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PREFACE (FOREWORD) 

The main purpose of this book is to prove a straight forward and clear 

introductionto the theoretical background, to present and comment some basical 

princeples and methods of design for concrete structures in accordance with 

European Standard EN 1992-1-1 (Eurocode 2). 

The Eurocodes are a set of European Standards which provide common 

princeples and rules for design of a different types of structural elements. The use of 

these common standards is intended to lower trade barriers. Moreover, these design 

codes, considered to be the most advanced in the world, will lead to a common 

understanding of a design principles and rules for concrete structures for design 

engineers, contractors and the manufacturers of concrete products. The additional 

advantages of unified codes include the preparation of common design aids and 

software and the establishment of a common understanding of research and 

development needs in Europe. 

With publication of all of the 58 Eurocode parts, the implementation of the 

Eurocodes extends to all of the European countries and there are firm steps toward 

their adoption internationally. As with any design codes, it is important to have an 

understanding of the principles and background, as well as design aids to assisst in 

the design process. It should be pointed the relevance to train in the use of 

Eurocodes, especially in the engineering schools as a basic course for civil and 

structural engineering students and as a part of continious professional 

development courses for engineers and technicians, which be promoted both at 

national and international levels. 

Although, the described in this book design methods are generally in 

accordance with EN 1992-1-1 (EC 2), much of the theory (theoretical background) 

and practice is of a fundamental nature and should, therefore, be useful for 

students and engineers in countries outside the Europe. 

This book is directed primarily on civil and structural engineering students, 

young designers, who requires and understanding of the basic theory and concise 

guide for design procedure. 

The authors would like to express sincere gratitude to the colleagues and 

graduated students: Horbat Yana, Lizahub Aliaksandr, Ratskevich Yulia, Varabei 

Aliaksandr, Vaskaboinikau Ihar, who pepeared and typed some parts of the figures, 

diagrams and final draft of the manuscript.  
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NOTATION 

Notation is generally in accordance with EN 1992-1-1 [N3] and principal 

symbols are listed below. Other symbols are defined in the text where necessary. 

 

Latin upper case letters: 

A – Cross sectional area; 

Ac – Cross sectyional area of concrete; 

Ap – Area of a prestressing tendon or tendons; 

As – Cross sectional area  of reinforcement; 

As,min – minimum cross sectional area of reinforcement; 

Asw – Cross sectional area of shear reinforcement; 

D – diameter of mandrel; 

E – Effect of action; 

Ec, Ec(28) – Tangent modulus of elasticity of normal weight concrete at a stress 

of σc=0 and at 28 days; 

Ec,eff – Effective modulus of elasticity of concrete; 

Ecd – Design value of modulus of elasticity of concrete; 

Ecm – Secant modulus of elasticity of concrete; 

Ec(t) – Tangent modulus of elasticity of normal weight concrete at a stress of 

σc=0 and at time t; 

Es – Design value of modulus of elasticity of reinforcing steel; 

EI – Bending stiffness; 

F – Action; 

Fd – Design value of an action; 

Fk – Characterisatic value of an action; 

Gk – Characterisatic permanent action; 

I – Second moment of area of concrete section; 

L – Length; 

MEd – Design value of the applied internal bending moment; 

N – Axial force; 

NEd – Design value of the applied axial force (tension or compression); 

Qk – Characterisatic variable action; 

R – Resistance; 

S – Internal forces and moments; 

S – First moment of area; 

SLS – Serviceability limit state; 

T – Torsional moment; 

TEd – Design value of the applied torsional moment; 

ULS – ultimate limit state; 

V – Shear force; 

VEd – Design value of the applied shear force. 
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Latin lower case letters: 

a – Distance; 

a – Geometrical data; 

Δa – Deviation for geometrical data; 

b – Overall width of a cross-section, or actual flange width in a T or L beam; 

bw – Width of the web on T, I or L beams; 

d – Diameter; Depth; 

d – Effective depth of a cross-section; 

dg – Largest nominal maximum aggregate size; 

e – Eccentricity; 

fc – Compressive strength of concrete; 

fcd – Design value of concrete compressive strength; 

fck – Characteristic compressive cylinder strength of concrete at 28 days; 

fcm – Mean value of concrete cylinder compressive strength; 

fctk – Characteristic axial tensile strength of concrete; 

fctm – Mean value of axial tensile strength of concrete; 

f0,2k – Characteristic 0,2 % proof-stress of reinforcement; 

ft – Tensile strength of reinforcement; 

ftk – Characteristic tensile strength of reinforcement; 

fy – Yield strength of reinforcement; 

fyd – Design yield strength of reinforcement; 

fyk – Characteristic yield strength of reinforcement; 

fywd – Design yield of shear reinforcement; 

h – height; 

h – Overall depth of a cross-section; 

i – radius of gyration; 

k – Coefficient; Factor; 

l – (or L) Length; Span; 

l0 – Effective length or lap length; 

m – Mass; 

r – Radius; 

l/r – Curvature at a particular section; 

t – Thickness; 

t – Time being considered; 

t0 – The age of concrete at the time of loading; 

u – Perimeter of concrete cross-section, having area Ac; 

u, v, w – Components of the displacement of a point; 

x – Neutral axis depth; 

x, y, z – Coordinates; 

z – Lever arm of internal forces.  
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Greek lower case letters: 

α – Angle; ratio; 

β – Angle; ratio; coefficient; 

γ – Partial factor; 

γA – Partial factor for accidential actions, A; 

γC – Partial factor for concrete; 

γF – Partial factor for actions, F; 

γF,fat – Partial factor for fartigue actions; 

γC,fat – Partial factor for fartigue of concrete; 

γG – Partial factor for permanent actions, G; 

γM – Partial factor for a material property, taking account of uncertainties in the 

material property itself, in geometric deviation and in the design model used; 

γP – Partial factor for actions associated with prestressing, P; 

γQ – Partial factor for variable actions, Q; 

γS – Partial factor for reinforcing or prestressing steel; 

γf – Partial factor for actions without taking account of model uncertainties; 

γg – Partial factor for permanent actions without taking account of model 

uncertainties; 

γm – Partial factor for a material property, taking account only of uncertainties 

in the material property; 

δ – Increment/redistribution ratio; 

ζ – Reduction factor/distribution coefficient; 

εc – Compressive strain in the concrete; 

εc1 – Compressive strain in the concrete at the peak stress fc; 

εcu – Ultimate compressive strain in the concrete; 

εu – Strain of reinforcement or prestressing steel at maximum load; 

εuk – Characteristic strain of reinforcement or prestressing steel at maximum 

load; 

θ – Angle; 

λ – Slenderness ratio; 

μ – Coefficient of friction between between the tendons and their ducts; 

ν – Poisson’s ratio; 

ν – Strength reduction factor for concrete cracked in shear; 

ζ – Ratio of bond strength of prestressing and reinforcing steel; 

ρ – Oven-dry density of concrete in kg/m3; 

ρ1000 – Value of relaxation loss (in %), at 1000 hours after tensioning and  at a 

mean temperature of 20ºC; 

ρl – Reinforcement ratio for longitudinal reinforcement; 

ρw – Reinforcement ratio for shear reinforcement; 

σc – Compressive strength in the concrete; 

σcp – Compressive strength in the concrete from axial load or prestressing; 

σcu – Compressive strength in the concrete at the ultimate compressive strain 

εcu; 

τ – Torsional shear stress; 

 – Diameter of a reinforcing bar or of a prestressing duct; 
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 – Equivalent diameter of a bundle of a reinforcing bars; 

φ(t,t0) – Creep coefficient, defining creep between times t and t0, related to 

elastic deformation at 28 days; 

φ(∞,t0) – Final value of creep coefficient; 

ψ – Factors defining representative values of variable actions: 

      ψ0 – for combination values; 

      ψ1 – for frequent values; 

      ψ2 – for quasi-permanent values. 
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INTRODUCTION  

What is the difference between behaviour under the loading of plain 

concrete and reinforced concrete (RC) members? 

      

In accordance with EN 206 (3.1) [N4] «concrete is material formed by mixing 

cement, coarse and fine aggregate and water, with or without the incorporation of 

admixtures, additions or fibers, which develops its properties by hydration».  

As with most rocklike substances (concrete is an artificial rock), concrete has a high 

compressive strength and very low tensile strength. 

      Reinforced Concrete (RC), as a composite material, is a rational combination of 

concrete and steel, wherein the steel reinforcement provides the tensile strength 

lacking in the concrete. Steel reinforcing is also capable to resist compression forces 

and it is used in columns as well as in other structures. 

       Let’s consider free supported beam loaded by two concentrated loads at the 

span. A beam with two concentrated loads applied at the third points, where the 

central third between two loads is subjected to constant moment only (pure 

bending), is shown in Figure I.1. 

       After initial loading the top half of the beam is subjected to compression and 

the bottom half is subjected to tension. 

 

 
Figure I.1 – Free supported beam loaded by two concentrated loads at the span 
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There is a plane in the beam, which is not strained and this is known as the 

neutral surface. The intersection of the neutral surface with a cross-section of the 

beam defines the neutral axis (fundamental assumption of bending theory is that 

plane sections remain plane). 

Therefore, the ends of the beam remain plain under the action of the bending 

moment, resulting in a linear variation of strain with distance from neutral axis, as 

it shown in Figure I.2. 

In addition, there is a linear stress distribution over the depth of the beam if 

the concrete in the tensile zone (under the neutral axis) works in linear-elastic 

stage. Before cracking, concrete strains and stresses in compression and tension 

zones increase with load increasing. In this stage concrete in uncracked sections 

will resist tension force, but it soon cracks, when strains of the concrete in tensile 

zone will exceed its ultimate tensile strains ctuε . 

When tensile strain in concrete reaches its ultimate value ctuε  at a particular 

section, cracking occurs at the applied load crcP  (see Figure I.2). First crack occurs 

at the weakest cross-section (it is equal probability of crack occurring at the length 

of the pure bending zone!). 

When cracking first occurs the stress in the concrete at the section with crack 

(at the crack) drop to zero and concrete beam fails suddenly without any warning 

(brittle mode of failure) (see Figure I.2).  

So, reinforcement is required to resist tension force due to the bending 

moment. When crack occurs in the reinforced beam (RC-beam), the concrete at the 

top of the section (over the neutral axis) resists compression and steel reinforcement 

resists tensile force at the cross-section with crack. The effective section resisting 

moment at cracked position is shown in Figure I.2. 

At the conventionally low load (but, after cracking) the concrete in compression 

and steel in tension are in the elastic range. 

The average strains and stresses in the reinforcement just before cracking 

depend on the amount of the steel reinforcement and bond conditions (between 

concrete and steel reinforcing bars).     
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a) – plain concrete beam; b) – reinforced concrete beam  

Figure I.2 – Behaviour of the concrete beams under increasing load 

 

The typical load-deflection curve for RC-beam is given in Figure I.3. The 

behaviour of the cracked section of RC-beam is elastic at low loads and changes to 

plastic at higher loads (near ultimate), as shown in Figure I.3. Increasing of the load 

causes displacement of the neutral surface (neutral axis in section) upward, which 

reduces the compression zone depth and deflection also increases. If the deflection 

increases without increasing of the load, the reinforced beam fails. 
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Figure I.3 – Typical load-deflection curve for the reinforced concrete beam 

 

It should be noted, that there are two possible modes of failure of the 

reinforced concrete beam in the ultimate stage (so-called, “tension failure” and     

“compression failure”). Failure mode of the RC beam depends on the amount of steel 

reinforcement present in tension side (see Figure I.4). 

 

 
Figure I.4 – Modes of the reinforced beam failure in bending (ultimate state) 

 

When moderate amount of steel reinforcement is present, strain in steel 

reaches its yielding value (εsy). This induces crushing of concrete in compression 



21 

 

zone and called as “secondary compression failure” (see Figure I.4 a). This failure is 

gradual as it is preceded by visible signs of collapse. Such a critical sections of the 

beam are called «under reinforced» sections. 

