распределения скоростей в плане в сечении В-В

	12,5		15,0	17,5		20,0	22,5	25,0	
	0,43		0,39	0,3	15	0,325	0,315	0,30	
								-	
0,20	0,24	0,26	0,30	0,32	0,35	0,40	0,50	1,0	
0,32	0,32	0,32	5 0,345	5 0,355	0,370	0,41	0,54	1,7	

Литература

1. Слисский С.М. Гидравлика зданий ГЭС. М., 1970. 2. Mosonyi E. Wasserkraftwerke. В. 1, Budapest 1956. 3. Гуревич М.И. Теория струй идеальной жидкости. М., 1961.

М.В. Кравцов, В.В. Суворов

СКОРССТЬ ПОДЪЕМА И ДЕФОРМАЦИИ ПУЗЫРЬКОВ В ЖИДКОСТЯХ

Изучение закономерностей движения пузырьков газа в жидкостях необходимо при расчетах процессов барбатажа жидкостей, флотации, аэрации, пенообразования в нефтедобывающей промышленности, воздухоотделения при применении осветлителей и т.п.

Так как в механизме всплытия капель и пузырьков нет очевидных принципиальных различий, то при расчете скорости движения сферических пузырьков можно использовать формулу, полученную ранее при изучении закономерностей движения капель [1]:

$$v = -\frac{2\mu}{(k+0,0625d)\rho} + \sqrt{\left[\frac{2\mu}{(k+0,0625d)\rho}\right]^2 + \frac{d^2 \Delta \rho g}{3(k+0,0625d)\rho}} + \frac{d^2 \Delta \rho g}{3(k+0,0625d)\rho}$$

где

k

$$\frac{3,5}{\mu^2}$$

При сопоставлении расчетных значений по сормуле (1) с опытными данными (табл. 1) о скоростях подъема воздушных пузырьков в воде, глицерине, касторовом масле и кукурузном сиропе (рис. 1) получена хорошая степень совпадения [2].

Жидкость	Обозна- чения	Темпера- тура, °С	, р. 3 г/см	μ, пуаз	<i>б</i> , дин/см
Касторовое	1	16,7	0,962	13,6	39,2
масло	2	31.8	0,953	3,76	38,8
	3	15,9	1,27	19,6	63,6
	4	30,0	1,26	13,3	63,4
Глицерин	5 ·	25,3	1,26	3,78	63,2
	6	25.4	1,26	_1,57	63,2
V	7	13,5	1,38	⁻ 103,8 ⁻	95,6
сироп	8	20,5	1,38	45,8	86,0
-	9	29.5	1.38	19,4	81.0

Рис. 1. Скорости подъема пузырьков воздуха в жидкостях (сплошные линии расчет по формуле (1),точки — опытные данные [2]). При медленном движении малых капель и пузырей сохраняется сферическая форма. Начиная с некоторого предельного размера капля или пузырь деформируется, приобретая вначале сфероидальную форму, затем плоскую и, наконец, грибообразную.

Зависимостей для определения предельного диаметра, при котором каплю или пузырь уже нельзя считать сферической, имеется несколько. Наиболее соответствует требованиям логики зависимость [3]

$$d_{np} = \sqrt{\frac{\varepsilon_o \, \widetilde{O}}{\Delta \rho \, g}} , \qquad (2)$$

где \mathfrak{S} — коэффициент поверхностного натяжения, дин/см; $\Delta \rho$ — разность плотностей среды и пузырька, г/см³; g — ускорение силы тяжести, см/с²; \mathcal{E}_{ρ} — безразмерный параметр, равный по экспериментальным данным 0,4 [4].

Формулу (2) можно получить, если разделить силу сопротивления, равную весу капли или пузырька в жидкости, на силу поверхностного натяжения. Действительно леформация капли или пузырька зависит от действующих сил при равномерном движении: силы сопротивления движению и силы поверхностного натяжения. Однако в формулу (2) не входит параметр вязкости среды. В то же время на основании опытных данных легко обнаружить, что вязкость среды при прочих равных условиях сильно влияет на величину предельного диаметра. Это вызвано тем, что величина предельного диаметра зависит не только от величины силы сопротивления, но и от соотношения в общем сопротивлении силы вязкого трения и гидродинамического давления.

