Э.А. ТУР, Н.М. ГОЛУБ Беларусь, Брест, БрГТУ

ЗАЩИТА ОТ КОРРОЗИИ СТАЛЬНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ АКРИЛОВЫМИ ЛАКОКРАСОЧНЫМИ МАТЕРИАЛАМИ

Внедрение в производство качественных защитных антикоррозионных материалов с высокими эксплуатационными характеристиками, незначительно изменяющимися во времени, является одним из важнейших факторов, гарантирующих надёжность и длительный срок службы стальных строительных конструкций. На поверхности стальных конструкций в результате коррозии образуется ржавчина - слой частично гидратированных оксидов железа. Расположение объекта, его возраст, степень разрушения металла, качество поверхности, тип агрессивных воздействий, количество дефектов, свойства старого покрытия – это факторы, которые оказывают влияние на подготовку поверхности и выбора системы защиты металла от коррозии. В настоящее время разработаны и внедрены в производство многочисленные способы защиты строительных конструкций от коррозии: гальванические покрытия, ингибиторы, защитные смазки, металлизация, электрохимическая катодная защита и разнообразные лакокрасочные покрытия [1]. На лакокрасочные покрытия ложится главная ответственность за защиту от коррозии, так как ими защищают более 80 % поверхностей всех металлических изделий.

В зависимости от плёнкообразующего полимера, пигментов, наполнителей и других компонентов, входящих в рецептуру, лакокрасочные покрытия (ЛКП) могут выполнять функции барьера, пассиватора или протектора. Эффективность применения лакокрасочных покрытий целесообразна при условии долговечности эксплуатации не более 10 лет и скорости коррозии металла до 0,05 мм/год. Если требуется повышение долговечности или скорость коррозии металла составляет 0,5–1,0 мм/год, то следует применять комбинированные покрытия (например, горячее цинкование с последующим нанесением ЛКП) [2].

Защита металла от коррозии заключаются в создании на поверхности металлического изделия сплошной, беспористой пленки, которая препятствует агрессивному воздействию окружающей среды и предохраняет металл от разрушения. ЛКП не исключает коррозию, а служит для нее лишь преградой, а значит, лишь тормозит процесс коррозии. Качество покрытия зависит от тщательности подготовки поверхности и способа нанесения защитного ЛКП [3].

Автором ранее [4] были разработаны рецептуры антикоррозионных красок и грунтовок на основе акриловых сополимеров белого и чёрного цветов, проведен ряд лабораторных испытаний ЛКП. В данной работе представлены результаты дальнейших исследований в этом направлении. Были оптимизированы рецептуры красок и грунтовок белого, серого и чёрного цветов, чаще всего применяемых в строительстве для антикоррозионной защиты.

Разработанная система «краска – грунтовка» (К-Г) предназначена для защитно-декоративной отделки стальных поверхностей, подвергающихся атмосферному воздействию в зонах умеренного и холодного климатов. Покрытие формируется при естественных условиях и обеспечивает эффективную барьерную защиту и пассивацию поверхности металла. Краски применяются в комплексе с грунтовками в качестве окончательного покрытия. Грунтовки содержит наполнители и функциональные добавки, ингибирующие коррозионные процессы, обеспечивает хорошую межслойную адгезию. Перед нанесением системы К-Г требуется тщательная подготовка поверхности. Рецептуры разработанных красок и грунтовок белого, серого и черного цветов приведены в таблице 1.

Таблица 1 – Рецептуры красок и грунтовок

	Массовая доля, %						
Наименование компонента		краска	l	груг		нтовка	
	белая	серая	чёрная	белая	серая	чёрная	
Сополимер акриловый	29,0	29,0	29,0	19,0	19,0	19,0	
Органический растворитель (сольвент+толуол = 1:1)	35,0	35,0	35,0	25,0	25,0	25,0	

Продолжение таблииы 1

Tipodonoicettae maonagor 1						
Регулятор качества поверхности	0,3	0,3	0,3	-	-	-
Пластификатор	3,1	3,1	3,1	2,0	2,0	2,0
Пассивирующая добавка: смесь ортофосфата цинка и оксида цинка	-	-	_	14,0	14,0	14,0
Диспергатор	0,4	0,4	0,4	0,6	0,6	0,6
Смола эпоксидная	_	_	-	2,1	2,1	2,1
Микротальк	5,0	5	5,0	6,0	6,0	_ 6,0
Диоксид титана	15,0	10,0		8,9	6,0	-
Пигмент чёрный железооксидный	-	5,0	10,0	_	3,0	6,9
Карбонат кальция	6,9	6,9	11,9	7,0	6,9	9,0
Диоксид кремния мелкодисперсный (агент реологии)	0,3	0,3	0,3	0,2	0,2	0,2
Слюда	5,0	5,0	5,0	_	_	_
Сульфат бария	_	_	-	15,0	15,0	15,0
Глина бентонитовая	_	_		0,2	0,2	0,2
Σ	100	100	100	100	100	100