When amount of steel bars is large or very high strength steel is used, 

compressive strains in concrete reaches its ultimate value (εcc=εcu) before steel 

yields. Concrete fails by crushing and such a failure is sudden. This mode of failure 

is almost explosive and occurs without any warnings. Such a critical sections of the 

beam are called «over reinforced» sections. 

As it was shown, the beams are generally reinforced in the tension zone. Such 

beams cross-sections are called as a «singly reinforced». Sometimes rebars are 

also provided in compression zone in addition to tension rebars to enhance the 

resistance capacity, then such beams cross-sections are called as a «doubly 

reinforced». 

 

Advantages and disadvantages of reinforced concrete as a structural 

material 

 

As it was shown in [15] reinforced concrete may be the most important 

material available for construction. It is used in one form or another for almost all of 

the structures, great or small – buildings, bridges, pavements, dams, retaining 

walls, tunnels, tanks, and so one. 

The tremendous success of this universal material can be understood quite 

easily if its numerous advantages are considered. These include the following: 

1) It has considerable compression strength per unit cost compared with 

most other materials; 

2) Reinforced Concrete has excellent resistance to the actions of fire and 

water (in fact, it is the best structural material available for situation when water is 

presented); 

3) Concrete is a low-maintenance material and as compared with other 

materials, it has a very long service life. Under the proper conditions, reinforced 

concrete structures cad be used without reduction of their load-carrying capacity; 

4)  A special feature of concrete is its ability to be cast into an 

extraordinary variety of shapes: from simple slabs, beams and columns to the great 

arches and shells; 

5) A lower grade of skilled labour is required for erection in comparison 

with other materials as, for example, steel. 

Among reinforced concrete disadvantages are the following:  

1) Concrete has a very low tensile strength; 

2) Forms are required to hold the concrete in place until it hardens sufficiently. 

Formwork is very expansive; 

3) The low tensile strength per unit of weight of concrete leads to heavy 

members, and similarly, the low tensile strength per unit of concrete volume means 

members will be relatively large. It is an important consideration for tall buildings 

and long-span structures; 
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4) The properties of concrete vary widely because of variations in its 

proportioning and mixing; 

5) Concrete demonstrates shrinkage and creep.  

 

Compatibility of concrete and steel 

 

Concrete and steel reinforcement work together in reinforced concrete 

structures. It should be pointed, that the advantages of each material seem to 

compensate for disadvantages of the other. The following main causes are 

determined compatibility of concrete and steel in structure: 

1) The excellent bond-slip conditions between steel and surrounding 

concrete. The two materials bond together as a unit in resisting forces. The excellent 

bond strength obtained is the result of the chemical adhesion between steel and 

concrete (cement matrix), the natural roughness of the bars, and the closely spaced 

rib-shaped deformations rolled onto the bars surface; 

2) Excellent protection properties of the fresh and hardened concrete for the 

steel reinforcement. Reinforcing steel bars are subjected to corrosion, but concrete 

surrounding them provides them with excellent protection (pH≥13,5). The strength 

of exposed steel subjected to the temperatures reached in the fires of ordinary 

intensity is nil, but enclosing the reinforcing steel in concrete produces very 

satisfactory fire rating [15]; 

3) The same value of coefficients of the thermal expansion. Concrete and 

steel work well together in relation to temperature changes because its coefficients 

of thermal expansion are quite close (near 10·10-6 K-1).   
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CHAPTER 1 

 

 
BASIS OF STRUCTURAL DESIGN 

1.1  LIMIT STATE DESIGN                     
BASICAL REQUIREMENTS.                    

By the fundamental (basical) principle given by EN 1990 [N1] (clause 2.1(P)) a 

structure shall be designed and executed in such way that it will during its 

intended life, with appropriate degrees of reliability and in an economical way: 

 sustain all actions and influences likely to occur during execution and use, 

and 

 meet the specified serviceability requirements for a structure, or a structural 

element. 

In accordance with this basic principle, the next fundamental requirements 

can be summarized. A structure shall be designed: 

1) to have adequate structural resistance, serviceability and durability; 

2)     in the event of fire, to have an adequate resistance for the required 

period of the fire exposure; 

3)     to have an adequate robustness and not be damaged by accidents (e.g. 

explosion, impact, consequences of human errors to an extent disproportionate to 

the original cause. 

How it was shown in [3, 8] given the random nature of the basic variables 

involved in structural design (actions, geometry, strength of materials, etc.), the 

assessment of structural reliability cannot to be set up by deterministic methods, 

but requires a probabilistic analysis. 

The objective of safety verification is therefore to estimate failure probability, 

i.e. probability that a certain danger conditions is attained or exceeded, below a 

fixed value. This value is determined as a function of type of construction, influence 

on safety of people and damage to goods. 
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Every situation which is dangerous for a construction is referred as a limit 

state. 

In accordance with EN 1990 [N1] (clause 1.5.2.12) limit states are defined as 

states beyond which the structure no longer fulfill the relevant design criteria 

(design criteria are defined as a quantitative formulations that describe for each 

limit state conditions to be fulfilled) 

Once a construction has exceeded this conditions, it is no longer able to fulfill 

the functions for which it has been designed. 

Limit states are of two types: Ultimate Limit States (ULS) and Serviceability 

Limit States (SLS). 

Ultimate Limit States (ULS) are those associated with collapse or failure, and 

generally govern the strength of the structure or components. They also include loss 

of equilibrium or stability of the structure as a whole. As the structure will undergo 

severe deformation prior to reaching collapse conditions (e.g. beams becoming 

catenaries), for simplicity these states are also prepared, as ultimate limit states, 

although this condition is between serviceability and ultimate limit states; these 

states are equivalent to collapse, as they will necessitate replacement of the 

structure or element EN 1990 [N1]. 

Serviceability Limit States (SLS) generally correspond to conditions of the 

structure in use (exploitation). They include deformation, cracking and vibrations, 

which: 

1) damage the structure or non-structure elements (finishes, partitions, 

etc.) or the contents of buildings (for example, such as machinery); 

2)     cause discomfort to occupants of buildings; 

3)     affect adversely appearance, durability or water and weather tightness; 

They will generally govern the stiffness of the structure and the detailing of 

reinforcement within it. Figure 1.1-1 illustrates a typical load-deflection 

(deformation) relationship of RC structures and the limit states. 

 

 

Fig. 1.1-1 – Typical load relationship of RC-element and the limit states 
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1.2  DEFINITION OF RELIABILITY 

As it was shown in [8] a number of definitions of the term «reliability» are 

used in literature and in national and international documents. ISO 2394 [N6] 

provides a definition of reliability, which is similar to the approach of national 

standards used in some European countries: 

Structural reliability is the ability of structure or a structural member to 

fulfill the specified requirements for which it has been designed, it includes 

structural safety, serviceability and robustness. 

In quantitative sense reliability may be defined as the complement of the 

probability of failure. 

Note that the above definition of reliability includes four important elements: 

1) given (performance) requirements – definition of the structural failure; 

2)     time period – assessment of the required service-life T; 

3)     reliability level – assessment of the probability of failure fp ; 

4)     conditions of use – limiting input uncertainties. 

An accurate determination of performance requirements and an accurate 

specification of the term failure are of uttermost importance. In many causes, when 

considering the requirements for stability and collapse of a structure, the 

specification of the failure is not very complicated. In many other causes, in 

particular when dealing with various requirements of occupants comfort, 

appearance and characteristics of the environment, the appropriate definition of 

failure are dependent of several vaguenesses and inaccuracies. The transformation 

of these occupants requirements into appropriate technical quantities and precise 

criteria is very hard and often leads to considerably different conditions [8]. 

In the following the term failure is being used in a very general sense denoting 

simply any undesirable state of structure (e.g. collapse or excessive deformation), 

which is unambiguously given by structural conditions.  

The same definition as in ISO 2394 is provided in EN 1990 [N1] including note 

that the reliability covers the load-bearing capacity, serviceability as well as the 

durability of structure. Fundamental requirements include the statement (as 

already mentioned) that «a structure shall be designed and executed in such way 

that it will with appropriate degrees of reliability sustain all actions and influences 

that are likely to occur during execution and use, and remain fit for the intended use». 

Generally a different level of reliability for load-bearing capacity and for 

serviceability may be accepted for a structures or its parts. In documents [N1, N6] 

the probability of failure fp  (and reliability index β) are indicated with regard to 

failure consequences (see Table 1.2-1). 
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Table 1.2-1 – Definition of consequences classes (Table B1 from EN 1990 [N1]) 

Consequences 

Class 
Description 

Examples of buildings and civil 

engineering works 

CC3 

High consequence for loss of human life, 

or economic, social or environmental 

consequences very great 

Grandstands, public buildings where 

consequences of failure are high (e.g. a 

concert hall) 

CC2 

Medium consequence for loss of human 

life, economic, social or environmental 
consequence considerable 

Residential and office buildings, public 

buildings where consequences of failure 
are medium (e.g. an office building) 

CC1 

Low consequence for loss of human life, 

economic, social or environmental 

consequence small or negligible 

Agricultural buildings where people do 

not normally enter (e.g. storage 

buildings), greenhouses 

 

Table 1.2-1 gives the recommended minimum values for the reliability index 

associated with reliability classes. 

Three reliability classes RC1, RC2 and RC3 may be associated with the three 

consequences classes CC1, CC2 and CC3 (see Table 1.2-2). 

 
Table 1.2-2 – Recommended minimum values for reliability index β, ultimate limit state (Table 

B2 from EN 1990 [N1]) 

Reliability Class 
Minimum values for β 

1 year reference period 50 years reference period 

RC3 5,2 4,3 

RC2 4,7 3,8 

RC1 4,2 3,3 

 

The fundamental task of the theory of structure reliability concerns a basic 

requirements for the relation between the action effect (E) and structural resistance 

(R) within in form of inequality: 

 

   0.E R or E R                  (1.2-1) 

 

Both variables E and R are generally random variables and the validity of 

Inequality (1.2-1) cannot be guaranteed absolutely, i.e. with the probability equal to 

1 (the total certainly). Therefore it is necessary to accept the fact that the limit state 

described by equation may be exceeded and failure may be occur with certain very 

small probability. 

The most important term used above (and in the theory of structure reliability) 

is evidently the probability of failure fp . 

In order to define fp  properly it is assumed that structural behavior may be 

described by a set of basic variables   1 2, , ..., nX X XX  characterizing action, 

mechanical properties, geometrical data and model uncertainties. Furthermore, it is 

assumed that the limit state (ultimate, serviceability, durability or fatigue) of a 

structure is defined by the Limit State Function (or the performance function in 

accordance with EN 1990 [N1]), usually written in an implicit form: 
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   0.G X             (1.2-2) 

 

The Limit State function  G X  should be defined in such way that for a 

favorable (safe) state of structure the function is positive,    0,G X  and for 

unfavorable state (failure) of the structure the limit state function is negative, 

   0.G X  

For most limit states (ultimate, serviceability, durability and fatigue) the 

probability of failure can be expressed as: 

 

    0 .fp Prob G X                   (1.2-3) 

 

The failure probability fp  can be assessed if basic variables   1 2, , ..., nX X XX  

are described by appropriate probabilistic (numerical and analytical) models. 

Assuming that the basic variables   1 2, , ..., nX X XX  are described by time 

independent joint probability density function  xf x  then the probability fp  can be 

determined using the integral: 

 

 

 





 ;

0.

f xp f x dx

G X
             (1.2-4) 

 

More complicated procedures needs to be used when some of the basic 

variables are time-dependent. However, in many cases the problem may be 

transformed to a time-independent one for example by considering in            

Equation (1.2-3) or in Equation (1.2-4) a minimum of the function  G X  over the 

reference period T.  

