребителем.

1.6 Трубы с раструбами

1.6.1 Раструбы под клеевое соединение

Размеры раструбов под клеевое соединение показаны на рисунке 2. Они должны соответствовать таблице 4.

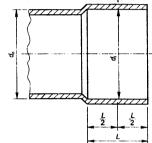


Рисунок 1.2 — Раструб под клеевое соединение

Номинальный внутренний диаметр раструба должен быть равен номинальному наружному диаметру d_n трубы. Максимальный скос внутренней части раструба не должен превышать 0° 30′ (30 минут). Средний внутренний диаметр d_{im} раструба должен измеряться на середине длины раструба.

Таблица 1.6 Размеры раструбов под клеевое соединение, в мм

Номинальный внутренний диа-		ний диаметр растру- ба	Максимальная овальность для	Минимальная длина раструба
метр раструба d _n	d _{im, min}	d _{im, max}	di ¹⁾	L _{min²)}
12	12,1	12,3	0,25	12,0
16	16,1	16,3	0,25	14,0
20	20,1	20,3	0,25	16,0
25	25,1	25,3	0,25	18,5
32	32,1	32,3	0,25	22,0
40	40,1	40,3	0,25	26,0
50	50,1	50,3	0,3	31,0
63	63,1	63,3	0,4	37,5
.75	75,1	75,3	0,5	43,5
90	90,1	90,3	0,6	51,0
110	110,1	110,4	0,7	61,0
125	125,1	125,4	0,8	68,5
140	140,2	140,5	0,9	76,0
160	160,2	160,5	1,0	86,0
180	180,2	180,6	1,1	96,0
200	200,2	200,6	1,2	106,0
225	225,3	225,7	1,4	118,5
250	250,3	250,8	1,5	131,0
280	280,3	280,9	1,7	146,0
315	315,4	316,0	1,9	163,5

¹⁾ Допуски минимальной овальности округляются до 0,25 сорта М по ИСО 11922-1:1997. ²⁾ Минимальные длины раструба равны (0,5 d_n + 6 мм) или 12 мм, если (0,5 d_n + 6 мм) ≤ 12 мм.

1.6.2 Раструбы под соединение с эластомерным уплотнительным кольцом

Минимальная глубина соединения m_{min} для трубы с одинарным раструбом под соединения с эластомерным уплотнительным кольцом (см. рисунок 3) рассчитана для трубы длиной до 12 м и должна соответствовать таблице 5.

Толщина стенки раструба в любом месте, за исключением паза для кольцевого уплотнения, должна быть не менее минимальной толщины стенки самой трубы. Толщина стенки паза кольцевого уплотнения должна быть не менее 0,8 от минимальной толщины стенки трубы.

Таблица 1.7 Размеры раструбов под соединения с эластомерным уплотнительным

Номинальный внутренний диа-	Минимальный средний внутренний	Максимал пустимая ность д	я оваль-	Минимальная глубина соедине-	Длина входа раструба и	
метр раструба d _n	диаметр раструба d _{im, min} 1)	S 20 до S 16	S 12,5 до S 5	н ия <i>m_{min}</i> ³⁾	зоны уплот- нения с ⁴⁾	
32	32,3	0,6	0,3	55	27	
40	40,3	0,8	0,4	55	28	
50	50,3	0,9	0,5	56	30	
63	63,4	1,2	0,6	58	32	
75	75,4	1,2	0,7	60	34	
90	90,4	1,4	0,9	61	36	
110	110,5	1,7	1,1	64	40	
125	125,5	1,9	1,2	66	42	
140	140,6	2,1	1,3	68	44	
160	160,6	2,4	1,5	71	48	
180	180,7	2,7	1,7	73	51	
200	200,7	3,0	1,8	75	54	
225	225,8	3,4	2,1	78	58	
250	250,9	3,8	2,3	81	62	
280	281,0	5,1	2,6	85	67	
315	316,1	5,7	2,9	88	72	
355	356,2	6,5	3,3	90	79	
400	401,3	7,2	3,6	92	86	
450	451,5	8,1	4,1	95	94	
500	501,6	9,0	4,5	97	102	
560	561,8	10,2	5,1	101	112	
630	632,0	11,4	5,7	105	123	
710	712,3	12,9	6,5	109	136	

 $^{^{1)}}$ $d_{im,\ min}$ измеряется в центре соединения m и рассчитывается по следующим формулам

Значения округляются в большую сторону до 0,1 мм.

 $^{2)}$ Допуски овальности округляются до 0,75 в соответствии с ИСО 11922-1:1997 для серий от S 20 до S 16 следующим образом:

0,75 сорта М для $32 \le d_n \le 50$; 0,75 сорта N " $63 \le d_n \le 250$; 0,75 сорта М " $280 \le d_n \le 710$;

Для труб серии S 12,5 до S 5: 0,375 значения M, кроме 0,3 сорта M для d_n = 32.

3) Значения *т min* рассчитываются по формулам:

 m_{min} = 50 мм + 0,22 d_n – 2e (S 10) при $d_n \le 280$,

 $m_{min} = 70 \text{ MM} + 0.15 d_n - 2e \text{ (S 10)}$ " $d_n > 280$.

Значения округляются в большую сторону до 1,0 мм.

⁴⁾ Значения c рассчитываются по формуле: $c = 22 + 0.16d_n$ и приводятся только для вычисления минимальных длин гладких концов. Изготовители должны устанавливать значения c в каталогах.

Требования к среднему внутреннему диаметру d_{im} раструба относятся к середине глубины соединения m.

На рисунке 3 показано соединение, когда гладкий конец вставлен до упора в раструб. Инструкцию по монтажу см. ЕНВ 1452-6.

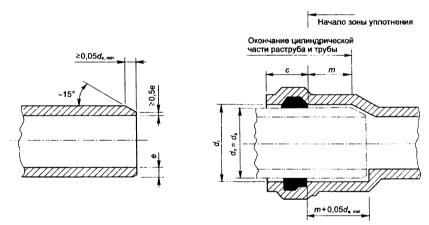


Рисунок 1.3 — Раструб и гладкий конец для труб с эластомерным уплотнительным кольцом

1.7 Концы труб под уплотнительные кольца или клеевые соединения

Трубы с гладкими концами, предназначенные для использования с раструбами под уплотнение эластомерным кольцом или с раструбами под клеевое соединение, должны иметь фаску, как показано на рисунке 3. При использовании труб с гладкими концами под клеевое соединение все острые углы должны быть сглажены.

1.1. ТРУБЫ АСБЕСТОЦЕМЕНТНЫЕ

1.1.1. Трубы асбестоцементные для напорных трубопроводов

Асбестоцементные напорные трубы (табл. 1.1), применяемые при устройстве наружных напорных водопроводов, изготовляются по ГОСТ 539-80* четырёх классов: ВТ6, ВТ9, ВТ12, ВТ15. Трубы каждого класса в зависимости от пропускной способности (внутреннего диаметра) и длины подразделяются на три типа: 1, 2 и 3. Для соединения труб применяются асбестоцементные муфты типа САМ по ГОСТ 539-80* или чугунные муфты по ГОСТ 17584.

1.2.ТРУБЫ КЕРАМИЧЕСКИЕ

Керамические трубы применяются для прокладки бытовых и производственных канализационных сетей и водостоков в грунтах с агрессивными грунтовыми водами. По ГОСТ 286-86* канализационные керамические трубы выпускают диаметром 150-600 мм (табл.1.2.)

1.3.ТРУБЫ ЖЕЛЕЗОБЕТОННЫЕ

1.3.1.Трубы железобетонные безнапорные

Безнапорные трубы применяются при устройстве подземных безнапорных трубопроводов, транспортирующих самотеком бытовые и атмосферные сточные воды. Изготовляются по ГОСТ 6482.0-79* и ГОСТ 6482.1-79*. Трубы подразделяются на следующие типы;

РТ - раструбные цилиндрические со стыковыми соединениями, уплотняемыми герметиками (табл.1.3.)

РТБ - раструбные цилиндрические с упорным буртиком на стыковой поверхности втулочного конца трубы и стыковыми соединениями, уплотняемыми с помощью резиновых колец (табл. 1.5.)

РТС - раструбные цилиндрические со ступенчатой стыковой поверхностью втулочного конца трубы, стыковые соединения которых уплотняются с помощью резиновых колец.

1.3.2.Трубы железобетонные напорные

Железобетонные напорные трубы применяются при устройстве подземных напорных трубопроводов, транспортирующих жидкости, неагрессивные по отношению к бетону труб, арматуре и уплотняющим кольцам стыковых соединений. Эти трубы изготовляются методами виброгидро-прессования по ГОСТ 12586.0-83* (табл.1.6.)

1.4.ТРУБЫ ЧУГУННЫЕ НАПОРНЫЕ

1.4.1. Трубы чугунные напорные, изготовляемые методом центробежного и полунепрерывного литья

Трубы этого типа изготовляют из серого чугуна с раструбными соединениями по ГОСТ 9583 классов ЛА, А, Б (табл. 1.7,1.8, 1.9, 1.10)

1.4.2. Трубы чугунные напорные со стыковыми соединениями на резиновых уплотнителях

Эти трубы изготовляются двух конструкций: раструбные с резиновой самоуплотняющейся манжетой и раструбно-винтовые с чугунной или пластмассовой запорной муфтой и резиновым уплотнительным кольцом.