Известно, что замедлить протекание коррозионного процесса можно введением в лакокрасочную композицию пигментов и ингибиторов, способствующих образованию гидрофобных комплексных и других соединений на поверхности металла (например, добавлением хроматов, фосфатов металлов, азотсодержащих и силоксановых соединений) [5]. Поэтому в качестве пассивирующего агента в состав рецептуры грунтовок была включена композиция, состоящая из ортофосфата цинка и оксида цинка. Кроме того, и краски и грунтовки содержат инертные пигменты: диоксид титана рутильной формы, полученный сульфатным методом, и пигмент чёрный железооксидный, а также мелкодисперсные наполнители (микротальк и слюду) для повышения укрывистости и сплошности плёнки. Основной компонент — плёнкообразующее (сополимер п-бутилакрилата и метилметакрилата) создаёт беспористую эластичную твёрдую плёнку [3]. Технические характеристики акрилового сополимера приведены в таблице 2.

Таблица 2 – Технические характеристики акрилового сополимера

Наименование показателя	Величина показателя	
Температура стеклования (Tg),°С	65±2	
Среднемассовая молекулярная масса (Mw)	60000±5000	
Степень полидисперсности (Mw / MN)	1,7	
Кислотное число 40 %-го раствора в толуоле, мг КОН/г	6,4	
Вязкость 40 %-ного раствора в толуоле по вискозиметру Брукфилда RV DV-II (шпиндель 2, скорость 60 об/мин, t = 25°C), мПа·с	400–450	
Твердость высохшей плёнки на стекле по Кёнигу, абс.ед.	18	

Краски и грунтовки были изготовлены на лабораторном диссольвере. Исследования проводили известными методами [6]. Все показатели (за исключением укрывистости) определяли для неразбавленной краски и грунтовки. Для определения укрывистости краску разбавляли толуолом до условной вязкости 40—45 с по ВЗ-246 с соплом Ø 4 мм.

Для определения эластичности краску наносили кистью или аппликатором на одну сторону стальной пластинки. Толщина сухого слоя составляла 60–80 мкм. Для определения стойкости к статическому воздействию воды, 3 %-ного водного раствора хлорида натрия, бензина и индустриального масла, устойчивости покрытия к воздействию переменных температур систему К-Г (грунтовку в один слой, краску в один слой) наносили на обе стороны стальной пластинки, а также на боковые грани. Толщина высохшего покрытия системы К-Г составляла около 130–190 мкм. Для определения прочности покрытия при ударе систему К-Г наносили на одну сторону стальной пластинки. Толщина ЛКП составляла 160–180 мкм. Продолжительность сушки каждого слоя – 24 ч при температуре (20±2) °C.

Определение пористости производили химическим методом согласно [7]. Сущность метода заключается во взаимодействии ионов двухвалентного железа с гексацианоферратом (III) калия в местах пор с образованием турнбулевой сини (при рН < 7), подсчёте среднего числа пор и оценке пористости по пятибальной системе. Некоторые исследователи отмечают, что данный метод позволяет получить данные о начавшемся процессе разрушения ЛКП задолго до появления первых визуальных признаков этого процесса [8].

Количество образцов для испытания каждого показателя — не менее 5. Основные усреднённые показатели (для материалов белого, серого и чёрного цветов) красок, грунтовок и ЛКП приведены в таблице 3.

Таблица 3 – Основные показатели красок, грунтовок и ЛКП

Наименование показателя	Величина показателя			
паименование показателя	краска	грунтовка		
Условная вязкость по ВЗ-246 (Ø 4 мм) при (20±0,5)°C, с	120	. 100		
Массовая доля нелетучих веществ, %	55	40		
Время высыхания до степени 3 при (20±2)°С, ч	5	3		
Плотность, г/ см3	1,6	1,3		
Укрывистость высушенного покрытия, г/м ²	80	-		
Блеск, %	15	-		
Коэффициент диффузного отражения (белизна) покрытия для белого цвета, %	76–78			
Степень перетира, мкм	15-20	15-20		
Прочность покрытия при ударе по прибору типа У-1, см		26		