For the simple condition in the form of Inequality (1.2-1), the probability of 

failure may be formally written as follows: 

 

   .fp Prob E R                 (1.2-5) 

 

The random character of the action effect E and the resistance R, both 

expressed in terms of suitable variable (performance indicator) X (i.e. stress, force, 

bending moment, deflection) is usually described by appropriate distribution 

function, i.e. by distribution functions  EF X ,  RF X  and corresponding probability 

density functions  Ef x ,  Rf x , where x denotes a general point of the considerable 

variable X used to express both the variables E and R (see Figure 1.2-1). 

Distribution of variables E and R further depend on appropriate parameters, e.g. 

moment parameters ,Eμ  ,Eσ  ,Rμ  ,Rσ  and .Rω       
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                           а)                                                                b) 

 

            c)         d) 

a) – histogram; b) – probability density function; c) – cumulative frequence;  

d) – probability distribution function 

Figure 1.2-1 – Discrete empirical distribution of a random sample  

and probability functions for a random variable population 

 

Let us further assume that E and R are mutually independent (which may be 

provided by appropriate transformation). 

Figure 1.2-2 shows an example of probability density functions of both the 

variables E and R and their mutual location. 

Note, that the probability density functions  Ef x ,  Rf x  shown in             

Figure 1.2-2 overlap each other and therefore it is clear that unfavorable realization 

of variables E and R, denoted by small letters e and r, may occur in such way that 

e r , i.e. the load effect is greater than the resistance and failure will occur. 

Obviously in order to keep the failure probability   fp Prob E R  within an 

acceptable limits, the parameters of variables E and R must satisfy certain 

conditions (concerning the mutual position and variances of both distributions) 

depending on the types of distribution. 
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Figure 1.2-2 – Probability density functions for action effects (E) and resistance (R) 

 

In Figure 1.2-3: fp   represents the probability that failure arises, i.e. that 

considered limit state is attained or exceeded at least once during T.   

 

 

 

a) – probability density function; b) – limit state performance function 

Figure 1.2-3 – Probability density functions (E, R) and limit state (perfomance) function  
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This analysis (known as Level 3 method) is very complex. Because of the 

difficulty of calculation and of the limitation of available data (data which often fail 

to give the probabilistic distributions necessary for calculation), this method is of 

limit applicability to the design practice. 

Alternatively, if only the first and second moments (averages and standard 

deviations) of the random variables R and E, but not their statistical distributions, 

are known, the probability of failure can be estimated based on a β index, called 

«the reliability index». 

Assume that both basic variables, the action effect E and resistance R are 

random variables. A simple solution can be obtained assuming a normal 

distribution for both E and R. Then also the difference: 

 

  ,G R E            (1.2-6) 

 

called the safety margin, has a normal distribution with parameters: 

 

  ,G R Eμ μ μ             (1.2-7) 

 

     2 2 2 2 22 ,G R E RE R Eσ σ σ ρ σ σ     (1.2-8) 

 

where: REρ  is the coefficient of correlation of R and E. 

Assuming that G is linear, it was first defined by Cornell as the ratio between 

the average value Gμ  of  G and its standard deviation Gσ : 

 

 ,G

G

μ
β

σ
               (1.2-9) 

 

In circumstance where R and E are not correlated (note, that in case of normal 

distributions non-correlation is equivalent to statistical independence  0REρ ), 

accordance with [N1, N6, 8] reliability index β expressed as follows: 

 



2 2

,R E

R E

μ μ
β

σ σ
            (1.2-10) 

 

where: Eμ , Eσ , Gμ , Rσ  are the averages (means) and standard deviations of R and E 

respectively. 

As was pointed in [N6, 8] this method (known as Level 2 method or «β-method») 

does not generally allow assessment of the probability of failure, with the exception 

of the particular case where relation between Gμ  and the random variables of the 

problem is linear and the variables have normal distribution. The probability of 

failure, i.e. probability that the safety margin G assumes non-positive values, is 

given by the distribution function  Gf x  of G calculated in point 0: 
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     0 Φ 0 .f Gp Prob G          (1.2-11) 

 

Introducing 0u  as the normalized variable of safety margin G: 

 


0 ,G

G

G μ
u

σ
                         (1.2-12) 

 

the result: 

 

   0.G GG μ σ u                  (1.2-13) 

 

Substituting Equation (1.2-13) in the Equation (1.2-11) of fp  gives: 

 

   

     

 
          

 

      

0 0

0 0

0 0

Φ 1 Φ ,

G
f G G

G

u u

μ
p Prob G Prob μ σ u Prob u

σ

Prob u β β β

  (1.2-14) 

 

where: Φu indicates the distribution function u. The relation between β and fp  is 

given in Table 1.2-3. 
 
Table 1.2-3 – Relation between β and 

fp  

pf 10-1 10-2 10-3 10-4 10-5 10-6 10-7 
β 1,28 2,32 3,09 3,27 4,27 4,75 5,20 

 

The probability density function  Gf g  of the safety margin G is shown in    

Figure 1.2-3, where the grey area under curve  Gf g  corresponds to the failure 

probability fp . 

As it was shown in [8] the Level 2 method is also difficult to apply in practical 

design because the necessary data are often not available, so that another method 

is used: the partial factor method or semi-probabilistic method (Level 1 

method). 
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 1.3  PARTIAL FACTORS METHOD 

 1.3.1  GENERAL 

In accordance with EN 1990 [N1] (clause 6.1(1)P) when using the partial factor 

method, «it shall be verified that, in the relevant design situations, no relevant limit 

state is exceeded when design values for actions or effects of actions and resistances 

are used in the design models». 

Design values should be obtained by using: 

  the characteristic, or 

  other representative values, 

in combination with partial and other factors as defined in EN 1990 [N1], EN 

1991 [N2] and EN 1992 [N3]. 

This method is based on the compliance with a set of rules that ensure the 

requirement reliability of the structure by using characteristic values of the problem 

variables and a series of safety elements. These are represented by partial safety 

factors « iγ » which cover the uncertainties in actions and materials, and by 

additional elements «Δ» for uncertainties in geometry, e.g. to allow for the 

randomness of cover to reinforcement and therefore of the effective depth of a 

reinforced concrete section. 

The method does not require that the designer has the any probabilistic 

knowledge, because the probabilistic aspects of the question of the safety are 

already taken into account in the method calibration process, i.e. in the choice of 

characteristic value, partial factors, etc., fixed in standards. 

The partial factors method is based on the following assumptions: 

1) Resistance (strength) and action effects (stress) are independent random 

variables; 

2) Characteristic values of resistance (strength) and action or action effect 

(stress) are fixed as fractilies of given order of the respective distributions, on the 

basis of a given probability; 

3) Other uncertainties are taken into account by transforming characteristic 

values into design values, by applying partial factors and additional elements for 

reliability; 

4) The assessment of safety is possible if the design action (action effects) don't 

exceed the design resistance. 
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 1.3.2  PRINCIPLES OF LIMIT STATE DESIGN, 
DESIGN SITUATIONS 

Eurocodes adopt the partial factors method, or limit state semi-probabilistic 

method, as the method for the verification of structure safety. 

Design for limit states shall be based on the use of structural and actions 

models for relevant limit states. It shall be verified that no limit state is exceeded 

when relevant design value for actions, materials and product properties and 

geometrical data are used in these models EN 1990 [N1] (clause 6.1(1)P). 

The verifications shall be carried out for all relevant design situation and load 

cases in accordance with EN 1990 [N1].  

The situations chosen for design shall cover all situations that can reasonably 

occurs during the execution and working life of the structure. 

In common cases, design situation in EN 1990 [N1] are classified as: 

 persistent design situation, which refer to the conditions of normal use; 

 transient design situation, which refer to temporary conditions applicable 

to the structure, e.g. during execution or repair; 

 accidental design situation, involving exceptional conditions of the 

structure or its exposure, including fire, explosion, impact, etc; 

 seismic design situation, which refer to conditions applicable to the 

structure when subjected to  seismic events. 

As it is stated in EN 1990 [N1]: «the selected design situation shall be 

sufficiently severe and varied so as to encompass all conditions that can reasonably 

be foreseen to occur during the execution and use of the structure». 

1.3.3 BASIC VARIABLES 

1.3.3.1 Actions and environmental influences 

As it was pointed in EN 1990 [N1], each design situation is characterized by 

the presence of several types of actions on the service. 

Actions means, as EN 1990 [N1] states, either a set of forces (loads) applied to 

the structure (direct actions), or a set of imposed deformation or accelerations 

caused, for example, by temperature changes, moisture variation, an even 

settlement or earthquake (indirect actions). 

In accordance with EN 1990 [N1], actions are classified as: 

 permanent actions (G), the duration of which is continuous and equal to the 

design working life of the structure, or for which the variation in magnitude with 

time is negligible (e.g. self-weight of structures, fixed equipment and road surfacing 

and indirect actions caused by shrinkage and uneven settlements). Those actions, 
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like prestressing or concrete shrinkage, for which the variation is always in the 

same direction (monotonic) until the action attains a certain limit value, are also 

permanent actions; 

 variable actions (Q), divided in variable actions with discrete and regular 

occurrence in time (e.g. imposed load of people and low-duration imposed load in 

general on building floor); and variable actions characterized by variable and non-

monotonic intensity or direction (e.g. snow, wind, temperature, etc.); 

 accidental actions (A), which are not easily foreseeable and of low 

duration (e.g. explosions, impacts, fire, etc.). Certain actions, such as seismic 

actions and snow loads, may be considered as either accidental and/or variable 

actions, depending on the site location. 

Actions caused by water may be considered as permanent and/or variable 

actions depending on the variation of their magnitude with time. 

Additionally, actions shall also be classified: 

 by their origin, as direct or indirect; 

 by their spatial variation, as fixed or free; 

 by their nature and/or the structural response, as static or dynamic. 

An action should be described by a model, its magnitude being represented in 

the most common cases by one scalar which may have several representative values 

(for some actions and some verifications, a more complex representation of the 

magnitudes of some actions may be necessary): 

 

  .rep kF ψ F                      (1.3-1) 

 

The characteristic value kF  of an action in accordance with EN 1990 [N1] 

(clause p.4.1.2(1)P) representative value and shall be specified: 

 as a mean value, an upper or lower value, or a nominal value (which does 

not refer to a known statistical distribution) (see EN 1991 [N2]); 

 in the project documentation, provided that consistency is achieved with 

methods given in EN 1991 [N2]. 

Each permanent action with low variability has a single characteristic value 

Gk. This is the case of actions due to self-weight: they are generally represented 

through a nominal value calculated on the basis of the design drawings (structural 

and non-structural member dimensions) and of the average specific gravity of 

materials ( k mG G ). 

If permanent action has relevant uncertainties (coefficient of variation bigger 

than 10 %, where the coefficient of variation is the ratio between standard deviation 

and mean value) and if sufficient statistical information is available, two 

characteristic values (upper, ,k supG  and lower, ,k infG ) should be used. Value ,k supG   is 

the 95 % fractile and  ,k infG  is the 5 % fractile of the statistical distribution for G, 

which may be assumed to be Normal (Gaussian). There is a 5 % probability that 

these two values will be exceeded, the probability that the real value of action is 

more than  ,k supG  or less than  ,k infG   is less than 5 % (see Figure 1.3-1).  
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Figure 1.3-1 – Characteristic value of a permanent action.                                        

k mG G , if the coefficient of variation is small (negligible); a lower and upper characteristic 

value of 
k,infG  and 

k,supG  are defined if the coefficient of variation is high 

 

For variable actions, the characteristic value ( kQ ) in accordance with           

EN 1990 [N1] (clause 4.1.2(7)P) shall correspond to either: 

  an upper value with an intended probability of not being exceeded or a lower 

value with an intended probability of being achieved, during some specific reference 

period T; 

  a nominal value, which may be specified in cases where a statistical 

distribution is not known. 

The characteristic value of climatic actions is based upon the probability of 

0,02 of its time-varying part being exceeded for a reference period of one year. This 

is equivalent to a mean return period of 50 years for the time-varying part. However 

in some cases the character of the action and/or the selected design situation 

makes another fractile and/or return period more appropriate. 