1.5. ТРУБЫ СТАЛЬНЫЕ

По способу изготовления стальные трубы делятся на два вида: сварные и горячекатаные. Сварные трубы изготовляют с продольным сварным, а также со спиральным швом. При изготовлении сварных труб с продольным швом заготовка в виде стального листа необходимого размера сворачивается на прокатном стане, и в месте соединения обоих концов образовавшийся продольный шов сваривается. Сортамент сварных труб по ГОСТ 10704, ГОСТ 8696, ГОСТ 8732 приведены в табл.1.8, 1.9, Таблица 1.8 Размеры, мм и масса кг асбестоцементных труб по ГОСТ 539-80

таолиц	a 1.8	Разм	еры,	мм и	масса,кг	acoec	тоце	менті	ных тр	уо по	1001	539-	80	
Услов-	внутр	енний		в диа-	наружный				ченных	длина	Масса 1м труб класс			ССОВ
ный про-		метр	труб		диаметр	кон	цов тру	/б клас	сов					
ход	B16	BT9	BT12	BT15		BT6	ВТ9	BT12	BT15		ВТ6	ВТ9	BT12	BT15
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
					TP:	/БЫ ПЕГ	ВОГО	ТИПА	L	L				1
100	104	100	96		122	9	11	13		2950	7.8	9.2	10.4	
150	146	141	135		169	11	13.5	16.5	-	2950	12.9	15.2	17.9	
200	196	189	181		221	14	17.5	21.5	•	3950	22.1	26.4	31.2	
250	244	235	228	T	273	15	19.5	23		3950	28.4	35.9	41.1	
300	289	279	270		325	17.5	22.5	27		3950	40.2	49.4	57.4	
350	334	322	312		376	19.5	25.5	30.5		3950	50.9	63.7	74	
400	381	368	356		428	23	29.5	35.5	•	3950	68.8	84.7	98.7	•
500	473	465	441		532	27.5	36	43.5		3950	101.6	127.3	149.2	
	L			.	TP:	убы вто	ОРОГО	ΤΙΠΑ			L			_
200	-	196	188	180	224		14	18	22	5000		24.5	30	35.3
250	-	242	234	226	274	•	16	20	24	5000	•	33.8	40.7	47.3
300		286	276	267	324	•	19	24	28.5	5000		47.7	57.9	66.7
350	•	329	317	307	373	•	22	28	33	5000		62.5	76.5	87.5
400	-	377	363	352	427		25	32	37.5	5000		81.8	100.6	114.8
500		466	450	436	528	•	31	39	46	5000		124.7	151.2	173.6
			4		TP	бы тре	THEF	AUNT (
200	\vdash	198	192	174	224	•	13	16	25	5950	-	22.7	26.7	37.7
300	·	279	270	256	324	•	13.5	27	34	5950	•	49.4	57.4	69.4

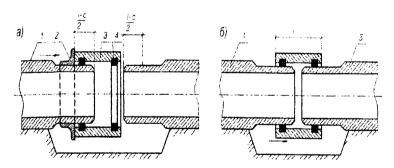


Рис. 1.4. Монтаж трубопровода из асбестоцементных труб на муфтах типа САМ (первый способ):

а - центровка уложенной трубы с укладываемой трубой, на которую предварительно надета до упора (на требуемую глубину) и закреплена муфта; б - надвижка закреплённой на трубе муфты на уложенную трубу и снятие упора; 1 - укладываемая труба, 2 - упорный хомут, 3 - муфта САМ, 4 - резиновое кольцо фигурного сечения (манжета САМ); 5 - уложенный трубопровод

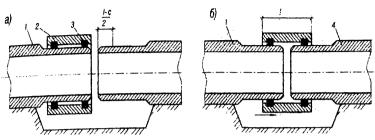


Рис. 1.5. Монтаж трубопровода из асбестоцементных труб на муфтах типа САМ (второй способ):

а - центровка уложенной трубы с укладываемой, на которую предварительно полностью надета муфта; б - надвижка муфты на уложенную трубу с контролем правильности перекрытия торцов стыкуемых труб, 1 -укладываемая труба, 2 - муфта САМ, 3 - резиновое кольцо фигурного сечения (манжета САМ); 4 - уложенная труба

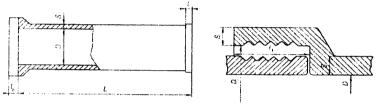
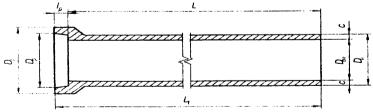



Рис.1.6. Труба керамическая и стык труб

Таблица 1.9. Размеры в мм керамических труб

ruonuga 1.5. i	uswichni r	MINI KCPUMI	HICKMA IPYO			
разме	ры ствола		толицина стенки	размеры раструба		
диаметр внутренний D	Дл	ина	1 '	диаметр внутренний D ₁	глубина I ₁	
	L	нарезки і	ствопаираструбаЅ	diamorp brigiporii wir bi	171901111011	
1	2	3	4	5	6	
150±8	1000; 1200	60	19±3	224	60	
200±9	1000; 1200	60	20±3	282	60	
250±11	1000; 1200	60	22±3	340	60	
300±12	1000, 1200	60	25±3	398	60	
350+13	1000; 1200	70	28±3	456	70	
400±13	1000; 1200	70	30±4	510	70	
450±13	1000,1200	70	34±4	568	70	
500±13	1000; 1200	70	36±4	622	70	
550±13	1000; 1200	70	39±4	678	70	
600±14	1000; 1200	70	41±4	734	70	

Puc. 1.7 Железобетонная труба типа PT

Таблица 1.10. Размеры, мм,и масса,т, железобетонных труб

Услов-	Типо-	D _{8H}	D _H	Dp	Di	С	I _P	L	L ₁	Macca
ный про-	размер									
ход										
400	PT4.50	400	500	530	650	50				0,35
500	PT5.50	500	620	650	790	60	100		5100	1,4
600	PT6.50	600	720	750	890					1,7
800	PT8.50	800	960	990	1170					3
1000	PT10.50	1000	1200	1230	1450	80		5000		4,6
1200	PT12.50	1200	1420	1450	1690		}			6,1
1400	PT14.50	1400	1620	1650	1890	110	110		5110	7
1600	PT16.50	1600	1840	1870	2130					8,7
2000	PT20.45	2000	2260	2300	2580	120				
2400	PT24.39	2400	2700	2740	3060					
						130	130	4500	4630	10,6
						150	140	3000	3140	10,3

Таблица 1.11. Размеры, мм,и масса,т, железобетонных труб,изготовляемых методом центрифугирования

центрифути	гровани	1 <i>7</i> 1							
	<u> </u>	¥ e ¥ a	, Б	лй Убы		Наружный	диаметр		
Марка трубы	ход	Толщина стен- ки сердечника	Полезная дли- на трубы	Внутренний диаметр трубы	Раструба	Втулочного конца	Буртика	Сердечни- ка	Масса справоч- ная
ЦТН50 - I ЦТН50 - II ЦТН50 - III	500	40	5000	636	750	610	630	580	1,43
ЦТН60 - I ЦТН60 - II ЦТН60 - III	600	45	5000	756	880	730	750	690	1,95
ЦТН80 - I ЦТН80 - II ЦТН80 - III	800	55	5000	957	1100	930	950	910	3
ЦТН100 - I ЦТН100 - II Цтн100 - III	1000	65	5000	1177	1340	1150	1170	1130	4,14
ЦТН 120 - I ЦТН120 - II ЦТН120 - III	1200	80	5000	1399	1590	1370	1392	1360	6,12
ЦТН140 - I ЦТН140 - II ЦТН140 - III	1400	90	5000	1619	1830	1590	1612	1580	7,7
ЦТН160 - I ЦТН160 - II ЦТН 160 - III	1600	100	5000	1843	2070	1810	1836	1800	9,63

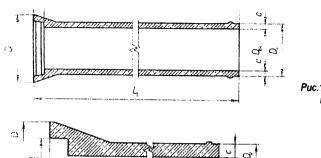


Рис.1.8. Железобетонная труба типа РТБ

Таблица 1.12. Размеры, мм, и масса, т, железобетонных труб типа РТБ

Taviluga	1.12. 1 asm	יוםקם, ועוש	i, ii macce	i, i, medie	SOUCIONE	ו טעקו אופו	nnarit	_	
Услов-	Типораз-	D _{ВН}	D _H	Dp	D ₁	С	L	Ц	Macca
ный про-	мер								(справоч-
ход									ная)
400	PT54.50	400 500	500	520	684	50		5145	0,95
500	PTB5.50	600 800	620	650	834	60			1,5
600	PT66.50	1000	720	750	934	90			1,7
800	PT68.50	1200	960 1200	990	1210	80		5160	3
1000	PT510.50	1400	1420	1230	1498		5000	3.33	4,8
1200	РТБ12.50	1600	1620	1450	1710	110		5170 5175	6,3
1400	PTБ14.50		1840	1656	1946			5185	7,3
1600	PTБ16.50			1876	2170	120			9