Продолжение таблииы 3

Прооолжение таолицы 3		
Твердость покрытия по маятниковому прибору ТМЛ (ма-	0,28	
ятник А), отн. ед.		
Эластичность покрытия при изгибе, мм	8-10	8-10
Адгезия к стали, баллы, не более	1	1
Стойкость покрытия к статическому воздействию воды при t = (20±2) °C, ч	более 72	
Стойкость покрытия к статическому воздействию 3 %-го водного раствора NaCl при t = (20±2) °C, ч	более 72	
Стойкость покрытия к статическому воздействию бензина и индустриального масла при t = (20±2) °C, ч	более 72	
Устойчивость покрытия к воздействию переменных температур, циклов	50	
Условная светостойкость покрытия (изменение коэффициента диффузного отражения), %	0,8-1,2	
Пористость, – пор /см²;	9	
– балл	2	
Сопротивление паропроницанию (система К-Г) покрытия, м ² ·ч·Па/мг	истема K-Г) покры- 2,0-2,4	

В результате проведенных исследований выявлено, что разработанное покрытие устойчиво к статическому воздействию воды, 3 %-ого водного раствора хлорида натрия, бензина и индустриального масла при (20 ± 2) °C более 72 ч, а также к действию переменных температур. Условная светостойкость составляет 0,8–1,2 %, что гораздо ниже существующих норм для белых красок, применяемых для наружных работ (не более 5 %). ЛКП обладает низкой пористостью — 2 балла по пятибальной системе согласно [7], где 1 —лучший результат. Разумный баланс прочности покрытия при ударе (26 см), твёрдости по маятниковому прибору (0,28 отн. ед.) и эластичности при изгибе (8–10 мм) свидетельствует о сбалансированности рецептур краски и грунтовки.

Объемное электрическое сопротивление ЛКП определяли кулонометрическим методом [6] с помощью прибора ПУС-1. Удельное объёмное электрическое сопротивление ЛКП (р) рассчитывали по формуле 1:

$$\rho = Rx \cdot A / h, \qquad (1)$$

где Rx — измеренное объёмное сопротивление, Om; A — эффективная площадь электрода, cm^2 ; h — средняя толщина ЛКП, cm.

Удельное объёмное электрическое сопротивление системы «грунтовка – краска», находится в пределах $0.8-1.5 \times 10^{10}$ Ом·см = $0.8-1.5 \times 10^8$ Ом·м. Это соответствует эксплуатации в условиях умеренного климата в течение 8-10 лет. Таким образом, разработанная акриловая система рекомендуется к использованию в качестве антикоррозионной защиты стальных строительных конструкций. Кроме того, использование различных подходов к

исследованию проницаемости покрытий позволяет получить быструю и объективную оценку антикоррозионных свойств новых защитно-декоративных материалов. Следует отметить, что технические требования к антикоррозионным ЛКП и методы исследования их стойкости к различным агрессивным средам постоянно совершенствуются и обновляются с учётом данных, получаемых в процессе эксплуатации окрашенных строительных конструкций и промышленного оборудования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Стойе, Д. Краски, покрытия и растворители / Д. Стойе, В. Фрейтаг; пер. с англ.; под ред. Э.Ф. Ицко. СПб. : Профессия, 2007. 528 с.
- 2. Брок, Т. Европейское руководство по лакокрасочным материалам и покрытиям / Т. Брок, М. Гротеклаус, П. Мишке. пер. с англ.; под ред. Л.Н. Машляковского. М.: Пэйнт-Медиа, 2004. 548 с.
- 3. Яковлев, А.Д. Химия и технология лакокрасочных покрытий / А.Д. Яковлев. Л.: Химия, 1981. 352 с.
- 4. Тур, Э.А. Антикоррозионная защита стальных конструкций предприятий машиностроения акриловыми материалами / Э.А. Тур, Н. М. Голуб // Вестник Брестского государственного технического университета. Брест: БрГТУ, 2013. № 2: Водохозяйственное строительство, теплоэнергетика и геоэкология. С. 106—108.
- 5. Елисаветский, А.М. Защита металлов от коррозии лакокрасочными покрытиями / А.М. Елисаветский, И.В. Елисаветская, В.Н. Ратников // Лакокрасочные материалы и их применение. 2000. № 4. С. 23—25.
- 6. Карякина, М.И. Испытание лакокрасочных материалов и покрытий / М.И. Карякина. М.: Химия, 1988. 272 с.
- 7. ГОСТ 9.302-88. EC3КС Покрытия металлические и неметаллические неорганические.
- 8. Подбор антикоррозионных покрытий для защиты внутренних поверхностей технологических аппаратов Астраханского ГПЗ / А.Ф. Светличкин [и др.] // Промышленная окраска. 2007. № 4. С. 39—41.