На основании исследования [5] и из анализа опытных данных установлено, что сила сопротивления движению капель и пузырьков имеет вид

$$F = \psi \frac{\pi d^2}{4} \cdot \frac{\rho v^2}{2}, \qquad (3)$$

где $\psi = \frac{16}{Re} + \frac{667}{Re} + 0.25$ -коэффициент сопротивления; Re = $= \frac{\sqrt{d\rho}}{\mu}$ --число Рейнольдса; ∇ , d--скорость и диаметр капли или пузырька; μ , ρ --динамический коэффициент вяз-кости и плотность среды.

По упрощенной формуле [1]

F =
$$2\pi \mu dv + k \pi d \frac{\rho v^2}{2} + 0.25 \frac{\pi d^2}{4} \frac{\rho v^2}{2}$$
 (4)

Рис. 2. Опытный график зависимости $\psi = f(Re)$ при движении капель и пузырьков.

При выборе параметра, характеризующего предельный недеформированный диаметр, будем рассуждать следующим образом. Из анализа опытного графика зависимости $\psi = f$ (Re) (рис. 2) для случая движения капель и пузырьков видно, что кривая при стремлении Re — 0 имеет асимптоту $\psi = \frac{16}{Re}$ К этой кривой можно провести бесчисленное множество касательных, уравнение которых будет иметь вид

 $\Psi = B/Re^{n}$.

При этом показатель степени n изменяется от 1 до 0 (n = 1--формула Адамара $\psi = 16/\text{Re}$; n =0,5--формула Прандтля--Аллена--Блязиуса $\psi = B//\text{Re}$; n =0--формула Ньютона $\psi = \text{const}$.

Из анализа формулы (3) видно, что если доля вязкого сопротивления, выражаемого первым членом, будет больше доли силы гидродинамического давления, выражаемого последним членом, то показатель степени n > 0,5. В противном случае n < 0,5. При равенстве первого и последнего членов показатель степени n = 0,5, а уравнение касательной к кривой $\Psi = f(Re)$ будет $\Psi = B//Re$.

Положение точки касания можно легко определить из условия равенства первого и третьего членов в уравнении (3) ($\frac{16}{Re}$ =0,25; Re=64; ψ =1,334; B = 10,67).

Отметим, что касательная $\psi = \frac{10,67}{\sqrt{Re}}$ имеет точку касаний с кривой $\psi = f(Re)$ в так называемой "переходной" области и направление этой касатальной с осями координат ψ и Re составляет угол 45°.

Учитывая, что $\Psi = \frac{4}{3} \frac{d\Delta\rho g}{\rho v^2}$, из уравнения касательной получаем функцию скорости Рис. 3. Касательные $v = k_A d$ к зависимости v=f(d); A—A — линии равных сопротивлений.

$$v = 0,116 \left| \frac{3}{\rho \mu} \right|^{\frac{3}{2}} \frac{\Delta \rho^2 g^2}{\rho \mu} d = k_A d,$$
 (4)

где $k_{A} = a \frac{3}{\rho_{\mu}^{2}}; a$ --постоянный коэффициент.

Изменяя вязкость среды при постоянных ρ , $\Delta \rho$, \mathfrak{S} , g, можно получить семейство кривых v=f(d) (рис. 3). Анализ формы кривых зависимостей v=f(d) показывает, что к каждой из них из центра координат можно провести одну касатальную $v=k_Ad$. Эта касательная, как и касательная $\psi = \frac{1}{2} \frac{1}{\sqrt{Re}} \kappa$ зависимости $\psi = f(Re)$, имеет точку касания в переходной области, соответствующую Re = 64 и $\psi = 1,334$.

Линия А--А является линией равного сопротивления; координаты точки пересечения этой кривой с кривыми v=f(d), равно как и коэффициент k_A , могут служить мерой соотношения сил вязкого сопротивления и гидродинамического давления в общем сопротивлении среды.

Используя значение коэффициентов k и k

в качестве меры соотношения силы вязкого трения и гидродинамического давления в общем сопротивлении среды, мы получили следующий безразмерный параметр на основании обработки опытных данных:

$$\varepsilon_{o} \frac{d}{k} = \frac{\Delta \rho \, \mathrm{gd}^{2}}{\overline{\Im}} \,. \tag{5}$$