Таблица 1.13 Размеры, мм, масса, т, железобетонных труб, изготовляемых методом виброгидропрессования по ГОСТ 12586.0-83

Условный проход	Марка трубы			размеры	трубы т			масса трубы
1	2	3	4	5	6	7	8	9
500	TH50-0 TH50-I TH50-II	500	610	634	790	628	5000	1.32
600	TH60-0 TH60-I TH60-II	600	730	754	940	748	5000	1.89
800	TH80-I TH80-II TH80-III	800	930	955	1152	948	5000	2.48
1000	TH100-I TH100-II TH100-III	1000	1150	1175	1384	1168	5000	3.55
1200	TH120-I TH120-II TH120-III	1200	1370	1397	1660	1390	5000	4.95
1400	TH140-I TH140-II TH140-III	1400	1590	1617	1900	1610	5000	6.65
1600	TH160-I TH160-II TH160-III	1600	1810	1841	2140	1834	5000	8.20

Рис. 1.9. Стыковое соединение чугунных труб

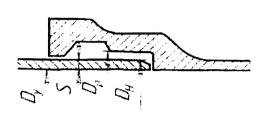


Таблица 1.14. Размеры, мм, и масса, кг, труб чугунных напорных со стыковыми

соединениями на резиновой самоуплотняющейся манжете

	иями на ре		самоу	плотняю	щейся ма	анжете		
Услов- ный про- ход D _y	Наружный диаметр D _н	Толщи- на стен- ки S		асса трубы і	при строите.	льной длин	е L, м	Масса 1м труб без раструба
ход Бу		KN S	2	3	4	5	6	
	-	L		Трубык	ассаЛА		I	
65	81	6,7	26,8	38,1	-	-	-	11,3
80	98	7,2 7,5 8,3	-	4 9,7	-	-	-	14,9
100	118	7,5	-	62,9	81,8	101	-	18.9
150	170	8,3	-	101	132	162	193	30.5
200	222	9,2	-	-	192	236	281	44,6
250	274	10	-	-	259	319	379	60,1
300	326	10,8	-	-	334	412	489	77,6
	L			Трубык	ласса А	l	l	
65	81	7,4 7,9 8,3 9,2	29	41,4		-	-	12,4
80	98	7,9	-	53,6	-	-	-	16,2
100	118	8,3	-	68,6	89,4	110	-	20,8
150	170	9,2	-	111	144	178	212	33,7
200	222	10,1	-	-	209	258	306	48,8
250	274	11	-	-	282	348	414	65,9
300	326	11,9	-	-	364	450	535	85,2
	L	L	L	Трубы к	ласса Б	L	l	1
65	81	8,0	30,8	44,1	-	- -	-	13,3
80	98	8,6	-	57,5	-		-	17,5
100	118	9	-	73.1	95,4	118	-	22.3
150	170	10	-	119	155	192	228	36.4
200	222	11	-	-	225	278	331	52.9
250	274	12	-	-	305	376	448	71,692,7
300	326	13	-	-	394	487	580	1

Таблица 1.15 Размеры, мм. и масса, кг. раструбов

raonaga	1. 10 I asmicp	DI, MINI, FI MICE	ccu, ki, paci	Pycos			
Dy	Dн	D ₁	D ₂	D_p		Macca	7
65	81	91	109	97	80	4,2	1
80	98	108	126	116	80	5,0	١
100	118	131	148	136	85	6.2	-
150	170	183	204	191	90	9,7	
200	222	235	260	245	90	13,5	ĺ
250	274	287	313	299	95	18,2	1
300	326	339	366	352	100	23,6	1

Таблица 1.16 Размеры, мм, и масса, кг, чугунных труб и раструбов

10071444		P-1,	***	i	, .,.,			
Условный	Размеры ц	илиндр	ической	части		Má	acca	
проход	наружный	толь	цина сте	ЭНКИ	1 м трубы (без растру	ба) класса	раструба
	диаметр	ЛА	Α	Б	ЛА	Α	5	
65	81	6,7	7,4	8	11,3	12,4	13,3	4,1
80	98	7,2	7,9	8,6	14,9	16,2	17.5	4,9
100	118	7,5	8,3	9	18,9	20,8	22,3	6,3
125	144	7,9	8,7	9,5	24,5	26,8	29,1	7,8
150	170	8,3	9,2	10	30,5	33,7	36,4	10,2
200	222	9,2	10,1	11	44,6	48,8	52,9	14,6
250	274	10	11,	12	60,1	65,9	71,6	20
300	326	10,8	11,9	13	77,6	85,2	92,7	26
350	378	11,7	12,8	14	97,6	106,5	116,1	31,9
400	429	12,5	13,8	15	118,5	13,5	141,4	40,9
500	532	14,2	15,6	17	167,5	183,5	199,4	59,6
600	635	15,8	17,4	19	222,9	244,8	266,6	79,5
700	738	17,5	19,3	21	287,2	316	342,9	102
800	842	19,2	21,1	23	359,8	394,6	429	136
900	945	20.8	22,9	25	437,8	480,9	523,9	174
1000	1048	22,5	24,8	27	525,6	578	627,9	222

Рис. 1.10. Раструбное стыковое соединение чугунных труб:
а - с резиновой уплотнительной манжетой, б...г - с резиновым уплотнительным кольцом;
1 - запорный зуб, 2 - раструб, 3 - манжета, 4 - кольцо, 5 - гайка (муфта),
6 - накидной болт, 7 - фланец.

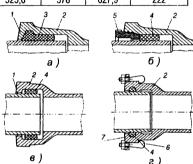


Таблица 1.17. Размеры и вес чугунных труб стационарного литья

	Наружный		Кл	acc A				K	ласс Б			
ный про- ход Dy	диаметр Он	Толщина стенки трубы			с растру не в м	бом при	настенки			ы с раструбом ине в м		
	в мм		3	4	5	6	трубы в мм	3	4	5	6	
125	144	8,7	89	116	143	170	9,5	96	125	154	184	
150	170	9,2	112	145	179	213	10	120	156	193	229	
200	222	10,1	- '	210	259	307	11	_	226	279	332	
250	274	11	— ·	284	350	416	12	_	307	378	450	
300	326	11,9	_	368	453	538	13		398	490	583	
350	378	12,8	_	460	566	673	14		498	614	730	
400	429	13.8	l —	564	694	825	15		608	749	890	
450	480	14,7		678	835	992	16		726	895	1064	
500	532	15,6		795	978	1162	17	_	859	1058	1257	
600	635	17,4	_	1062	1307	1552	19	_	1149	1416	1683	
700	738	19,3	_	1376	1692	2008	21	_	1484	1827	2170	
800	842	21,1		1721	2116	2511	23	_	1859	2288	2717	
900	945	22,9	_	2108	2589	3070	25	_	2280	2804	3328	
1000	1048	24,8		2551	3129	3707	27		2750	3378	4006	
1200	1256	28,4	_	3494	4288	5082	31	-	3778	4642	5506	

Таблица 1.18. Сортамент стальных бесшовных горячекатаных труб

Условный проход D _Y	Наружный диаметр Dн	Толщина стенки	Вес 1 пог. м в кг
	B MM		
150	159	4,5	17,15
150	159	7	26,24
175	194	5	23,31
175	194	8	36,7
200	219	7	36,6
200	219	8	41,63
250	273	7	45,92
250	273	9	58,60
300	325	9	70,14
300	325	10	77,68
350	377	9	81,68
350	377	10	90,51
400	426	10	102,59
400	426	11	112,58
450	480	9	104,52
450	480	12	139,49
500	530	9	115,62
500	530	. 14	178,44



Рис. 1.10. Сварной шов
а - наложение слоев при трехслойной сварке стыка; б - подготовка труб к сварке; в - толщина стенок труб; с - смещение кромок стенок труб; h -усиление шва; A - зазор между кромками труб;
В - ширина сварного шва; S - притупление кромок; 1, 2 и 3 - слои шва, наносимые при сварке.