Each variable action has four representative values. As it was shown, the main 

representative value of a variable action is characteristic value kQ ; the other 

representative values are (in decreasing order): 

a) the combination value, represented as a product 0ψ  and kQ , used for 

the verification of ultimate limit states and irreversible serviceability limit states; 

b) the frequent value, represented as a product  1ψ  and kQ , used for the 

verification of ultimate limit states involving accidental actions and for verifications 

of reversible serviceability limit states; 

c) the quasi-permanent value, represented as product  2ψ  and kQ ,  used 

for the verification of ultimate limit states involving accidental actions and for the 

verification of reversible serviceability limit states. Quasi-permanent values are also 

used for the calculation of long-term effects. 

For simplicity, each of these last three values is defined as a fraction of the 

characteristic value, obtained by applying a reducing factor iψ  to kQ . In reality, the 

frequent value and quasi-permanent value are inherent properties of the variable 

action, and the 1ψ  and 2ψ  factors are simply the ratios between these values and 

the characteristic value. On the other hand, the 0ψ  factor, called the combination 
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factor, determines the level of intensity of a variable action when this action is taken 

into account, in design, simultaneously with another variable action, called leading 

variable action, which is taken into account by its characteristic value. 

The 0ψ  factor takes therefore into account the low probability of simultaneous 

occurrence of the most unfavorable values of independent variable actions. It is 

used both for ULS verifications and for irreversible SLS verifications.  

The frequent ( 1 kψ Q ) and the quasi-permanent ( 2 kψ Q ) values are used for ULS 

verification including accidental actions and for reversible serviceability limit states.  

For building, for example, the frequent value ( 1 kψ Q ) is chosen so that the time 

it is exceeded is 0,01 of the reference period. For loads on building floors, the quasi-

permanent value ( 2 kψ Q ) is usually chosen so that the proportion of the time it is 

exceeded is 0,5 of the reference period. The quasi-permanent value can alternatively 

be determined as the value averaged over a chosen period of time. In the case of 

wind actions or road traffic loads, the quasi-permanent value is generally taken as 

zero. Theoretical background for iψ  coefficients assessment is presented in            

ISO 2394 [N6].  

Figure 1.3-2 resumes the representative values of variable actions. 

 

 

Figure 1.3-2 – Schematic illustration of representative values of the variable actions 

 

Values of iψ  factors for buildings are defined in National Annexes to EN 1990 

[N1]. Table 1.3-1 shows the values of iψ  factors recommended by EN 1990 [N1].  
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Table 1.3-1 – Recommended values of 

iψ  factors for buildings (Table (A1.1) from EN1990 [N1]) 

Imposed loads in buildings, category (see EN1991 [N2]) 0ψ  
1ψ  

2ψ  

Category A: domestic, residential areas 0,7 0,5 0,3 

Category B: office areas 0,7 0,5 0,3 

Category C: congregation areas 0,7 0,7 0,6 

Category D: shopping areas 0,7 0,7 0,6 

Category E: storage areas 1,0 0,9 0,8 

Category F: traffic area, vehicle weight ≤30 kN 0,7 0,7 0,6 

Category G: traffic area, 30 kN<vehicle weight ≤160kN 0,7 0,5 0,3 

Category H: roofs 0 0 0 

Snow loads on buildings (see EN1991-1-3)* in Fineland, Iceland, 

Norway, Sweden and other CEN Member, for sites located at 

altitude H>1000m a.s.l. 

0,7 0,5 0,2 

Other CEN Member States, for sites located at altitude H<1000m 
a.s.l. 

0,5 0,2 0 

Wind load on buildings (see EN 1991 [N2]) 0,6 0,2 0 

Temperature (non-fire) in buildings (see EN 1991 [N2]) 0,6 0,5 0 

Note: The ψ values may be set by the National annex. 
* For countries not mentioned below, see relevant local conditions. 

 

In order to take into account the uncertainties on the choice of characteristic 

values for actions and some uncertainties concerning the action modeling, design 

does not use characteristic values, but amplified values, called «design values», 

which are obtained by multiplying characteristic values by a partial factor (see 

Figure 1.3-3). 

 

 

Figure 1.3-3 – Characteristic and design values of a variable actions 

 

Symbols representing the design values are indicated with index «d».          

Table 1.3-2 shows the steps to pass from the representative values of actions to the 

design values of their effects on construction. 
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Table 1.3-2 – Procedure to determine the design values of effects on structures starting from 

the representative values of actions [3, 8] 

Expression Comment 

iF  Actions on the structure are identified 

,k iF  or  ,k iψ F ,             

where (  0 1 2, ,ψ ψ ψ ψ ). 

Representative values are assigned to actions: characteristic values or 

other (combination, frequent, quasi-permanent) values. 

 , , ,d i f i k iF γ F           

(or  , ,f i k iγ ψ F ),                          

where (  0 1 2, ,ψ ψ ψ ψ ). 

Design values of actions are determined by multiplying the 

representative values 
,k iF  or ψ  ,k iψ F  (where  0 1 2, ,ψ ψ ψ ψ ) by a 

partial factor 
,f iγ . 

,f iγ  is a partial factor generally covering the 

uncertainties related to the choice of characteristic values for actions 

and, sometimes, part of the uncertainties related action modeling. In 
case of permanent actions, when it is necessary to split the action into 

a favorable and an unfavorable part, two different partial factors, 

indicated as 
,G supγ  and 

,G infγ , are used. 

  , ,( ; )d f i k i dE E γ ψ F a  Actions that can occur simultaneously are considered; combinations of 

actions are calculated and the effects of these combinations on the 

structure are assessed (e.g. action effect in cross section). da  

represents either the design value of the set of geometrical data (in 

general, values indicated on the design drawings) or data that take into 

account the possibility of geometrical imperfection liable to cause 

second order effects. 

   ,( ; )d Ed k i dE γ E ψ F a  The design value of effects is obtained by multiplying the values 

produced by the design actions, by a partial factor Edγ  mainly covering 

the uncertainties of the structural model. 

  ,( ; )d k i dE E ψ F a  In normal cases, the previous expression is simplified in this one, 

where:  , ,,F i Ed f iγ f γ γ  so that the model coefficient Edγ  does not 

explicitly appear. The product:  , , ,d i f i k iF γ F  or (  , , ;F i k iγ ψ F

 0 1 2, ,ψ ψ ψ ψ ) is often directly assumed as the design value of the 

action 
,k iF .  

 

As was shown in EN 1990 [N1], the values of actions to be used in design are 

governed by a number of factors. These include: 

1) The nature of load. Whether the actions is permanent, variable or 

accidental, as the confidence in the description of each will vary. 

2)     The limit state being considered. Clearly the value of an action 

governing design must be higher for ultimate limit state than for serviceability for 

persistent and transient design situations. Realistic serviceability loads should be 

modeled appropriate to the aspect of the behavior being checked (e.g. deflection, 

cracking or settlement). For example, creep and settlement are function of 

permanent loads only. 

3)      The numbers of variable loads acting simultaneously. Statistically, it is 

improbable that all loads will act at their full characteristic value at the same time. 

To allow for this, the characteristic values of actions will be needed in modification. 

Consider the case of permanent action ( kG ) and one variable action ( kQ ) only. 

For the ultimate limit state the characteristic value should be magnified, and the 

load may be represented as follows: 

 

    ,G k Q kγ σ γ Q               (1.3-2) 
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where: iγ  is a partial factor for actions. 

The values of Gγ  and Qγ  will be different, and will be a reflection of the 

variableness of the two loads being different. The iγ  factors are accounted for: 

1) the possibility of unfavorable deviation of the loads from the characteristic 

values; 

2) inaccuracies in the analysis; 

3) unforeseen redistribution of stresses; 

4) variation in the geometry of the structure and its elements, as this affects 

the determination of the action-effects.  

Now let’s consider the case of structure subjected to variable action ,1kQ  and 

,2kQ  simultaneously. If ,1kQ  and ,2kQ  are independent, i.e. the occurrence and 

magnitude of  ,1kQ  does not depend on the occurrence and magnitude of ,2kQ  and 

vice-versa, then it would be unrealistic to use combination   ,1 ,1 ,2 ,2Q k Q kγ G γ G  as the 

two loads are unlikely to act at their maximum at the same time. Joint probabilities 

will need to be considered to ensure that the probability of occurrence of the two 

loads is the same as that of a single load. 

It will be more realistic and reasonable to consider one load at its maximum in 

conjunction with a reduced value for the other load. This, we have two possibilities: 

 

   ,1 ,1 0,2 ,2 ,2,Q k Q kγ Q ψ γ Q                     (1.3-3) 

 

or: 

 

   0,1 ,1 ,1 ,2 ,2Q K Q Kψ γ Q γ Q               .3-4) 

 

Multiplication by 0ψ  is said to produce a combination value of the load. It 

should be noted that the values of iγ  and iψ  vary with each load. The method of 

deriving iψ   values is outlined in the addenda to ISO 12394 [N6]. In practice, 

designer will not have sufficient information to vary the ψ-values in most cases. 

Table 1.3-1 summarizes the iψ  values recommended by the EN1990 [N1]. 

1.3.3.2 Material and product properties  

Properties of materials and products should be represented by characteristic 

values. In accordance with EN1990 [N1] (clause p.1.5.4.1) characteristic value 

defines as «the value of material or product property (XK or RK) having a prescribed 

probability of not being attained in a hypothetical unlimited test series». This value 

generally corresponds to a specified fractile of the assumed statistical distribution of 

the particular property of the material or product. When a limit state verification is 

sensitive to the variability of a material property, upper and lower characteristic 

values of the material property should be taken into account: 
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 where a low value of material or product property is unfavorable, the 

characteristic value should be defined as the 5 % fractile value (see Figure 1.3-4); 

 where a high value of material or product property is unfavorable, the 

characteristic value should be defined as the 95 % fractile value (see Figure 1.3-4). 

The structural stiffness parameters (e.g. modulus of elasticity, creep coefficient) 

and thermal expansion coefficient should be represented by a mean value. Different 

values should be used to take into account the duration of the load. For the 

structural stiffness parameters, the characteristic values is taken as a mean value, 

because depending on the case, these parameters can be favorable or unfavorable. 

 

 

Figure 1.3-4 – Characteristic values (5 % and 95 % fractiles) for material properties  

 

Product properties are also represented by a single characteristic value or a set 

of characteristic values, according to their constituent materials. 

In order to account for the differences between the strength of the test 

specimens of the structural materials and their strength in-situ, the strength 

properties will be needed to be reduced. This is achieved by dividing the 

characteristic values by partial factors for materials ( Mγ ). Thus the design value 

 /d k MX X γ . Uncertainties of the resistance models are also covered by Mγ . 

Although it is not stated in the code, Mγ  also accounts for local weaknesses and 

inaccuracies in the assessment of resistance of the section. 

Table 1.3-3 shows the steps to pass from characteristic values of individual 

material strengths ( iX ) or product resistances (R) (as function of the strength) to the 

design values of structural resistance. 
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Table 1.3-4 gives the summarized values of partial factors to be assumed for 

concrete and reinforcement steel for ULS, in case of persistent, transient and 

accidental load combinations. 

 
Table 1.3-3 – Procedure to determine the design values of resistances starting from the 

characteristic values of strength [3] 

Expression Comment 

iX  
Material strengths and product resistances involved in the verifications 

are indentified. 

,k iX  Characteristic values of material strength and product resistances are 

introduced. 

 

 
,

,

,

k i

d i

m i

X
X η

γ
 

The design value of a material property is determined on the basis of 

its characteristic value, through the two following operations: 

a) divide by a partial factor mγ , to take into account unfavorable 

uncertainties on characteristic of this property, as well as any local 
defaults; 
b) multiply, if applicable, by a conversion factor η mainly aimed at 

taking into account scale effects. 