Таблица 2.Сопоставление расчетных (по (6))и опытных данных

n∛'n	Литера- турный источ- ник	Наименование жидкости капли	Наименование среды	к, см
1	2	3	4	5
1	[6]	Четыреххлористый		
		углерод (тетрахло- рид)	вода	0,01,81
2	[6]	Хлорбензол	вода	0,0319
3	[6]	Бромбензол	вода	0,0192
4	[6]	Этил бромид	вода	0,0198
5	[6]	Нитробензол	вода	0,0241
6	[6]	О-Нитротолуол	вода	0,0279
7	[7]	Хлорбензол	вода	0,0313
8	_7_	·n-Амил фталат	вода	0,0550
9	7	n_Амил фталат	вода	0,0550
10	[7]	Анилин	вода	0,0550
11	[7]	Карбон дисульфид	вода	0,0247
12	[7]	т_Крезол	вода	0,0463
13	[7]	Эвгенол	вода	0,0368
14	[7]	Нитробензол	вода	0,0263
15	[7]	О-Нитротолуол	вода	0,0258
16	[7]	1,2-Дихлоропропан	вода	0,0261
17	[7]	Карбон тетрахлорид	вода	0,0183
18	[7]	Эпихлорогидрин	вода	0,0255
19	[7]	1,2-Дибром этан	вода	0,0152
20	[7]	1,2,2,2-Тетрахлорэтан	вода	0,0173
21	[7]	Тетрабромэтан	вода	0,0240
22	[7]	Метил фталат	вода	0,0245
23	[7]	Бромоформ	вода	0,0139
24	[7]	т-Нитротолуол	вода	0,0294
25	[7]	Нитробензол	вода	0,0260
26	[7]	Хлорбензол	вода	0,0309
27	[7]	Тетрахлорэтилен	вода	0,0153
28	[7]	Дифенильный эфир	вода	0,0366
29	[7]	1-Хлорнафталин	вода	0,0233
30	[7]	Этилфталат	вода	0,0318
31	[7]	Этилхлорацетат	вода	0,0269
32	[7]	Изогенол	вода	0,036
33	[7]	Хлорбензол	вода	0,0342
34	7	n-Бутилфталат	вода	0,0402
				•

о предельном недеформированном диаметре капель и пузырьков

<i>б</i> , лин	<i>۵ρ</i> ,	μ,	d, _{CM}	d, _{CM}
CM	Г/СМ ³	спуаз	(расчет по (6))	опыт
6 ·	7	8	9	10
45.30	0,589	0,894	0,35	0,35
36,81	0,107	0,894	0,70	0,70
38,12	0,493	0,894	0,36	0,36
31,09	0,447	0,894	0,35	0,35
26,08	0,201	0,894	0,46	0,46
26,89	0,161	0,894	0,51	0,51
36,02	0,0979	0,828	0,71	0,71
20,20	0,0179	0,828	1,25	1,25
7,07	0,0179	0,828	0,89	0,90
6,545	0,0179	0,828	0,86	0,80
45,67	-0,261	0,9419	0,52	0,54
4,134	0,0299	0,828	0,59 ·	0,60
12,34	0,0599	0,828	0,60	0,59
15,84	0,1589	0,828	0,44	0,50
26,03	0,1569	0,7848	0,51	0,52
31,11	0,1502	0,7850	0,52	0,50
44,66	0,5851	0,9156	0,34	0,34
10,98	0,1715	0,8085	0,36	0,30
36,58	1,1711	0,8280	0,25	0,24
30,09	0,5829	0,8280	0,31	0,30
7,04	1,943	0,7809	0,14	0,14
12,26	0,1839	0,7848	0,40	0,40
40,60	1,8541	0,9156	0,21	0,20
28,38	0,1567	0,9594	0;53	0,46
24,81	0,1975	0,8085	0,48	0,45
24,54	0,090	0,828	0,70	0,70
43,38	0,6129	0,7848	0,28	0,33
40,80	0,0709	0,7848	0,82	0,85
41,90	0 ,2 047	0,766	0,52	0,55
14,40	0,1285	0,9759	0,54	0,60
15,46	0,1379	0,7848	0,44	0,40
9,38	0,0839	0,9499	0,50	0,65
9,14	0,075	0,828	0,50	0,50
23,61	0,0449	0,9499	0,78	0,90

Продолжение

1	2	3	4	5
35	[8]	Бромистый метил	вода	0,0135
36	[8]	Карбон тетрахлорид	вода	0,0180
37	[8]	Тетрабромэтан	вода	0,0121
38	[8]	Бромоформ	вода	0,0123
3 9	[8]	Бромистый этилен	вода	0,0144
40	[8]	Бромистый этил	вода	0,0199
41	[9]	Воздух	Раствор уксуса	0,0168
42	[9]	Воздух	Метанол	0,0125
43	[9]	Воздух	31%-ный раств	op
	-		в раститель- ном масле	0,0644
44	[9]	Воздух	5,5-ный раство	p
			в раститель- ном масле	0,177
45	9	Воздух	70% водный раствор ук-	
	F- 7	_	Evca	0,0165
46	[9]	Воздух	40,9%-ный рас	-T-
			го спирта в растительном масле	0,0519
47	[9]	Воздух	Этиловый ацетат	0.0107
48	[9]	Воздух	40%-ный расте	op
			уксуса в воде	0,0165
49	[9]	Воздух	Изопропил алкоголь	0,0281