Таблица. 1.19. Сортамент сварных стальных труб с продольным швом

	ида. 1.19. Сортамент сварных стальных труо с продольным швом Вес 1 пог. м в кт при толщине стенки в мм												
Нару-	Ĺ												
жный	4	4,5	5	5,5	6	7	8	9	10	11	12	14	16
диаметр в	i	1			i	1	1		1				
MM		ļ.,	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>						
108	10,26	11,49		13,9	ł	1					ŀ		
114	10,85	12,15		14,72	l	ł		1	i		}	Ì	
121	11,54	12,93		15,67	ł			1	1				
127	12,13	13,59		16,48	į	1	}				ĺ		
133	12,73	14,26		17,29	j		1					1	
140	13.42	15,04		18,24	l		İ		1			1	
152	14,60	16,37		19,87	1	l		i					
159	15,29	17,15			22,64	26,24	29,79		1		1		
168	16,18	18,14	20,1	22,04	23,97	27,79	31,57	ļ	l		1	İ	
180	17,36	19,47		23,67	25,75	F	ŀ	i	1		İ		i 1
194	18,74	21,03		25,57	27,82	32,28	1	•	1				[[
203	19,63	22,03		26,79	29,14	33,83	}	ļ			}		
219	21,21		26,39	28,96	31,52	36,6	41,63	46,61	İ		ŀ		
245	23,77	26,69		32,48	35,36	41,09	46,76	-				i	1 1
273	26,53	29,8	33,04		39,51	45,92	52,28	٠ -			ļ		
299	29,10	32,68	36,25	39,81	43,35	50,4	57,41	-					
325	31,66	35,57	39,46	43,33	47,2	54,89	62,54	70,14	ļ				
351	34,23	38,45		46,86	51,05	59,38	67,67	75,91	84,1		l		1 1
377	36,79	41,34		50,39	54,89	63,87	72,8	81,68	90,51		l	İ	
402	39,26	44,11			58,59	68,18	77,73	87,21	96,57		İ		
426	41,63	46,77			62,14	72,33	82,46	92,56	102,59		122,52	l	
480	46,95	52,77			70,13	81,65	93,12	104,5	115,9	127,22	139,49	ŀ	
530	51,88		64,73	71,14	77,53	90,28	102,98	115,6	128,23	140,78	154,29	l	
630	61,75		77,06	84,7	92,33	107,5	122,71	137,9	152,89	167,91	182,88		
720	t	+	88,17	96,91	105,7	123,1	140,5	157,8	175,1	192,3	209,5		
820	ŀ	<u> </u>	100,5		120,5	140,3	160,2	180	199,8	219,5	239,1	278,3	
920	ŀ	ŀ	112,8		135,2	157,6	179,9	202,2	224,4	246,6	268,7	312,8	356,7
1020	t	<u> </u>	125,2	137,6	150	174,9	199,7	224,4	249,1	272,7	298,3	347,3	396,2
1120	t	+	ŀ		164,8	192,1	219,4	246,6	273,7	300,8	327,9	381,9	435,6
1220	t	-	ŀ		179,6	209,4	239,1	268,8	298,4	328	357,5	416,4	475,1
1320	ŀ	+	ŀ	178,28		226,7	258,9	291	323	355,1	387,1	450,9	514,5
1420	ŀ	+	ŀ	191,85	209,2	243,9	278,6	313,2	347,7	382,2	416,7	485,4	554
1520	t	+	}	+	}	ŀ	<u> </u>	-	372,4	409,4	446,3	519,9	593,5
1620	<u> </u>	<u> </u>	}	<u> </u>	H	<u> </u>	F	-	397,1	436,5	475,9	554,5	632,5

Таблица 1.20. Сортамент стальных электросварных труб со спиральным швом

Условный	Наружный		Вес 1 пог. м в кг при толщине стенки в мм											
проход D _у в мм	диаметр D _H в мм	4	5	6	7	8	9	10	11	12				
400	426	42,25	52,7	63,1	73,4	83,7	_	-	_	_				
450	480	47,66	59,5	71,2	82,9	94,5	_	_	_	_				
500	530	52,66	65,7	78,7	91,6	104,5	117,4	_	_	-				
600	630	_	78,2	93,7	109.1	124,5	139,9	155,2	_	-				
700	720	-	89,5	107,2	124,9	142,6	160,2	177,7	195,2	212,6				
800	820	_	102	122,3	142,4	162,6	182,7	202,7	222,7	242,7				
900	920	_	-	_	_	182,6	205,2	227,8	250,3	272,7				
1000	1020	_	—	-	_	202,6	227,7	252,8	277,8	302,8				
1200	1220	_	-	_	-	_	_	_	332,9	362,8				

ПРИЛОЖЕНИЕ 2

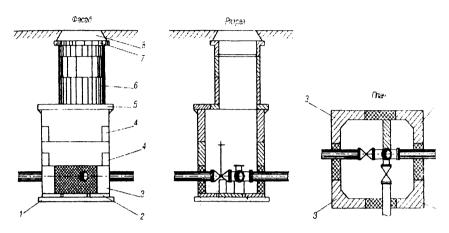


Рис. 2.1. Водопроводный прямоугольный колодец из сборных элементов

1 - бетонная подготовка; 2 - сборное железобетонное днище; 3 - фундаментные блоки; 4 - стеновые блоки; 5 - блоки перекрытия; 6 - цилиндрическая горловина; 7 - опорное кольцо; 8 - люк

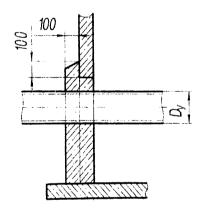
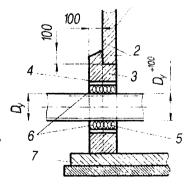



Рис. 2.2. Деталь заделки труб в стенах колодцев, сооружаемых в сухих непросадочных грунтах

Рис.2.3. Деталь заделки труб в стенах колодцев, сооружаемых в мокрых грунтах:

1- стеновое кольцо, 2 - покрытие горячим битумом за два раза, 3 - бетон, 4 - стальной патрубок-футляр, 5 - асбестоцементный раствор, 6 - просмоленный канат, 7 - плита-днище

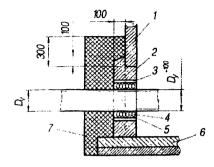


Рис. 2.4. Деталь заделки труб в стенах колодцев, сооружаемых в просадочных грунтах:

1 - гидроизоляция внутренней поверхности стенок, 2 -бетон, 3 - стальной патрубок-футляр, 4 - асбестоцементный раствор, 5 -просмоленный канат, 6 - плита-днище, 7 - водоупорный замок из мягкой глины.

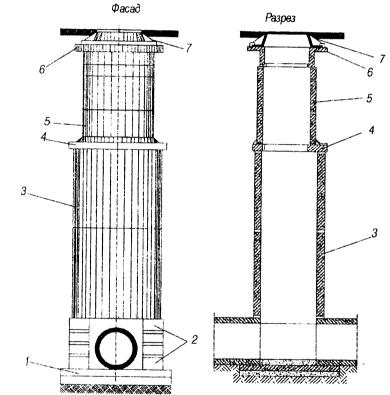


Рис. 2.5. Канализационный цилиндрический колодец из сборного железобетона: 1 - плита днища; 2 - фундаментные блоки; 3 - кольцо колодца; 4 - плита покрытия; 5 - кольцо цилиндрической горловины; 6 -опорные кольца; 7 - металлический люк

Таблица 2.1	. Колодц	ы сборнь	е железо	бетонн	ые			
Наимено-	Марка	Внут-	Высота,	Толщи-	Расход	Macca,	Расход	металла
вание		ренний	MM	на стен-	бетона,) т	на 1 изде-	на 1 м ³ бе-
		диаметр		ки, мм	M ³		лие, кг	тона, кг
		ММ	į			ł		
Рабочие	ДК-10	1000	1270	80	0,52	1,3	19,67	37,83
камеры ка-	КЛ-10	1000	2410	80	0,92	2,3	28,55	31,03
нализа-	КЛ-12	1250	2630	80	1,4	3,5	36,97	26,4
ционных	КЛ-15	1500	3870	90	1,6	4	43,5	27,1
колодцев	КЛ-20	2000	3110	100	3,2	8	76,4	23,9
То же, водо-	ВД-8	800	1650	80	0,472	1,175	15,96	43,1
сточ-ных	BC-10	1000	1800	80	0,56	1,4	21,15	37,8
колодцев	BC-12	1250	1800	80	0,72	1,8	25,04	34,8
	BC-15	1500	1980	90	1,006	2,65	28,2	26,6
То же, во-	ВГ-12	1250	1980	80	0,71	1,78	33,8	47,5
допровод-	BF-15	1500	1980	90	0,99	2,48	44,32	44,77
ногазовые	BF-20	2000	1980	100	1,44	3,6	65,95	45,8
колодцы	BF-25	2500	1980	100	2	5	105,12	52,56
	ΠK-10	1200	120	-	0,09	0,225	14,78	164,8
	ΠK-12	1450	140	-	0,18	0,45	53,56	130,9
	ΠK-15	1720	140	-	0,27	0.68	31,94	118,3
	ΠK-20	2240	160	- 1	0,54	1,35	77,37	143,3
	∏K-25	2740	180		0,96	2,4	120,49	125,5
Плиты пере-	ПВГ-15	1720	140	-	0,27	0,68	33,24	123,1
крытий	ПВГ-20	2240	160	-	0,57	1,43	71,46	125,4
	ПВГ-25	2740	180	-	0,99	2,48	116,78	117,9
	∏K-15-10	1720	140	-	0,22	0,55	30,15	137,04
	ПК-20-10	2240	160	-	0,5	1,25	73,32	146,64
	ПК-25-15	2740	180	-	0,74	1,85	111,44	150,59
Плита ого- ловок	ППН	1750	220	-	0,85	2,12	100,05	117,7
	K-IA	700	250	70	0,064	0,16	2,14	33,44
	K-7p-1	700	310	70	0,057	0,142	10,46	184
	K-7p-2	700	310	70	0,067	0,168	3,58	53,5
	K-7-1,5	700	145	70	0,025	0,063	0,89	35
Кольца гор-	K-7-5	700	495	70	0,084	0,21	2,46	29,3
ловины	K-7-10	700	990	70	0,168	0,42	4,37	26
	K-10-10	1000	990	80	0,27	0,68	6,71	24,9
	K-12-10	1250	990	80	0,33	0,83	7,92	24
	K-15-10	1500	990	90	0,44	1,1	10,38	23,6
	K-20-10	2000	990	100	0,66	1,65	16,76	25,4