 
  

 

,

,

;
k i

d

m i

X
R η a

γ
 

Determine the structural resistance on the basis of design values of 

individual material properties and geometrical data. 

 
   

 

,

,

1
;

k i

d d

Rd m i

X
R R η a

γ γ
 

Following a procedure similar to the one for calculating the design 

value of action effects, the design value of structural resistance is 

determined on the basic of individual material properties and of 

geometrical data multiplied by a partial factor Rdγ  that covers the 

model uncertainties of resistance and the geometrical data variations, 

if these are not explicitly taken into account in the model.  

 
   

 

,

,

;
k i

d d

M i

X
R R η a

γ
 

As for the action effects, factor Rdγ  is often integrated in the global 

safety factor 
,m iγ , by which the characteristic material strength is 

divided:  , ,, .m i Rd m iγ f γ γ  

 
Table 1.3-4 – Partial factors for concrete and steel for ultimate limit states (Table (2.1N) from 

EN 1992 [N3]) 

Design situation cγ  for concrete sγ  for reinforcing steel sγ  for prestressing 

steel 

Persistent and transient 1,5 1,15 1,15 

Accidental 1,2 1,0 1,0 

Note: 1. The values of partial factors in the table 1.3-4 were determined in accordance with 

Annex C from EN 1990 [N1]:      exp 1,64 ,M R R fγ α β V V  where:   2 2 2

R m G fV V V V , and 

, , ,R G m fV V V V  are coefficients of variation of resistance, geometrical factor, model uncertainty, 

material strength. 

 

For serviceability limit states values of partial factors cγ  and sγ  are equal 1,0 

(recommended value for situations not covered by specific parts of EN1992 [N3]). 

Besides the partial factors for material above, EN1992 [N3] also defines partial 

factors for shrinkage, prestressing, fatigue loads and materials for foundations. The 

Table 1.3-5 gives the values recommended in EN1992 [N3]. 
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Table 1.3-5 – Recommended values of partial safety factors [8] 

Shrinkage (e.g. for ULS verification of stability when second order 

effects are relevant) SHγ  1,0 

,P unfavγ

 

Favorable in persistent and transient situation ,P favγ  1,0 

Stability ULS with external prestressing may be 

unfavorable 
,P unfavγ  1,3 

Local effects ,P unfavγ  1,2 

Fatigue ,F fatγ  1,0 

Materials for foundations (amplified in order to obtain the design 

resistance of cast in place piles without permanent scaffolding) 
,C fondγ  1,1 Cγ  

 

The recommended values of the partial factors given in Table 1.3-5 can be 

changed in National Annex to EN 1992 [N3]. 

1.3.4 VERIFICATION OF THE LIMIT STATES 
BY PARTIAL FACTORS METHOD 

1.3.4.1 Ultimate Limit State (ULS) 

1.3.4.1.1  General 

As it was shown, the Ultimate Limit States are associated with the loss of the 

equilibrium of the whole structure, or failure or excessive deformation of a 

structural member and they generally concern safety of people. 

Table 1.3-6 shows the ULS classification according to EN 1990 [N1]           

(clause (6.4.1)). 

 
Table 1.3-6 – ULS classification in accordance with EN 1990 [N1] 

Notation Definition 

EQU 

Loss of static equilibrium of the structure or any part of it considered as a rigid 
body, where:  

 minor variations in the value or the spatial distribution of the actions from 
a single source are significant (e.g. self-weight variation), and 

 the strengths of construction materials or ground are generally not 
governing. 

STR 

Internal failure  or excessive deformation of the structure or structural members, 

including footing, piles, basement walls, etc., where the strength of construction 
materials of the structure governs. 

GEO 
Failure or excessive deformation of the ground where the strength of soil or rock 

are significant in providing resistance. 

FAT Fatigue failure of the structure or structural members. 

 

Verification of static equilibrium: when considering a limit state of static 

equilibrium of the structure EQU (overall stability), it should be verified that the 

design effects of destabilizing actions are less than the design effects of stabilizing 

actions: 
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, , ,d dst d stbE E                            (1.3-5) 

 

where: ,d dstE  is the design value of the effect of destabilizing;  

    ,d stbE  is the design value of the effect of stabilizing actions. 

Where appropriate the expression for limit state of static equilibrium may be 

supplemented by additional terms, including, for example, a coefficient friction 

between rigid bodies.  

When considering rupture or excessive deformation of a section, member 

or connections (STR), it should be verified that the design value of internal force or 

moment ( dE ) is less than the design value of resistance ( dR ): 

 

 ,d dE R                (1.3-6) 

 

where: dE  is the design value of the effect of actions such as internal force, moment 

or a vector representing several internal forces or moments;  

    dR  is the design value of the corresponding resistance. 

1.3.4.1.2 Combination of actions for persistent or transient design 

situations 

As it was shown below, EN1990 [N1] gives three separate sets of load 

combinations, namely EQU (to check against loss of equilibrium), STR (internal 

failure of structure governed by the strength of the construction materials) and GEO 

(failure of the ground, where the strength of soil provides the significant resistance). 

(1) Equilibrium (EQU) 

Equilibrium is verified using the load combination Set A in the Annex A from 

EN1990 [N1], which is follows: 

 

       , , , , , , , , ,1 ,1 , 0, ," " " " " " ,G j sup k j sup G j inf k j inf Q k Q i i k iγ G γ G γ Q γ ψ Q         (1.3-7) 

 

where: , , , ,G j sup k j supγ G  is used when the permanent loads are unfavorable;  

           , , , ,G j inf k j infγ G  is used when the permanent actions are favorable.  

Numerically, , , 1,1G j supγ , , , 0,9G j infγ , and  Qγ  is equal to 1,5, when unfavorable 

and 0, when favorable. 

The above format applies to the verification of the structure as a right body 

(e.g. overturning of retaining walls). In cases where the verification of equilibrium 

also involves the resistance of the structural member (e.g. over hanging cantilevers), 

the strength verification given below without the above equilibrium check may be 

adopted. In such verifications, , ,G j infγ  is equal to 1,15 should be used. 

(2) Strength (STR) 

When a design does not involve geotechnical actions, the strength of elements 

should be verified using load combination Set B in the Annex A from EN1990 [N1]. 
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Two options are given. Either combination (6.10) from EN1990 [N1] or less favorable 

of equation (6.10a) and equation (6.10b) may be used: 

 

       

  

, ,sup , ,sup , ,inf , ,inf ,1 0,1 ,1

, 0, ,

" " " " " " " "

" " ;

p

G j k j G j k j p Q k

Q i i k i

γ G γ G γ γ ψ Q

γ ψ Q
                (1.3-8) 

 

       

  

, , , , , , , , ,1 ,1

, 0, ,

" " " " " " " "

" " .

p

G j sup k j sup G j inf k j inf p Q k

Q i i k i

ξ γ G γ G γ γ Q

γ ψ Q
              (1.3-9) 

 

The above Combination (1.3-8) and Combination (1.3-9) assume that a number 

of variable actions are present at the same time. Value ,1kQ  is the dominant load if it 

is obvious, otherwise each variable load is in turn treated as a dominant load and 

the others as secondary (accompanying). The dominant load is then combined with 

combination value of the accompanying (secondary) loads. Both are multiplied by 

their respective iγ  values. 

When design involves geotechnical action, a number of approaches are given in 

EN1990 [N1]. 

1.3.4.1.3 Combination of actions for accidental design situation 

The load combination recommended is following: 

 

      1, 2, ,1 2, ," " " " " or ,j d i i k i k iG P A ψ ψ Q ψ Q                       (1.3-10) 

 

where: dA  is the design value of accidental action.  

Accidents are unintended events such as explosions, fire or vehicular impact, 

which are of short duration and which have a very low probability of occurrence 

(near 10-7/year). 

1.3.4.2 Serviceability Limit States (SLS) 

1.3.4.2.1 General 

Serviceability Limit States (SLS) correspond to conditions beyond which 

specified service requirements for structure or structural member are no longer met. 

Exceeding these limits causes limited damage but means that the structures do not 

meet design requirements: functional requirements (not only of the structure, but 

also of machines and services), comfort of users, appearance (where the term 

"appearance", as it was noted in EN 1990 [N1], is concerned with high deformation, 

extensive cracking, etc.), damage to finishes and to non-structural members. 

Usually the serviceability requirements are agreed for each individual project. 

It should be verified that the design effects of actions do not exceed a nominal 

value, or a function of certain design properties of materials; for example, deflection 
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under quasi-permanent loads should be less than span/250, and compression 

stress under a rare combination of loads should not exceed 0,6 ckf . In most cases, 

detailed calculations using various load combinations are unnecessary, as the code 

stipulates simple compliance rules. It should be verified that: 

 

 ,d dE C                       (1.3-11) 

 

where: dE  is the design value of the effects of actions specified in the serviceability 

criterion, determined on the basic of the relevant combination; 

    dC  is the limiting design value of the relevant serviceability criterion 

(parameter).  

1.3.4.2.2 Combinations of actions for serviceability limit states checking 

The combination of actions to be taken into account in the relevant design 

situation should be appropriate for serviceability requirements and performance 

criteria being verified. The combinations of actions for serviceability limit states are 

defined symbolically by the following expressions:  

Characteristic combination. 

 

 

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1
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i

G P Q ψ Q                             (1.3-12) 

 

This represents a combination of service loads, which can be considered rather 

infrequent. It might be appropriate for checking states such as micro-cracking or 

possible local non-catastrophic failure of reinforcement leading to large crack in 

sections. 

Frequent combination. 
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This represents a combination that is likely to occur relatively frequently in 

service conditions, and is used for checking cracking. 

Quasi-permanent combination. 

 

 
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This will provide an estimate of sustain loads on the structure, a will be 

appropriate for the verification of creep, settlement, etc. 
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 CHAPTER 2  

 

 
STRUCTURAL ANALYSIS 

2.1 GENERAL REQUIREMENTS 

The purpose of structural analysis is the verification of overall stability and 

establishment of action effects, i.e. the distributions of internal forces and moments. 

The analysis implies a preliminary idealization of the structure, based on more or 

less refined assumptions of behavior. In terms of behavior of the structure, there are 

four types of idealization, as it was shown in EN 1992 [N3]: 

 linear elastic behavior that assumes, for analysis, uncracked cross sections 

and perfect elasticity. The design procedures for linear analysis are given in     

Section 2.5.1;  

 linear elastic behavior with limited redistribution (see Section 2.5.2). It is 

a design (not analysis) procedure based on mixed assumptions, derived from both 

linear and non-linear analysis; 

 plastic behavior (see Section 2.5.3). Its kinematic approach in accordance 

with EN1992 [N3] (clause 5.6), assumes at ultimate limit state the transformation of 

the structure in a mechanism through the formation of plastic hinges; in its statistic 

approach, the structure is represented by compressed and tensioned elements 

(strut and tie model); 

 non-linear behavior, that takes into account, for increasing actions, 

cracking, plastification of reinforcement steel beyond yielding, and plasticization of 

compressed concrete. The general design procedures for non-linear analysis are 

given in EN 1992 [N3]. As it was pointed in [8] the first two types of behavior are 

common for slabs and frames, and plastic analysis is popular in the design of slabs; 

non-linear analysis is very rarely used in day-to-day design and it is used mainly for 

structural design in accidental design situations and for the existing structures 

assessment. The above methods, with the exception of plastic analysis are suitable 

for both serviceability and ultimate limit states. 
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2.2  CASES AND LOAD ARRANGEMENTS 

In the analysis of the structure, the designer should consider the effects of the 

realistic combinations of permanent and variable actions. 

Within each set of combinations (e.g. dead (permanent) and imposed loads) a 

number of different arrangements of loads (load cases) throughout the structure 

(e.g. alternate spans loaded and adjanced spans loaded) will need consideration to 

identify an envelope of action effects (e.g. bending moments and shear envelopes) to 

be used in the design of sections. 