Тогда предельный диаметр, при котором капля или пузырек сохраняет сферическую форму:

$$d = \sqrt[3]{\varepsilon_o} \frac{k\sigma}{\Delta \rho g} = A \sqrt[3]{\frac{k\sigma}{\Delta \rho g}}, \quad (6)$$

где A= 3 E, --постоянный коэфициент, который на основании опытных данных оказался равным 3,15.

Опытных исследований скоростей падения или подъема, включающих и область сильно деформированных капель и пузырьков, проведено достаточно [1--4, 6-9].

Сопоставление расчетных (по формуле (б)) и опытных данных представлено в табл. 2. При этом получена хорошая степень совпадения расчетных и опытных данных.

126

	6	7	8	9	10
	36,1	1,435	0,894	0,22	0,22
	41,60	0,587	0,902	0,34	0,24
	39,06	1,963	0,894	0,20	0,19
	40,6	1,893	0,894	0,20	0,15
	31,9	1,173	0,894	0,23	0,21
	31,09	0,448	0,894	0,16	0,16
	26,6	1,01	1,04	0,24	0,24
	22,6	0,788	0,593	0,23	0,50
	00.0	0.000	7.0	0.466	0.950
	29,9	0,893	7,0	0,400	0,300
	34.1	0.902	31.0	0.6	0,6
			•		
	34.3	1 041	1.04	0.25	0.22
-	01,0	.,	1,01	0,0	0,22
	27,3	0,890	5,0	0,37	0,31
	22.6	0.893	0.47	0.205	0.35
		-,	-,	0,200	, -
	40,7	1,042	1,04	0,27	0,20
	20.7	0 790	1.78	0.286	0 250
	20,1			0,200	0,200

Для деформированных пузырьков и капель связь между скоростью движения и размером довольно сложна. Поэтому общей формулы для определения скорости движения, которая давала бы хорошие результаты при расчете в различных условиях, до сих пор нет.

Многие авторы полагают возможным считать скорость движения деформируемых капель и пузырьков неизменяемой с изменением размеров. В этом случае проще всего определить по формуле (6) предельный недеформируемый диаметр капли или пузырька и затем по формуле (1) для этого и больших диаметров постоянную скорость движения. Видимо, такой подход возможен при движении капель и пузырьков со сравнительно малыми скоростями в сильновязких растьорах. При движении с большими скоростями скорость движения капель и пузырьков не остается постоянной. Вначале она снижается, а затем вновь возрастает. Для более точного определения скоростей движения в работе [7] предлагается формула, полученная из предположения, что скорость всплытия пузырей тождественно равна сазовой скорости распространения в жидкостях капиллярных волн. В этом случае

$$\mathbf{v} = \begin{bmatrix} \frac{\mathrm{gd}}{2} & \frac{\rho - \rho_1}{\rho + \rho_1} & + \frac{2\sigma}{\mathrm{d}(\rho + \rho_1)} \end{bmatrix}^{\frac{1}{2}} . (7)$$

Сопоставление расчетных (по формуле (7)) и опытных данных о скоростях подъема пузырей воздуха в воде дает хорошую степень совпадения. Однако для случая движения капель расчет по формуле (7) не дает удовлетворительных результатов.

Для расчета скорости движения деформированных пузырьков существует также теоретическая формула Тейлора.

$$v = 2/3 (g R')^{\frac{1}{2}}$$
, (8)

где R'--радиус кривизны сферической "шапки", который равен 2/3 радиуса пузырька.

В большинстве случает опытный грасик зависимости v = f(d) для деформированных пузырьков разбивают на ряд участков и для расчета скоростей движения на каждом участке применяют эмпирические формулы.