Таблица 2.2 Смо	отровые у	унифици	рованные	колодцы.
		1		

Таблиц	<u>Таблица 2.2 Смотровые унифицированные колодцы.</u>													
					_		Хар	актерист	ика и	здель	1Я	_		
Колодец	Марка	Эскиз изделия				Габа	риты	, MM			Macca	Объё	M, M ³	
			Двн	б	Н	Б	Α	61/62	а	Д2	Kľ	изде- лия	бето- на	
Канали- за- ционный	K-15-2p	Q D, KDBUKS	1500	90	3260	1100	950	120/140	370	1720	4130	1,65	1,65	
Водо- сточный	B-15-21	I Lituramon	1500	90	2160	1100	950	120/140	370	1720	2980	1,19	1,19	
Водо- провод- ный и газовый	BГ-15-2¹	D D DANGE	1500	90	2160	1100	700	120/140	370	1720	300	1,2	1,2	
Канали- за- ционный	K-2-10-2 ²		1000	80	2670	670	600	160/120		1200	2780	1,11	1,11	
Водо- сточный	B-2-10-2 ²	L Charles	1000	80	1770	670	600	160/120	,	1200	1680	0,67	0,67	
Водо- сточный	B-2-12-2 ¹		1200	80	1790	910	810	190/140	-	1400	2250	0,9	0,9	
Канали- за- ционный	K-2-12 ³	D. Kronaka	1200	80	2930	700	805	190/140	-	1400	3250	1,3	1,3	
Дожде- при- ёмный	ВД-8⁴	I 5 4	800	80	1650	400	400	1.00/-	-	1000	1120	0,448	0,448	

Таблица 2.3 Технические данные сборных железобетонных изделий, применяемых сооружений круглых камер и колодцев.

Изделие	Марка изде- лия	Внутре- нний диа- метр ко- лец и лазов D, мм	Наружный диаметр изделий Dн, мм	Высота стеновых колец Н, мм	Толщи- на из- делий б, мм	Диаметр труб d, мм	Ширина отверс-тия b, мм	Высота	Справочная	Объём бето- на, м ³	Расход стали, кг
1	2	3	4	5	6	7	8	9	10	11	12
J. J.	KC7-1 KC7-2	700	840	209 890	70	-	-	-	130 380	0,05 0,15	1.8 5.5
	KC10-1 KC10-2	1000	1160	590 890	80	-	-	-	40 0 610	0,16 0,24	4,2 6.5
	KC15-1 KC15-2	1500	1680	590 890	90	-	-	-	660 1000	0,265 0.4	8,1 13,2
4	KC20-1 KC20-2 KC20-3	2000	2200	590 890 1190	100	-	-	-	970 1470 1540	0,39 0.59 0,62	13,8 21 55,1
13	KC-10-2-1A	1000	1160	890	80	200	450	400	570	0,23	14,2
	KC15-1-1A KC15-2-1A	1500	1680	590 890	90	400	600	350 500	600 770	0,2 0,31	20,6 31 9
	KC20-1-1A KC20-2-1A KC20-3-1A	2000	2200	590 890 1190	100 100 100	600	900	360 500 600	740 1120 1540	0,29 0,45 0,62	31.7 43.6 55,1
	ПД10-1-1 ПД15-1-1 ПД20-1-1	-	1500 2000 2500	- - -	100 120 120			- - -	440 940 1470	0,18 0,38 0.59	98 27,3 65,2

Продолжение таблицы 2.3

J. 000 13	KO7-1	580	840	-	70	-	-	-	50	0,02	0.9
U; J.J	ПП10-1-1	700	1160	-	150	-	-		450	0,1	10,8
B T BOX 20	ПП15-1-1	700	1680	•	150	-	-	•	690	0,28	27,9
	ПП15-2-1	700	1680	-	150	•	-	-	690	0,28	27,4
(0)	ПП20-1-1	700	2200	-	150	-	-		1280	0,51	46,4
	ПП20-2-1	700	2200	•	150	-		-	1280	0,51	47,8
	ПНЛ1-1	930 (590)	-	-	220	-	-	-	2120	0,85	99,8
Камни регули- ровочные	KP	660	840	-		-	-	-	6	0,002	-
Плита дорож- ная с нишей для люка	ПД-1	-	-	-	-	-	-	-	2120	0,85	99,8

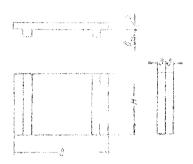
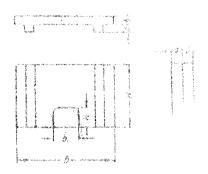



Рис. 2.6. Панели стен прямоугольного колодца Рис. 2.7.Панели стен прямоугольного колодца

с проемами для заделки труб

Рис. 2.8. Фундаментный блок под плиту днища прямоугольного колодца

Puc. 2.9. Плита днища прямоугольного колодца

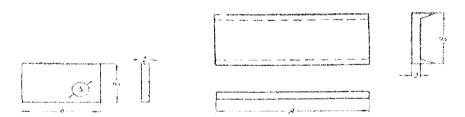


Рис. 2.10 Плита перекрытия прямоугольного колодца (П) с отверстием

Рис. 2.11. Усиленная плита перекрытия прямоугольного колодца (УП) без отверстия

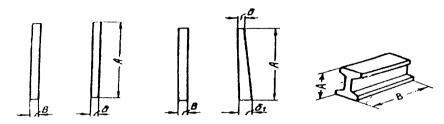
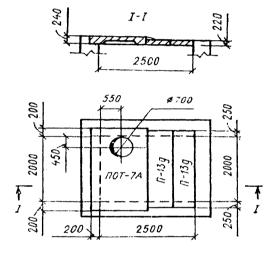
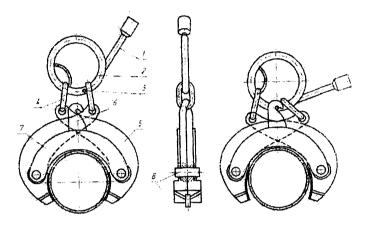



Рис. 2.12. Плиты водобойные Рис. 2.13. Плиты водобойные ВП-1 и ВП-2 ВП-3 и ВП-4


Рис. 2.14. Фундаментные блоки

Puc. 2.15. Раскладка плит перекрытия прямоугольного колодца размером 2000x2500 мм

ПРИЛОЖЕНИЕ 3

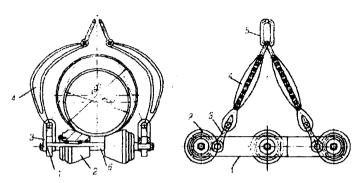

ГРУЗОЗАХВАТНЫЕ И МОНТАЖНЫЕ ПРИСПОСОБЛЕНИЯ

Рис.3.1. Захват клещевой 1-ручка для открывания захвата; 2 - кольцо; 3 - штырь; 4 - звено; 5-рычаг; 6 - крюк; 7 - корпус; 8 — ось

Таблица 3.1. Техническая характеристика клещевых захватов

Марка захвата	Диаметр поднимаемых труб в мм	Грузоподъёмность максимальная в т	Вес захвата в кг
K3-1,5	158	1	10,8
K3-2	219	2	23
K3-3	325	3	38
K3-4	426	4	69,8
K3-5	529	3,7	108,3
K3-5A	529	3,7	91
K3-6A	630	5	120,2
K3-7	720	5	213,7
K3-7A	720	5	149
K3-8	820	6,5	312.4
K3-8A	820	6,5	233.4
K3-10	1020	12	487.5
K3-10A	1020	12	361,5
K3-111	89-114	0.7	7,4
K3-161	114-168	1	9,6
K3-1221	1220	15	547
K3-1421	1420	23	926

Рис. 3.2. Троллейная подвеска Т-20 (ТП-6) 1 - щека; 2 - каток; 3 - скоба; 5 - петля; 6 – ось