While the general requirement is that all relevant load cases should be 

investigated to arrive at the critical conditions for the design on all sections,          

EN 1992 [N3] permits simplified load arrangements for design of continuous beams 

and slabs. Accordance with EN1992 [N3] (clause p.5.1.3) the arrangements to be 

considered are: 

1) alternate spans loaded with the design variable and permanent loaded 

with the design variable and permanent loads (   1,35 1,5k kG Q ) and other spans 

carrying only the design permanent load ( 1,35 kG ); 

2) any two adjacent spans carrying the design variable and permanent 

loads (   1,35 1,5k kG Q ), with all other spans carrying only design permanent load      

( 1,35 kG ). 

As it was shown in [3, 8], the above arrangements are intended for braced non-

sway structures. They also be used in case of sway structures, but the following 

additional load cases involving the total frame will also need to be considered: 

1) all spans loaded with the design permanent loads ( 1,35 kG ) and the 

frame subjected to the design wind load ( 1,5 kW ), when kW  is the characteristic 

wind load;  

2) all spans at all floor levels loaded with (   1,35 1,5k kG Q ) and the frame 

subjected to the design wind load at 1,5 kW ; 

3) In sensitive structures (sensitivity to lateral deformation), it may be 

necessary to consider the effect of wind loading in conjunction with patterned 

imposed loading throughout the frame. 

EN 1992 [N3] states that in linear elements and slabs subjected predominantly 

to bending the effect of shear and axial forces on deformation may be neglected, if 

these are likely to be less than 10 %. In practice, the designer need not actually 

calculate these additional deformations to carry out this check. 

Deflections are generally of concern only in members with reasonably long 

spans. In such members, the contribution of shear to the deflections is never 

significant for members with normal (span/depth) ratios. When the spans are short, 

EN1992 [N3] provides alternative design models (e.g. truss or strut and tie) in which 

deflections are rarely, if ever, a consideration. The contribution of the axial loads to 

deflections may be neglected if the axial stresses do not exceed 0,08 ckf .  
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2.3 GEOMETRICAL IMPERFECTIONS 

2.3.1 GENERAL 

Perfection in buildings exists only in theory; in practice, same degree of 

imperfection is unavoidable, and designs should recognize this, and ensure that 

buildings are sufficiently robust to withstand the consequences of such 

inaccuracies [8]. For example, load-bearing elements may be out of plumb or the 

dimensional inaccuracies may cause eccentric application of load. 

EN 1992 [N3] has a number of provisions in this regard, affecting the design of 

1) the structure as a whole, 2) some slender elements and 3) elements which 

transfer forces to bracing members. 

2.3.2 GLOBAL ANALYSIS  

For the analysis of the structure as a whole, an arbitrary inclination of the 

structure 0 1/200θ  is prescribed as a basic value. This is then modified for height 

and for the number of members are involved. 

The design value will be: 

 

  0 ,i n mθ θ α α                      (2.3-1) 

 

where: 

 


2
,nα
l

                      (2.3-2) 

 

where: l is the total height of structure in meters (  0,67 1,0,nα ). 

 

 
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 
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m
                     (2.3-3) 

 

where: m is the number of vertically continuous elements in the storeys 

contributing to the total horizontal force on the floor. This factor recognizes that the 

degree of imperfection is statistically unlikely to be the same in all of the members. 

As a result of the inclination, a horizontal component of the vertical loads could 

be through of being applied at each floor level, as shown in Figure 2.3-1 a and in 

Figure 2.3-1 b. 
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а) – braced structure (number of vertically continuous members m=2);  

b) – unbraced structure (number of vertically continuous member m=3) 

Figure 2.3-1 – Application of the effective geometrical imperfections 

 

In the design of slender elements, which are prone to fail by buckling (e.g. 

slender columns), EN 1992 [N3] requires geometrical imperfection  to be added to 

other eccentricities. For example, in the design of the columns, an eccentricity of 

  0 /2iθ l  is assumed for geometrical imperfection (where 0l  is the effective length of 

the column).    

 

 
Figure 2.3-2 – Minimum tie force for perimeter columns 

 

In the design of these elements (such as a floor diagram), a force to account for 

the possible imperfection should be taken into account in addition to other design 

actions. This additional force is illustrated in Figure 2.3-2. This force need not be 

taken into account in the design of the bracing element itself [8]. 
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2.4 IDEALIZATION OF THE STRUCTURE 

2.4.1 STRUCTURAL MODELS FOR OVERALL 
DESIGN 

In accordance with EN1992 [N3] (clause p.5.3.1), the elements of a structure 

are classified, by consideration of their nature and function, as: beams; columns; 

slabs; walls; plates; arches; shells, etc. 

For buildings the following provisions are applicable: 

1) a beam is a member for which span is not less than 3 times of the 

overall  section depth. Otherwise it should be considered as a deep beam         

(Figure 2.4-1 a and Figure 2.4-1 b); 

2) a slab is a member for which a minimum panel dimension is not less 

than 5 times of the overall slab thickness (Figure 2.4-1 c); 

2.1) a slab subjected to dominantly uniform distributed loads may be 

considered to be one-way slab (Figure 2.4-2), 

if either: 

 it possesses two free (unsupported) and sensibly parallel edges, or 

 it is the central part of sensibly rectangular slab supported on four edges with 

ratio of the longer to shorter span greater than 2. 

 

 

                                  а)                                b)                                        c) 

a) – beam; b) – deep beam; c) – slab 

Figure 2.4-1 –Definition of structural members for analysis   

 



51 
 

 

a), b) – one-way spanning slab 

Figure 2.4-2 – One-way spanning slab (subjected predominantly to ultimate design load) 

 

2.2) ribbed or waffle slabs need not be treated as discrete elements 

for the purpose of analysis, provided that the flange or structural topping and 

transverse ribs have sufficient torsional stiffness. They may be assumed provided 

that (see Figure 2.4-3): 

 The rib spacing does not exceed 1500 mm; 

 The depth of the rib below the flange does not exceed 4 times of its width; 

 The depth of flange is at least 1/10 of clear distance between ribs or 50mm; 

whichever is the greater; 

 Transverse ribs are provided at a clear spacing not exceeding 10 times of 

overall depth of the slab. 

The minimum flange thickness of 50 mm may be reduced to 40 mm where 

permanent blocks are incorporated between the ribs.  

This exception applies for slabs with clay blocks only. It does not apply for 

expanded polystyrene blocks.  

An exception to this rule is given at EN1992 [N3] (clause 10.9.3(11)) in relation 

to prefabricated slabs without topping, which may be analyzed as solid slabs 

provides that the in situ transverse ribs are provided with continuous reinforcement 

through the precast longitudinal ribs and at a spacing according to Table 10.1 from 

EN1992 [N3]. 

3) a column is a member for which the section depth does not exceed 4 times 

of its width and the height is at least 3 times of the section depth. 
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Figure 2.4-3 – Geometrical parameters for slabs (see Figure 5.2 from EN 1990 [N3]) 

 

2.4.2     GEOMETRICAL DATA 

2.4.2.1 Effective width of flanges (valid for all limit states) 

In T-beams the effective flange width, over which uniform conditions of stress 

can be assumed, depend on the web and flange dimensions, the type of loading, the 

span, the support conditions and the transverse reinforcement.  

As it was noted in [8] if a T-beam with relatively wide flange is subjected to 

bending moment, the width of flange that effectively works with the rib in absorbing 

the compressive force (effective width) should be assessed. 

An exact calculation shows that the actual distribution of compressive stresses 

has a higher concentration it the part of flange which is close to the rib and a 

progressive reduction in the further parts. 

This implies that the conservation of plane section is not respected and that 

the neutral axis is not rectilinear, but is higher on both sides on the rib. In order 

simplify calculations, the actual distribution of stresses is usually replaced by a 

conventional block, extended to the effective width. This allows the application of 

the usual design rules, and in particular the assumption that plane sections remain 

plane. 

In accordance with EN1992 [N3] (clause 5.3.2.1) effective width is defined as a 

function of the cross-section geometry ( ib  – distance between adjacent ribs;            

wb  – width of ribs) and of the distance 0l  between points of zero moment which may 

be obtained from the Figure 2.4-4. 
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Note: The length of the cantilever, l3, should be less than the half of the adjacent span and ratio of 

adjacent spans should lie between 2/3 and 1,5. 

Figure 2.4-4 – Definition of l0 for calculation of effective flange width                           

(see Figure 5.2 from EN 1992 [N3]) 

 

The effective flange width effb  for a T-beam or L-beam may be derived as: 

 

   , ,eff eff i wb b b b                   (2.4-1) 

 

where: 

 

     , 0 00,2 0,1 0,2 ,eff i ib b l l             (2.4-2 a) 

 

and: 

 

, ,eff i ib b          (2.4-2 b) 

 

(for notations see Figure 2.4-4 placed above and Figure 2.4-5 placed below). 

 

 

Figure 2.4-5 – Effective flange width parameters (see Figure 5.3 from EN 1992 [N3]) 

 

For structural analysis, where a great accuracy is not required, a constant 

width may be assumed over a whole span. The value applicable to the span section 

should be adopted. 
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2.4.2.2 Effective span of beams and slabs in buildings 

The following provisions are provided mainly for member analysis, taking into 

account the different types of support (see Figure 2.4-6). For frame analysis some of 

these simplifications may be used where it is appropriate. 

 

 

                                                 а)                                                                      b) 

 

                                                  c)                                                                      d) 

 

                                                  e) 

a) – non-continuous members; b) – continuous members; 

c) – supports considered fully restrained; d) – bearing provided; e) – cantilever 

Figure 2.4-6 – Effective span ( effl ) for different support conditions                                        

(see Figure 5.4 from EN 1992 [N3]) 

 

The effective span, effl , of a member should be calculated as follows: 
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  1 2,eff nl l a a                      (2.4-3) 

 

where: nl  is the clear distance between the faces of the supports; values for 1a  and 

2a , at each end of the span, may be determined from the appropriate ia  values in 

Figure 2.4-6, where t is the width of the supporting element as it is shown. 

Continuous slabs and beams may be generally analyzed on the assumption 

that the supports provide no rotational restraint. 

Two important points must be noted. Where a beam or slab is monolithic with 

its supports, the critical design moment at the support should be taken as that at 

the face of the support. The design moment and reaction transferred to the 

supporting element (e.g. column, wall, etc.) should be generally taken as the greater 

of the elastic or redistributed values. Additionally, in EN1992 [N3] (clause 5.3.2.2) is 

stated that the moment at the face of support should not be less than 0,65 that of 

the full-fixed end moment. This ensures a minimum design value for the support 

moment, particularly, in the case of wide supports.  

Regardless of the method of analysis used, where a beam or slab is continuous 

over a support which may be considered to provide no restraint to rotation (e.g. over 

walls), the design support moment, calculated on the basis of a span equal to the 

centre-to-centre distance between supports, may be reduced by an amount Δ EdM  as 

follows: 

 

 ,Δ ,
8

Ed Ed sup

t
M F                      (2.4-4) 

 

where: ,Ed supF  is the design support reaction;   

    t is the breadth of the support (see Figure 2.4-6 b).    

Note: Where support bearings are used, t should be taken as the bearing width. 

This Formula (2.4-4) derives by assuming an uniform distribution of the design 

support reaction ,Ed supF  over the breadth of the support: 
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   (2.4-5) 

 

This recognizes the effect of the width of support and arbitrarily rounds of the 

peak in the bending moment diagram.  
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2.5 METHODS OF ANALYSIS 

2.5.1 LINEAR ELASTIC ANALYSIS 

Elastic analysis remains the most popular method for frame (e.g. moment 

distribution and slope deflection). As it was shown in [3, 8] braced frames may be 

analyzed as a whole frame or may be partitioned into sub-frames (see Figure 2.5-1). 