Приведем один из способов расчета [7]:

1)область движения пузырей, имеющих формулу плоских, пульсирующих сфероидов

$$2 < \text{Re} < 4 \text{A}^{0,42}, \quad v = 0,33 - \frac{g^{0,76}}{v^{0,52}} r^{1,28};$$
 (9)

2) область движения плоских, относительно устойчивых пузырей ограничена

$$4A^{0,42} < \text{Re} < 3A^{0,5}; \quad v=1,35\left(\frac{\sigma}{r(\rho-\rho_1)}\right)^{0,5}$$
 (10)

3) область движения грибообразных пузырей определяется значением чисел

$$Re > 3 A^{0,5} .$$

$$v = \left(\frac{4 g^{2} \sigma(\nu - \rho_{1})}{\xi \rho^{2}}\right)^{1/4} , \qquad (11)$$

где $A = \frac{G^{2/3}\rho}{g\mu^2\sqrt{\rho-\rho_1}}$; G = - коэффициент поверхностного

натяжения; у, р — кинематический и динамический коэффициенты вязкости; р, р, --плотность среды и пузырька или капли.

В работе [8] для расчета скоростей движения деформированных пузырьков рекомендуется применять формулу

$$\mathbf{v} = \mathbf{A} \frac{\mu}{d \Delta \rho} \left[\frac{\mathfrak{S}^3 \Delta \rho}{\mu^4 g} \right]^m \left[\frac{d^2 g \Delta \rho}{\mathfrak{S}} \right]^n, \quad (12)$$

где A, m, n – параметры, определяемые экспериментально для каждой из областей.

В работе [9] предлагается использовать для расчета скоростей движения деформированных газовых пузырьков формулу

$$\mathbf{v} = \left(\frac{4\sigma^2 g}{d\rho\mu} - \frac{\Delta\rho}{\rho}\right)^{1,5}.$$
 (13)

Литература

1. Кравцов М.В. Формула для расчета скорости равномерного движения калель в статических условиях среды. --В сб.: Водоотведение и очистка вод. Минск, 1969. 2. Kajima Eiichi, Akehata Takashi, Shirai Takashi. Rissing velocity and shape of Single air bubbles in highly viscous liguids.--"J. Chem. Engng. Japan", 1968, N 1. 3. Tibor Z. Harmathy. Velocity of Large Drops and Bubbles in media of Jnfinite or Restricted Extent.- "A. Y. Ch. E. journal", 1960, v. 6, N 2. 4. Davies J.T. Mass. - Transfer and Jnterfacial Phenomena.- "Advanges in Chem. Engng", 1963, v.4. 5. Кравцов М.В. Сопротивление свободному установившемуся движению сферы в вязкой среде.-- "Инж.- физ. журнал",

9 3ak. 5427

1968, т. 15, № 3. 6. Thorsen G. и др. On the terminal velocity of circulating and ostillating liguid drops. - "Chem Eng Sci", 1968, v. 23, № 5. 7. Маленков И.Г. О движении больших пузырей газа, всплывающих в жидкости. - ПМТФ, 1968, № 6. 8. Сахаров В.А. Экспериментальное определение относительной скорости движения газового пузыря в потоке жидкости. -- "Изв. вузов. Нефть и газ", 1966, № 6. 9. Бяков В.М. Движение деформированных пузырьков газа в жидкостях. ---ЖФК, 1963, т. 37, в. 4.

М.В. Кравцов, В.В. Суворов, И.В. Федюкович

ВЛИЯНИЕ ФОРМЫ НА СКОРОСТЬ ОСАЖДЕНИЯ ОСЕСИММЕТРИЧНЫХ ТЕЛ В ЖИДКОСТЯХ

Для определения скорости движения некоторых видов частиц чаще всего используют зависимости, выведенные для частиц шарообразной формы. Это вызвано тем, что движение шарообразных частиц изучено наиболее полно. Для использования соотношений, выведенных для шара, вводят так называемый коэффициент формы. Естественно, что здесь многообразию маоф частиц будет соответствовать множество коэффициентов форм. Однако, если иметь дело в технологическом процессе с одним видом частиц, то таким образом задача в какой-то степени может быть решена. Отметим, что отличие движения частиц определенной формы от движения шара проявляется для разных чисел Рейнольдса неодинаково. Так, опытные значения коэффициентов сопротивления диска (рис. 1) до чисел Re≈50 мало отличается от соответствующих значений коэффициента сопротивления шара 1. При Re > 50 эти различия становятся весьма существенны. Такая же картина наблюдается и для других форм частиц. При расчетах же коэффициент формы пля определенного вида частиц считается постоянным и не зависящим от числа Рейнольдса.

Рассмотрим движение некоторых осесимметричных форм тел и покажем, что выведенные ранее зависимости для случая движения шара можно использовать для определения скоростей движения частиц произвольной формы.