Таблица 3.2. Технические данные троллейных подвесок для труб

Maria C. Z. Textill led	me Harr			,,	* F.J		
Показатели	T-6; TП-371C	T-12A TП-521C	T-20 (TП-6)	T5-20A	Т35; ТП-1021С	T-50A; TП-1222C	TTI-1423C
Грузоподъёмность в т	6	12,5	20	20	35	50	50
Диаметр поднимаемых труб в мм	89-377	377-529	630-820	720-820	1020	1220	1420
Количество осей	2	3	3	2	4	4	4
Количество катков	-	6	6	4	8	8	8
Наибольший диаметр катка в мм	-	282	300	-	420	-	-
		Габарить	ые раз м ерь	I B MM:			
Длина по оси трубо- провода	-	940	1194		1170		1960
Ширина	-	850	130	-	1580	-	2100
Высота	-	1140	1500	-	1950	-	2700
Вес в кг	82	212	543	650	742	1344	1500

Технические данные полотенец для опуска трубопроводов

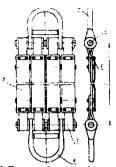
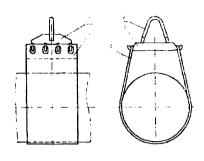



Рис.3.3. Тросовый захват (полотенце) 1-тросовая лента; 2 - зажимы; 3 - ось; 4 - серьга; 5 - лента прорезиненая транспортерная

Рис.3.4. Мягкое полотенце ПМ 1 - поперечина; 2-серьга; 3 - стальной лист; 4 - пента; 5 - пластина

Таблица 3.3. Технические характеристики тросовых захватов и полотенец

toriada e.e. Textur tecime xapantepuetunu tpecebbix saxbateb u neriotetted								
Показатели	ПМ-377	TTI-529	TП-630	TП-820	TП-1020	ТП-1420	ΠM-1221	ΠM-1422
Грузоподъёмность в т	6	6	8	15	15	20	35	50
Диаметр опускаемых труб	89-377	529	630	720-820	1020	1220- 1420	1020- 1220	1420
Ширина полотенца в мм	260	480	-	600	600	800	800	800
			Тросова	зя лента:				
сечение в мм	78x12	78x12	78x12	78x12	78x12			-
количество	2	3	3	4	4		1	1
Расстояние I между осями в мм	1600	2000	2500	2800	3600	5780	5780	5780
Вес в кг	58	96	120	140	170	280	199	299

Таблица 3.4. Техническая характеристика захвата клещевого полуавтоматического для труб

<u>-</u>			
Грузоподъёмность, т	3,2	5	
Диаметр труб	B MM.		
без колодки	500; 530; 560	820	
с одной колодкой	450; 480	720	
с двумя колодками	402; 426	630; 600	
Наибольшая длина труб, мм	4000	4000	
Габарит (в открытом положении) мм:		
длина	860	1120	
ширина	275	275	
высота	2750	2900	
Масса, кг	197	242,3	

Таблица 3.5. Техническая характеристика троллейных подвесок для неизолированного трубопровода

Показатель	ТП371ХЛ	ТП521ХЛ	т⊓822ХЛ	TΠ1023X	ТП1425ХЛ
Грузоподъёмность, т	6,3	12,5	20	35	63
Диаметр поднимаемых тру- бопроводов, мм	89-377	377-530	377-820	1020	1220-1420
Число катков	4	6	6	8	12
Число рядов катков по обра- зующей трубы	2	3	3	4	4
Число рядов катков по пе- риметру трубы	2	2	2	2	3
	Габар	оитные размер	ы, мм		
длина	600	942	1194	1770	2106
ширина	645	835	1280	1580	1034
Высота	870	1140	1500	1950	2630
Масса, кг	82	212	542	1342	1500
		L	L	L	

Таблица 3.6. Техническая характеристика троллейных подвесок для изолированного трубопровода

у оону овода					
Показатель	ΤΠΠ321	ТПП1021	ТПП1022	ТПП1421	ТПП1423
Грузоподъёмность, т	2	23	32	63	60
Диаметр поднимаемых трубопроводов, мм	80-325	1020	1020	1220-1420	1220-1420
	Габ	аритные разме	ры, мм		
длина	1480	2120	2180	2120	3500
ширина	675	1700	1800	2034	2350
высота	1130	2150	2575	2630	2985
Масса, кг	205	1155	1380	1400	1860

Таблица 3.7. Техническая характеристика полотенец мягких

Показатель		С метал	Без металлических пласти				
Грузоподъёмность, т	8	16	25	40	63	32	60
Диаметр подни- маемых труб, мм	89-325	377-530	630-820	1020	1020-1420	1020	1220-1420
Ширина полотенца, мм	200	400	600	800	800	400	400
		F	азмеры ле	нты, мм			
толщина	10	10	10	10	10	10	10
длина	2440	30Ю	3350	5080	5080	5055	5055
Масса, кг	20,7	38	81	108	387	147	523

Таблица 3.8. Техническая характеристика захватов серии ЗТА

3TA31	3TA101	3TA102
3	10	10
530-820	1020-1420	1020-1420
9-12	9-12	9-12
Размеры, мм	<u> </u>	
12400	12400	12400
620	1160	1130
1260	1750	1750
1225	2150 1960	1960
	3 530-820 9-12 Размеры, мм 12400 620 1260	3 10 530-820 1020-1420 9-12 9-12 Размеры, мм 12400 12400 620 1160 1260 1750 1225 2150

Таблица 3.9. Техническая характеристика захватов серии 3Т

<u>гаолица э.э. техническая характеристика захв</u>	атов серии эт	
Показатель	3T822	3T1422
Грузоподъёмность, т	6	9
Диаметр поднимаемых труб, мм	530-820	1020-14201
Длина поднимаемых труб, мм	11-12	11-12
Число одновременно поднимаемых труб	1-2	1
Размеры, мм		
длина	12400	12400
ширина	620	1160
высота	1260	1750
Масса, кг	1225	2150
		1

Таблица 3.10. Техническая характеристика траверс

Показатель	TPB41	TPB61	TPB182
Грузоподъёмность, т	4	6	18
Диаметр поднимаемых труб,	273-355	377-820	1020-1420
Длина труб	(в м), поднимаемых п	ри помощи	
строп	7-12	8-12	8-12
мягких полотенец	24	24	-
	Размер, мм	1	
высота	450	450	606
Масса, кг	897	945	1530

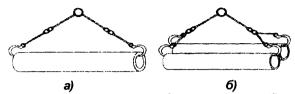


Рис. 3.5. Грузозахватные устройства с двумя (а) и четырьмя (б) крюками

а -универсальным, б - облегченным с крюком на конце, в - с обхватом груза в двух местах

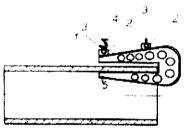
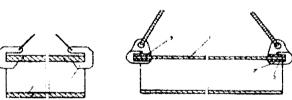



Рис. 3.7. Скоба для опускания в траншею короткий труб

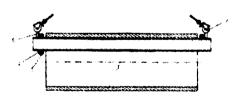


Рис. 3.8 . Приспособления для опускания труб а -торцевой захват; 6 -торцевой захват с резиновыми прокладками; в траверса; 1 - труба; 2 крюж; 2 - резиновая прокладка; 4 - фланец; 5 - резиновая шайба; 6 - скоба для закрепления крюка

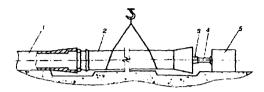


Рис. 3.9. Схема монтажа труб при помощи бетонного переносного упора 1 - уложенная труба; 2 - укладываемая труба; 3 -деревянный брус; 4 - реечный домкрат, 5 - бетонный упор

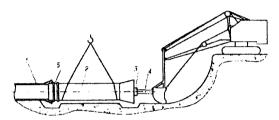


Рис. 3.10. Схема монтажа труб при помощи ковша экскаватора 1 - уложенная труба; 2 - укладываемая труба; 3 -деревянный брус; 4 - реечный домкрат; 5 - резиновое кольцо

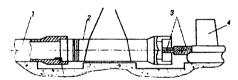
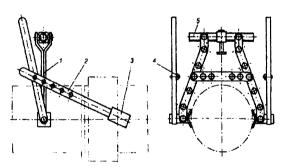



Рис. 3.11 Схема монтажа труб при помощи бульдозера или трактора 1 - уложенная труба; 2 - укладываемая труба; 3 - деревянные брусья; 4 - бульдозер или трактор; 5 - металлический вкладыш

Рис. 3.12. Рычажный домкрат: 1 - корпус; 2 - тяга; 3 - захват; 4 - рычаг; 5 - стяжной винт

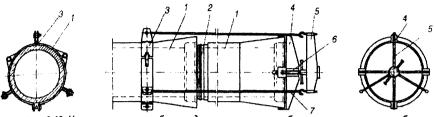


Рис. 3.13. Натяжное приспособление для монтажа железобетонных напорных труб 1 - железобетонная предварительно напряженная труба; 2 - резиновое кольцо; 3 - разъемный хомут на шарнирах: 4 - упорная крестовина; 5 - натяжная крестовина; 6 - упорный винт; 7 - натяжной трос