The sub-frames may consist of beams at one level with monolithic attachment to the 

columns. The remote ends may be assumed to be «fixed» unless a «pinned» end is 

more reasonable in particular cases. As a further simplification, beams alone can be 

considered to be continuous over supports providing no restraint to rotation. Clearly 

this is more conservative. In unbraced structures, it is generally necessary to 

consider the whole structure, particularly when lateral loads are involved. A 

simplified analysis may be carried out, assuming points of contra flexure at the 

mid-lengths of beams and columns (see Figure 2.5-2). However, it should be 

remembered that this method will be inaccurate if: 1) the feet of column are not 

fixed and/or 2) the beams and columns are not of the similar stiffness. 

Linear analysis of the elements based on the theory of elasticity may be used 

for both the Serviceability and Ultimate Limit States.  

For the determination of the action effects, linear analysis may be carried out 

assuming: 

  Untracked cross sections; 

  Linear stress-strain relationships, and 

  Mean value of the modulus of elasticity. 

With these assumptions, stresses are proportional to loads and therefore the 

superposition principle is applied.  

For thermal deformation, settlement and shrinkage effects at the Ultimate 

Limit State (ULS), a reduced stiffness corresponding to the cracked sections, 

neglecting tension stiffening but including the effects of creep, may be assumed. For 

the Serviceability Limit State (SLS) a gradual evolution of cracking should be 

considered. 

In accordance with EN1992 [N3] (clause 5.4 (2) and clause 5.4 (3)) in 

calculation of the stiffness of members it is normally satisfactory to assume a 

«mean» value of the modulus of elasticity cmE  and the moment of the member. 

However, when computing the effects of deformation, shrinkage and settlement 

reduced stiffness corresponding to cracked cross-section should be used. 

It is important, that the fact that no limits where set to /ux d  for application of 

the linear analysis method at the ULS, does not mean than any value of /ux d  may 

be used in design: it’s opportune to observe a limit consistent with the method of 

linear elastic analysis with limited redistribution, for which / 0,45ux d . It must be 

remembered that increasing of the /ux d  values lead to the model uncertainty 

increasing as well as higher partial factors should be assumed for precaution. 



57 
 

 

 

Figure 2.5-1 – Partitioning of multistoried braced structures for analysis                               

(see Figure 3.6 from [8]) 
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Figure 2.5-2 – Simplified model for the analysis of unbraced structures                                 

(see Figure 3.7 from [8]) 

 

2.5.2 LINEAR ELASTIC ANALYSIS WITH LIMITED 
REDISTRIBUTION 

At Ultimate Limit State (ULS) plastic rotation occur at the most stressed and 

cracked sections. These rotations transfer to other zones is the effect of the further 

load increasing, thus it is allowed to take for the design of reinforcement a reduced 

bending moment δM, smaller than the moment M resulting from elastic linear 

design, provided that in the other parts of the structure the corresponding 

variations of load effects (viz. shear) necessary to ensure equilibrium are considered. 

As it was shown in [8], «the moment-curvature» response of a true elasto-

plastic material will be typically as shown in Figure 2.5-3. The long plateau after 

moment pM  is reached implies a large rotation capacity.  

Considering a continuous beam made of such a material and loaded as shown 

in Figure 2.5-4, when a bending moment in a critical section (usually at a support) 

reaches pM , a plastic hinger is said to be formed. The structure will be able to 

withstand under the further increasing in loading until the sufficient plastic hinges 

from to turn the structure into mechanism. 
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Figure 2.5-3 – «Moment–curvature» bi-linear idealization 

 

 

Figure 2.5-4 – Redistribution of the bending moments in continuous beam 

 

Clearly, to exploit plasticity fully, the material must possesses an adequate 

ductility (rotation capacity), concrete has only limited capacity in this regard. The 

moment redistribution procedure is an allowance for the plastic hinge analysis. 

Indirectly, it also ensures that the yield of sections under service loads and large 

uncontrolled deflections are avoided.  

How it was stated in EN1992 [N3] (clause 5.5), linear analysis with limited 

redistribution may be applied to the analysis of structural members for the 

verification of ULS. 

In accordance with EN1992 [N3], the moments at ULS calculated using a linear 

elastic analysis may be redistributed, provided that the resulting distribution of 

moments remains in equilibrium with the applied loads. 

In continuous beams or slabs which: 

a) are predominantly subject to flexure and 

b) have the ratio of the lengths of adjacent spans in the range of from 0,5 

to 2 redistribution of bending moments may be carried out without explicit check on 

the rotation capacity, provided that: 
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   1 2 for 50MPa,u
ck

x
δ k k f

d
   (2.5-1) 

 

   3 4 for 50MPa,u
ck

x
δ k k f

d
   (2.5-2) 

 

 5k , where Class B and Class C reinforcement is used (see Annex C from      

EN1992 [N3]); 

 6k , where Class A reinforcement is used (see Annex C from EN1992 [N3]), 

where: δ is the ratio of the distributed moment to the elastic bending moment; 

    ux  is the depth of the natural axis at the ultimate limit state after 

redistribution; 

            d  is the effective section depth; 

    1k , 2k , 3k , 4k  are coefficients with the recommended values: 1 0,44;k  

    2

2 11,25 0,6 0,0014/ ;cuk ε  3 0,54;k      2

4 11,25 0,6 0,0014/ ;cuk ε  5 0,7;k  

6 0,8.k   

Redistribution should not be carried out in circumstances where the rotation 

capacity cannot be defined with confidence (e.g. in the corners of prestressed 

frames). 

For the design of columns the elastic moments from frame action should be 

used without any redistribution. 

It must be considered that a redistribution carried out in observance of the 

ductility rules only ensures equilibrium at the ultimate limit state. Specific 

verifications are needed for the serviceability limit states. Very high redistributions, 

which may be of advantage at the ultimate limit states, very often must be lowered 

in order to meet the requirements of serviceability limit states. For the design of 

columns the elastic moments from frame action should be used without any 

redistribution. 

2.5.3 PLASTIC ANALYSIS 

2.5.3.1      General 

As it was shown in EN 1992 [N3] plastic analysis should be based either on the 

lower bound (static) method or on the upper bound (kinematic) method for the 

check at ULS only. The ductility of the critical sections shall be sufficient for the 

envisaged mechanism to be formed. The effects of previous applications of loading 

may generally be ignored, and a monotonic increase of the intensity of actions may 

be assumed.  
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2.5.3.1.1 Static method 

It is based on static theorem of the theory of plasticity, which states: 

«whichever load Q, to which a statically admissible tension field corresponds, is lower 

or equal to the ultimate load uQ ».  

The expression “statically admissible” indicates a field that meets both the 

conditions of equilibrium and the boundary condition without exceeding the plastic 

resistance. An important application of this method is the strut-and-tie scheme in 

accordance EN1992 [N3] (clause p.5.6.4, see section 3.7.4). 

Other applications are the management of shear by the method of varying and 

the analysis of slabs by the equivalent frame analysis method what is presented in 

Annex E, EN 1992 [N3]. 

2.5.3.1.2  Kinematic method 

In this method, the structure at Ultimate Limit States becomes a mechanism of 

rigid elements connected by yield hinges. The method is based on the kinematic 

theorem, which states: «every load Q, to which corresponds a kinematically 

admissible mechanism of collapse, is higher or equal to the ultimate load uQ » [3, 8]. 

The method is applied for continuous beams, frames and slabs (in this last case 

with the theory of yield lines). 

2.5.3.2    Plastic analysis for beams, frames and slabs 

Plastic analysis without any direct check of rotation capacity may be used for 

the Ultimate Limit State if the ductility of critical sections will be sufficient for 

envisaged mechanism to be formed. 

The required ductility may be deemed to be satisfied without explicit 

verification if all the following are fulfilled: 

 the area of tensile reinforcement is limited such that, at any section: 

/ 0,25ux d  for concrete strength classes C50/60; 

/ 0,15ux d  for concrete strength classes C55/67. 

 reinforcing steel is either Class B or Class C; 

 the ratio of the moments at intermediate supports to the moments in the span 

should be between 0,5 and 2. 

Columns should be checked for the maximum plastic moments which can be 

transmitted by connecting members. For connections to flat slabs this moment 

should be included in the punching shear calculation. 

When plastic analysis of slabs is carried out account should be taken of any 

non-uniform reinforcement, corner tie down forces, and torsion at free edges. 

Plastic methods may be extended to non-solid slabs (ribbed, hollow, waffle 

slabs) if their response is similar to that of a solid slab, particularly with regard to 

the torsional effect. 
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2.5.3.2.1  Rotation capacity 

The simplified procedure for continuous beams and continuous one way 

spanning slabs is based on the rotation capacity of beam/slab zones over a length 

of approximately 1,2 times of the section depth. It is assumed that these zones 

undergo a plastic deformation (formation of yield hinges) under the relevant 

combination of actions. The verification of the plastic rotation in combination of 

actions the calculated rotation sθ  is less than or equal to the allowable plastic 

rotation (see Figure 2.5-5). 

 

 
Figure 2.5-5 – Plastic rotation sθ  of reinforced concrete sections for continuous beams 

and continuous one-way spanning slabs (Figure 5.5 from EN 1992 [N3]) 

 

In regions of yield hinges /ux d  shall not exceed the value 0,45 for concrete 

strength classes less than or equal to C50/60, and 0,35 for concrete strength 

classes greater than or equal to C55/67. 

The rotation sθ  should be determined on the basis of the design values for the 

actions and materials and on the basis of the mean values for prestressing at the 

relevant time. 

In the simplified procedure, the allowable plastic rotation may be determined 

by multiplying of the basic value of allowable rotation ,pl dθ  by a correction factor λk  

that depends on the shear slenderness. 

As it was noted in EN1992 [N3], the recommended values for steel of the     

Class B and Class C (the use of Class A steel is not recommended for plastic 

analysis) and concrete strength classes less than or equal to C50/60 and C90/105 

are given in Figure 2.5-6. 

The values for concrete strength classes C55/67 to C90/105 may be 

interpolated accordingly. The values apply for a shear slenderness  3,0λ . For 

different values of shear slenderness ,pl dθ   should be multiplied by λk : 

 

 ,
3

λ

λ
k      (2.5-3) 

 

where: λ is the ratio of the distance between point of zero and maximum moment 

after redistribution and effective depth, d. 

As a simplification λ may be calculated for the concordant design values of the 

bending moment and shear:  
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

.Sd

Sd

M
λ

V d
     (2.5-4) 

 

 
Figure 2.5-6 – Basic value of allowable rotation, pl,dθ , of reinforced concrete sections for Class 

B and C reinforcement. The values apply for a shear slenderness λ=3,0                                      

(see Figure 5.6 from EN 1992 [N3]) 

 

2.5.3.2.2 Analysis with strut and tie models 

Strut-and-tie models utilize the lower-bound theorem of plasticity, which can 

be summarized as follows: for structure under a given system of external loads, if a 

stress distribution throughout the structure can be found such that 1) all 

conditions of equilibrium are satisfied and 2) the yield conditions in not violated 

anywhere, than the structure is safe under the given system of external loads. This 

approach particularly simplifies the analysis of the parts of the structure where 

linear distribution of strain is not valid (see Section 2.1).  

Strut and tie analysis may also be necessary, particularly when the 

assumption of linear strain distribution in the plane section is not applied. 

Examples of this include: anchorage zones; members with significant changes in 

cross-section, including the vicinity of large holes; beam-column joints; locations 

adjanced to concentrated loads. 

Typical models are shown in Figure 2.5-7. As can be seen, the structure is 

through of as comprising notional concrete struts and reinforcement ties. 

Occasionally, concrete ties may also be considered (e.g. slabs without stirrups; 

anchorages without transverse reinforcement). 

Concrete has only a limited plastic deformation capacity; therefore, the model 

has to be chosen with care to ensure that the deformation capacity is not exceed at 
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any point before the assumed state of stress is reaches in structure. The ties of a 

strut-and-tie model should coincide in position and direction with the 

corresponding reinforcement. 