Таблица 3.11. Грузозахватные приспособления

тарлица з. т	 Грузозахватные приспо 	сооления			
Наименование	Схема	Грузоподъ-	Длина,	Macca,	Способ приме-
		емность, т	М	кг	нения
Универсальны й		36	3,2	10	Подъем конст-
облегченный		5	3,8	11	рукций труб со
строп УСК-1	C	63	4,5	12	страповкой в
_		10	5,5	15	обхват
Универсальный	Marine Marine Marine	50	810	25	Подъем конст-
петлевой строп		100	812	50	рукций и труби
УСК-2	1 100	125	812	60	оборудования
	The state of the s	200	1015	120	со строповкой в
					обхват или «на
					удав»
Двухветлевой	385	20	2	15	Монтаж балок,
строп 2СК		50	2,5	25	ригелей, стено-
		80	3 5	40	вых панелей,
	\$ \frac{1}{2}	125	5	75	оборудования
					за монтажные
					петли
Четырехветлевой		25	2,5	30	Монтаж плит
строп 4СК	 	40	2,5	40	покрытия, пере-
		63	3	80	крытия, лест-
		10	3,5	110	ничных маршей,
					оборудования
					за монтажные
	J 39 9				петли
	999				
	\				

ПРИЛОЖЕНИЕ 4

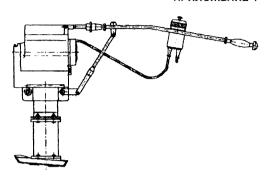


Рис.4.1. Электротрамбовка ИЭ-4503

Таблица 4.1. Технические требования к средствам механизации уплотнения грунта в

стеснённых условиях

	Навесные	трамбовки	Подвесные трамбовки на кранах и экскаваторах		
Показатели	к малогабариным к одноковшовым экстракторам и само- ходным шасси приводом		с регулируемой энергией удара	вибрационные	
Энергия удара, кгс*м	50-250	250-700	700-3000		
Площадь уплотняю- щей плиты, м ²	0,1-0,25	0,25-0,8	0,8-2,2	0,6-3	
Глубина уплотнения, м	0,3-0,5	0,5-0,9	0,9-1,5	0,6-2	
Привод уплотняющего рабочего органа	Гидравлический	Механический и гид- равлический	Электрический и от двигателя вну реннего сгорания		
Производи-тельность, м э/ч	50-100	50-200	50-200	60-300	
Масса, т	0,1-0,3	0,3-1	1-5	2-10	

Таблица 4.2. Значения толщины уплотнённого отсыпаемого слоев грунта при

различных коэффициентах уплотнения

Вид грунта	Толщина уп- лотнённого	Толщина отсыпаемого слоя, см, при коэффициенте уплотнения К							
Бид грунта	слоя, см	0,98-0,97 0,96-0,95		0,94-0,93	0,92-0,91				
Постоинт	40	60	55	50	45				
Песчаный	60	80	75	70	65				
Cyman	40	60	55	50	45				
Супесь	60	85	80	75	70				
Суглинок (ле-	40	65	60	55	50				
совидный)	60	100	95	90	85				
Charming	40	60	55	50	45				
Суглинок	60	80	75	70	65				
Глинистый	40	80	55	50	45				
	60	85	80	75	70				

Таблица 4.3. Характеристики и режимы работы машин и механизмов при

уплотнении грунтов оптимальной влажности по числу проходов									
Тип и марка уп-	Вид уплотняе-	Толщина уп-	Число проходов (ударов) для достижения коэс						
лотняемых ма-	мого грунта	лот нён- ного	фициента уплотнения К						
ШИН		слоя грунта, м	0,98-0,97	0,96-0,95	0,94-0,93	0,92-0,91			
Виброплиты са-									
мопередви-									
гающиеся:	_			_	_	1			
SVP-12,5	Песчаный	20	4	3	2	1 1			
SVP-25	»	30	4	3	2	1			
SVP-31,5	»	40	4	3 3 3	2 2 2	1			
GSD-22	»	30	4	3	2	1			
Электротрам-									
бовки:		25			_				
ИЭ-4504	<u>иесчаный</u>) <u>Ş</u>	4	3	2] 1			
	глинистый	25	_	1	_	i .			
ИЭ-4502	То же	성 성	4	3	2	וו			
		20							
ИЭ-4505	»	35 25 25 20 10 5	4	3	2	1 1			
Вибротрамбо-вки		ļ	 						
самопере-		ļ							
двигающиеся:						l			
ВУТ-5	Песчаный	20	1 4	1 2	2	1 4			
ByT-4	I ICCHARDIN	30	1 7	3	5	1 4			
ByT-3	, ,,		1 7	3 3 3	2 2 2 2				
		40	1 4	3	4				
CBT-3MI	»	50	1 4	1 3	2	1 1			

Таблица 4.4 Режим работы машин и механизмов при уплотнении грунтов оптимальной влажности по времени уплотнения одного следа

Тип и марка уплот- няемых машин	Вид уплот-	Толщина уп-	Время упло	отнения одн	ого спеда, с,	для дости-
нисмых машин	няемого грун- та	лотнённого слоя грунта, см	0,98-0,97	коэффицие 0,96-0,95	0,94-0,93	0,92-0,91
Гидромолоты (навесные						
на экскаваторы): ГМ-120	<u>песчаный</u> глинистый	<u>30</u> 20	20	15	10	5
СП-62	То же	<u>80</u> 70	20	15	10	5
СП-71	»	<u>60</u> 50	20	15	10	5
Пневмомолоты (навес-						
ные на экскаватор): ПН-1300	<u>песчаный</u> глинистый	<u>30</u> 20	20	15	10	5
ПН-1700	»	8 <u>0</u> 70	20	15	10	5
ПН-2400	»	6 <u>0</u> 50	20	15	10	5
Виброплиты (подвес- ные к крану или экска- ватору):						
B∏Й-2 В∏П-3	Песчаный »	80 60	30 30	25 25	20 20	15 15 15
BПП-5 ВПП-6	» »	60 50	30 30	25 25	20 20	15 15
Вибротрамбовка (под- весная к крану или экскаватору) ПВТ-3	песчаный	80 60	30	25	20	15
	глинистый	60		L		

ПРИЛОЖЕНИЕ 5

Таблица 5.1. Область применения экскаваторов в зависимости от объёмов работ

Объём работ в месяц, м ³	Вместимость ковша, м3
До 1,5	0,15-0,40
1,5-20	0,50-0,80
20-50	1,0-1,5

Таблица 5.2. Технико-экономические показатели самосвалов

Показатели	Марка								
	ГАЗ-53Б	3ИЛ-ММ3-555	MA3-503A	KpA3-256	MA3-525	БелА3-540			
Грузоподъёмность, т	3,5	4,5	7,0	11,0	25	27			
Вместимость кузова, м ³	5,0	3,1	4.5	6,5	14,3	15,3			
Погрузочная высота, м	1,99	1,9	2,15	2,64	3,3	3,3			
Минимальный радиус поворота, м	8,0	7,8	7,0	11,2	13,8	13,8			
Габаритные размеры, м: длина ширина	6,38 2,45	5,55 2,39	5,92 2,6	8,19 2,65	8,3 3,2	7,18 3,43			
Расчётная стоимость, руб.	3960	3610	6420	9170	25360	26145			
Эксплуатационные расхо-ды на 1 машино-ч, руб.: не зависящие от пробега на 1км пробега	1,19 0,103	1,16 0,11	1,53 0,149	1,9 0,219	1,89 0,694	2,81 0,511			
Продолжительность работы в году, ч	2750	2750	2750	2750	2750	2750			

Таблица 5.3. Скорость движения самосвалов по дорогам с разными видами покрытия, км/с

D	Дальность транспортировки, км						
Вид покрытия	0,5	1,0	2,0	3,0	5,0		
Асфальт, бетон, сборные плиты	20	25	35	35	35		
Щебёночное	18	22	30	30	30		
Булыжное	16	20	27	27	27		
Грунтовое	15	17	25	25	25		

Таблица 5.4. Справочные данные для определения технико-экономических показателей работы землеройно-транспортных и землеройных машин

казателей работы землеройно-транспортных и землеройных машин											
марка машины	марка трактора	q, м ³	Син, тыс. руб.	Смсм, руб	годовое число ча- сов работы						
1	2	3	4	5	6						
Бульдозеры											
Д3-37	Беларусь		3.61	15.41	1800						
Д3-29	T-74	-	3.26	17.28	1800						
Д3-42	T-75	-	4.91	19.43	1800						
Д3-8	T-100	-	8.43	25.29	2580						
Д3-19	T-100	-	10.1	26.4	2580						
Д3-17	T-100	-	8.32	24.11	2580						
ДЗ-18	T-100		7.21	24 5	2580						
		Тракто	ры	·	1						
T-75	•	·	3.74	16.35	1800						
T-80	-		4.76	16.83	1800						
T-100		-	7.53	19.29	2580						
T-140	-	-	19.75	30.57	2600						
T-180	•	-	21.95	32.1	2600						
ДЭТ-250			41.63	46.08	2600						
	Одноко	вшовые :	экскаваторы								
3-2621A	-	0.25	6.42	17.23	2050						
ЭO-3322A	-	0.5	20.76	26.08	3075						
ЭO-5015A	-	0.5	20.34	26.2	3075						
Э0-4111Б	•	0.65	17.14	28.3	3075						
30-4121A	-	0.65	23.47	31.08	3075						
30-4321		0.65	28.78	33.62	3075						
305112A	-	1	25.04	33.4	3075						
30-5122		1;1.6	37.34	42.64	3075						
ЭО-3311Г	-	0.4	12.3	18.31	2400						
ЭО-3311Б		0.4	10.92	18.37	2400						
30-32115	•	0.4	12.2	18.16	2400						
3-504	-	0.5	16.64	25.34	3075						
3-505	-	0.5	16.4	23.78	3075						
Э-3112Б	•	0.5	16.4	23.78	3075						
3-651	•	0.65	18.15	28.78	3075						
3-652	•	0.65	17.14	28.3	3075						
Э-801	•	0.8	19.32	30.18	3075						
Э-10011	•	1.1	21.96	35.80	3075						
Э0-6111Б	•	1.25	21.51	33.73	3075						

Таблица 5.5 Справочные данные для определения технико-экономических показа-

телей работы кранов

Модель (марка) кра- на	Максималь- ная грузо- подъём- ность, т	Инвента- рная рас- чёт-ная сто-			еле-ния се- шч., руб.	Трудоёмко	мкость, челч. Кол-і чело век звен	
		имость, тыс. руб.	Едино- времен- ные за- траты Сед	Годо- вые за- траты С _г	Экспл. расходы на машч., Э	Монт де- м онтаж крана Q _{мд}	Доставка крана Q _д	obenic .
	<u> </u>			ичные кр	аны			
МКМбм	16	30,7	30	4525	4,26	52	8	2
MKΓ-25	25	31,1	36	4276	4,71	71	14	3
МКГ-25БР	25	36,6	36	5032	4,75	71	14	3
РДК-250	25	77,4	36	10642	4,75	78	14	3
ДЭК-251	25	28,2	36	3877	4,71	112	14	3
	L	1	Пневмон	олёсные	краны			
KO-436IA	16	27,8	37	3884	4,23	46	7	2
KC-4362	16	27	37	3772	4,4	44	7	2
MKΠ-25A	25	40,7	58	5193	4,6	76	7	3
KC-5363	25	40,7	58	5193	4.84	101	7	3
		1	Автомо	бильные	краны	L	L	
KC-1562	5	7,95	4,8	1232,2	14,14	4,2	3	3
KC-1562A	5	8,87	4,8	1245,5	14,14	4,2	3	3
КС-2561Д	6,3	7,84	4,8	1215,2	17,09	4,2	3	3
KC-2561E	6,3	8,5	4,8	1317,5	17,09	4,2	3	3
KC-2561K	6,3	8,61	4,8	1334,4	17,09	4,2	3	3
MKA-6,3	6,3	12,95	4,8	2005	17,75	4,2	3	3
MKA-1 OM	10	19,79	4,84	3064,6	19,96	6,4	3	3
CMK-10	10	16,69	4,84	2584,2	19,46	6,4	4	3
KC-3562A	10	18,62	4,84	2784,3	20,22	5,9	4	3
КС-3562Б	10	20,01	4,84	3264,8	20,22	5,9	4	3
KC-3561	10	17,01	4,84	2633,4	19,96	5,9	4	3
KC-3561A	10	17,44	4,84	3701,2	19,96	5,9	4	3
K-162	10	22,15	4,84	3418,8	20,55	7,1	4	3
KC-4561	16	21,5	4,96	3326,4	21,59	6,6	4	3
KC-4561A	16	24,9	4,96	3859,5	21,59	6,6	4	3
MKA-16	16	26,54	4,00	4171,8	21,35	6,9	4	3
KC-4571	16	28,99	4,96	4492,6	21,94	6	4	3

Примечание. Число часов работы в году гусеничных кранов 3370, пневмоколёсных – 3420, автомобильных – 3350.

Таблица 5.6. Техническая характеристика плетевозов

laojiuda J.O. Textinite							
Показатель	ПВ93	ПВ95	ПВ94	ПВ203	ПВ204	∏B301	ПВ361
База	Шасси	Шасси	Шасси	Шасси	Шасси	Шасси	Шасси
	"Урал-	"Урал-	"ЗИЛ-	"KpA3-	"КрАЗ-	"MA3-	"MA3-
	375E"	4320"	131"	260"	255 5 "	7310"	7310"
Грузоподъёмность,т	9	12	3,5-6	25	19	30	36
Нагрузка, кН на тяговый							
автомобиль	40	45	30	80	60	120	130
на роспуск	50	75	50	170	130	180	230
Погрузочная высота, мм	1880	1880	1780	2000	2000	2100	2100
Колея, мм	2000	2000	1820	2160	2160	2375	2375
Размер шин автомобиля	370x	370x	320x	1300x	1300x 530	1550x	1550x 600
(роспуска), мм	508	508	508	530	(533)	600 (633)	(633)
, , ,	(14-20)	(14-20)	(12-20)	(533)	\ '	, ,	` ′
Размеры, мм:							
длина	11440	11440	11300	20000	15000 2685	16000	16540 3050
ширина	2500	2500	2500	2720	3135	3050	3500
высота	2870	2870	2180	3230		3475	
Масса (вместе со сна- ряжением), кг	12400	12620	9700	20600	17350	30000	36410

Таблица 5.7. Техническая характеристика плетевоза ПТК252

таолица э.г. техническая характеристика плетевоза тт к2э2							
Тягач	Трактор " Кировец К-701"						
Грузоподъёмность, т	25						
Погрузочная высота, мм	1825						
Размер шин прицепного состава, мм	370-508(14-20)						
Размеры (без груза), мм:							
длина	16550						
ширина	2500						
высота	2270						
Масса (вместе со снаряжением), кг	21000						

Таблица 5.8. Допустимые расстояния между наружными поверхностями труб

raonuga o.o. Hon	ACLIMMPIC	paccios	INNA ME	кцу парул	KUDIMN I	TOBEPAROCIA	nn ipyo	
					вид грунт	а		
		скальные		крупнообломочные		песок средней крупн., мелкий,		
				породы, пе	есок гра-	пылеватый, су	песи, суглинки,	
				велистый,	крупный,	грунты с приме	сью раститель-	
материал труб	диаметр,			глин	н	ных остат	ков, торф	
	мм			давле	ние, МПа	(KTC/CM ²)		
		≤1 (10)	>1 (10)	≤1 (10)	>1 (10)	≤1 (10)	1 (10)	
		Рассто	ания в пла	не между	наружны	ми поверхностям	и труб	
11	2	3	4	5	6	7	8	
стальные	до 400	0.7	0.7	0.9	0.9	1.2	1.2	
стальные	св.400 до 1000	1	1	1.2	1.5	1.5	2	
стальные	св.1000	1.5	1.5	1.7	2	2	2.5	
чугунные	до 400	1.5	2	2	2.5	3	4	
чугунные	св.400	2	2,5	2.5	3	4	5	
железобетонные	до 600	1	1	1.5	2	2	2.5	
железобетонные	св.600	1.5	1.5	2	2.5	2.5	3	
асбестоцементные	до 500	1.5	2	2.5	3	4	5	
пластмассовые	до 600	1.2	1.2	1.4	1.7	1.7	2.2	
пластмассовые	св. 600	1.6	•	1.8	-	2.2	•	

Примечания:

1. При параллельной прокладке водоводов на разных уровнях указанные в таблице расстояния надлежит принимать исходя из разности отметок заложения труб.

2. Для водоводов, различающихся по диаметру и материалу труб, расстояния следует принимать по тому виду труб, для которого они оказываются наибольшими.

Учебное издание

Составители:
Ивасюк Пётр Петрович
Семенюк Сергей Михайлович
Пчелин Вячеслав Николаевич
Ивасюк Юрий Петрович

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ КУРСОВОГО И РАЗДЕЛА ДИПЛОМНОГО ПРОЕКТОВ «ПРОИЗВОДСТВО ЗЕМЛЯНЫХ И МОНТАЖНЫХ РАБОТ ПРИ СТРОИТЕЛЬСТВЕ ВОДОПРОВОДНО-КАНАЛИЗАЦИОННЫХ ТРУБОПРОВОДОВ»

ПО КУРСУ «ТЕХНИКА И ТЕХНОЛОГИЯ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ»
ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ
1-70 04 03 «ВОДОСНАБЖЕНИЕ, ВОДООТВЕДЕНИЕ И ОХРАНА ВОДНЫХ РЕСУРСОВ»
ДНЕВНОЙ И ЗАОЧНОЙ ФОРМ ОБУЧЕНИЯ

Ответственный за выпус: Ивасюк П.П. Редактор: Строкач Т.В. Компьютерная верстка: Боровикова Е.А. Корректор: Никитчик Е.В.

Подписано к печати 19.03.2009 г. Формат 60х80 ¹/₁₆. Бумага «Снегурочка». Гарнитура Arial Narrow. Усл. печ. л. 4,4. Уч.-изд. л. 4,75. Заказ № 350. Тираж 100 экз. Отпечатано на ризографе учреждения образования «Бресткий государственный технический университет». 224017, г. Брест, ул. Московская, 267