 

 

Figure 2.5-7 – Typical strut-and-tie model (see Figure 3.19 from [8]) 

 

Possible means for developing suitable strut-and-tie models include the 

adoption of stress trajectories and distributions from linear-elastic theory or the 

load path method. All strut-and-tie models may be optimized by energy criteria. 

The angels between the struts and ties should generally be greater than 45° in 

order to avoid incompatibility problems. In this context, the deformation of the 

struts may be neglected, and the model optimized by minimizing the expression: 
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F l ε      (2.5-5) 

 

where: iF  is the force in the i-th tie; 

    il   is the length of the i-th tie;  

    ,m iε  is the mean strain in the i-th tie. 

Having idealized the structure as struts and ties, it is than a simple matter to 

arrive at the forces in them based on equilibrium with external loads. Stresses in 

struts and ties should be verified including those at nodes, where a number of 

members meet. 

In accordance with EN 1992 [N3] limiting stresses is as follows: 

1) in ties, ydf ; 

2) in struts with no transverse tension, , ;Rd max cdσ f  

3) in struts with transverse tension,   /, 0,6 ,Rd max cdσ ν f  where 

 / 1 ;
200
ckfν  

4) in nodes where no ties are anchored,  /, ;Rd max cdσ ν f  

5) in compression-tension nodes, where ties are anchored in more than 

one direction,   /, 0,85 ;Rd max cdσ ν f  

6) in compression-tension nodes, where ties are anchored in more than 

one direction,   /, 0,75 ;Rd max cdσ ν f   

7) where a load is distributed uniformly over an area Ą0 and it is dispersed 

to a larger area 1cA  (which is concentric to 0cA ), the applied load ,Rd uF  should be 

imited as    
0,5

, 0 1 0/ ,Rd u c cd c cF A f A A  but limited to  03 / .c cdA f   

In accordance with EN1992 [N3], strut and tie models may be used for design 

in ULS of continuity regions (cracked state of beams and slabs) and for the design 

in ULS and detailing of the discontinuity regions. In general these extend up to a 

distance h (section depth of member) from the discontinuity. Strut and tie models 

may also be used for members where a linear distribution within the cross section is 

assumed, e.g. plane strain. 

Verification in SLS may also be carried out using strut-and-tie models, e.g. 

verification of steel stresses and crack width control, if approximate compatibility 

for strut-and-tie models is ensured (in particular, the position and direction of 

important struts should be oriented according to the linear elasticity theory). 

Strut-and-tie models consist of struts representing compressive stress fields, of 

ties representing the reinforcement, and of the connecting nodes. The forces in the 

elements of a strut-and-tie model should be determined by maintaining the 

equilibrium with the applied loads in ultimate limit state. The elements of a strut-

and-tie models should be dimensioned according to the rules given in Section 6.5 of 

the EN1992 [N3].  
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 CHAPTER 3 

 
  

MATERIALS PROPERTIES                
AND DURABILITY CRITERIA 

3.1 CONCRETE 

3.1.1 STRENGTH OF CONCRETE 

In accordance with EN 206 [N4] normal weight concrete is a concrete in the 

oven-dry condition having a density greater than 2000 kg/m³ but not exceeding 

2600 kg/m³. Concrete technology specifications shall satisfy the requirements of   

EN 206 [N4] and are not discussed at this book. 

For the hardened concrete strength is the most important property which 

influences the ultimate resistance forces and moments in analyzed reinforced 

concrete structures. 

Strength of concrete is defined as the maximum load which it can carry per 

unit area (stress). Under practical conditions concrete is seldom stressed in one 

direction only (uniaxial stress). Nevertheless, as assumed uniaxial stress-strain 

conditions can be used in many cases. Concrete strength changes with age and 

environment; therefore it is not possible to attribute the absolute values to it. 

Laboratory tests give only an indication of concrete properties in the structure.  

3.1.1.1 Compressive strength 

Compressive strength of concrete is usually taken as the maximum axial 

compressive force which it can carries per unit area. It is obtained either from 
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cylinders or cubes with fixed dimentions as it is stated in [N4]. The specimens are 

loaded longitudinally at a slow rate. In accordance with [N5], testing results is valid 

for monotonically increasing compressive stresses or strains at a rate of 


 0,6 0,4σ  MPa/s or rate of 


   6 115 10 sε   respectively.  

Compressive strength of concrete is obtained through the elaboration of 

compression tests executed at 28 days on cylindrical specimens of diameter 150 

mm and height 300 mm. As in many countries testing is carried out on 150 mm 

cubic specimens, EN 206 [N4] admits cube compressive strength too (see Figure 

3.1-1). 

 

 

a) – cube; b) – cylinder                                                                                                         

Figure 3.1-1 – Specimens for compressive strength testing 

 

For special requirements or in national code test specimens other than 

cylinders 150/300 mm and stored in other environments may be used to specify the 

concrete compressive strength. In such cases conversion factor (see Table 3.1-1) 

should either be determined experimentally or, when given in National Codes, used 

accordingly for given category of testing equipment. 

In the case when concrete cubes 150 mm are used, the characteristic strength 

value shall be obtained for the various concrete classes of normal weight concrete. 
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Table 3.1-1 – Conversion factor values 

Specimen size (cube) Conversion factor 

150×150×150 1,0 

100×100×100 0,95 

200×200×200 1,05 

 

So, in accordance with EN 1992 [N3], the compressive strength of concrete is 

denoted by concrete strength classes which relate to the characteristic (5 %) 

cylinder strength, ckf , or the cube strength ,ck cubef .  

How it is stated in EN 206 [N4]: 

Characteristic strength of concrete, ckf , is a value of strength below which   

5 % of the population of all possible strength determinations of the volume of 

concrete under consideration, are expected to fall, and 

Compressive strength class is a classification comprising the type of 

concrete, the minimum characteristic cylinder (150/300 mm) strength ( ,ck cylf ) and 

the minimum characteristic cube strength (150 mm edge length) and is denoted as 

C , ,/ck cyl ck cubef f  (for example, C16/20). An exemplary histogram showing the 

frequency of compressive strength results from testing concrete of the one 

population is shown in Figure 3.1-2. 

 

 

a) – frequency histogram; b) – probability density function                                              

Figure 3.1-2 – Frequency histogram and probability density function                            

for concrete compressive strength 

 

The assumption of normal distribution of concrete strength forms the basis of 

determinations of the characteristic compressive strength, ckf . For Normal 

(Gaussian) distribution, the probability of the strength lying outside the specified 

limits either side of the mean strength can be determined. 

These limits which are given in Figure 3.1-2 can be expressed in terms of the 

estimator of the standard deviation s, as follows: 
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where: cif  is the observed strength result; 

           cmf  is the mean value of compressive strength equal  to 


1 ;

n

ci

i

f

n
 

  n is the number of test results. 

The probability of the strength lying outside the range (  cmf t s ) for different 

values t, are given in Table 3.1-2 (also see Figure 3.1-2) depending on the assumed 

probabilities (as a fractile of probability distribution).  

 
Table 3.1-2 – Fractile values for the concrete strength  

Probability of strength  

lying outside the range cmf - t s  
Coefficient t 

1 % 2,33 

2,5 % 1,96 

5 % 1,64 

10 % 1,23 

 

Specified characteristic strength, ckf , should be calculated by the expression: 

 

   ,ck cmf f t s      (3.1-2) 

 

where: s is the standard deviation obtained from Formula (3.1-1). 

The characteristic strengths for ckf  and the corresponding mechanical  

characteristics are necessary for design, and given in Table 3.1-3. 

In certain situations (e.g. prestressing) it may be appropriate to assess the 

compressive strength for concrete before or after 28 days, on the basis of test 

specimens stored under other conditions than standard conditions prescribed in   

EN 12390 [N7]. It may be required to specify the concrete compressive strength, 

 ckf t , at time t for a number of stages (e.g. demolding, transfer of prestress), where: 

 

      8 for 3 28days.ck cmf t f t t    (3.1-3) 

 

   for 28days.ck ckf t f t     (3.1-4) 
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Table 3.1-3 – Strength and deformation characteristics for concrete (Table 3.1 from EN 1992 

[N3]) 

Strength classes for concrete 

ckf   

(MPa) 
12 16 20 25 30 35 40 45 50 55 60 70 80 90 

ck,cubef  (1) 

(MPa) 
15 20 25 30 37 45 50 55 60 67 75 85 95 105 

cmf  (2) 

(MPa) 
20 24 28 33 38 43 48 53 58 63 68 78 88 98 

ctmf  (3)  

(MPa) 
1,6 1,9 2,2 2,6 2,9 3,2 3,5 3,8 4,1 4,2 4,4 4,6 4,8 5,0 

0.05ctk,f  (4)  

(MPa) 
1,1 1,3 1,5 1,8 2,0 2,2 2,5 2,7 2,9 3,0 3,1 3,2 3,4 3,5 

0.95ctk,f  (5)  

(MPa) 
2,0 2,5 2,9 3,3 3,8 4,2 4,6 4,9 5,3 5,5 5,7 6,0 6,3 6,6 

cmE  (6)  

(GPa) 
27 29 30 31 33 34 35 36 37 38 39 41 42 44 

1cε  (‰) (7) 1,8 1,9 2,0 2,1 2,2 2,25 2,3 2,4 2,45 2,5 2,6 2,7 2,8 2,8 

1cuε  (‰) (8) 3,5 3,2 3,0 2,8 2,8 2,8 

2cε  (‰) (9) 2,0 2,2 2,3 2,4 2,5 2,6 

2cuε  (‰) (10) 3,5 3,1 2,9 2,7 2,6 2,6 

n (11) 2,0 1,75 1,6 1,45 1,4 1,4 

3cε  (‰) (12) 1,75 1,8 1,9 2,0 2,2 2,3 

3cuε  (‰) (13) 3,5 3,1 2,9 2,7 2,6 2,6 

Notes: Analytical relation/ Explanation: 

1. , , /0,8ck cube ck cylf f ; 

2.   8,cm ckf f  (MPa); 

3.   2/30,3ctm ckf f ≤C50/60;     2,12 ln 1 /10ctm cmf f >C50/60; 

4.  ,0.05 0,07ctk ctmf f , 5 % fractile; 

5.  ,0.95 1,3ctk ctmf f , 95 % fractile; 

6.      
0,3

22 /10cm cmE f , ( cmf  in MPa); 

7. see Figure 3.1-8,     0,31

1 0,7 2,8‰c cmε f ; 

8. see Figure 3.1-8, for  50ckf  MPa         
4

1 2,8 27 98 /100‰cu cmε f ; 

9. see Figure 3.1-9, for  50ckf  MPa       
0,53

2 2,0 0,085 50‰c ckε f ; 

10. see Figure 3.1-9, for  50ckf  MPa         
4

2 2,6 35 90 /100‰cu ckε f ; 

11. for  50ckf  MPa       
4

1,4 23,4 90 /100ckn f ; 

12. see Figure 3.1-10, for  50ckf  MPa         3 ‰ 1,75 0,55 50 /40c ckε f ; 

13. see Figure 3.1-10, for  50ckf  MPa         
4

3 2,6 35 90 /100‰cu ckε f . 

 

More precise values should be based on tests especially for  3t  days. 

The compressive strength of concrete at age t depends on the type of cement, 

temperature and curing conditions. As it is pointed in EN 1992 [N3], for a mean 

temperature of 20°C and curing conditions in accordance with EN 12390 [N7], the 

compressive strength of concrete at various ages  cmf t  is estimated as follows:  
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     ,cm cc cmf t β t f     (3.1-5) 

 

with: 

 
    

    
     

1/2
28

exp 1 ,ccβ t s
t

    (3.1-6) 

 

where:  cmf t   is the mean concrete compressive strength at the age of t days; 

            cmf  is the mean compressive strength at 28 days according to Table 3.1-3; 

             t is the age of concrete in days; 

              s is the coefficient which depends on the type of cement and it is equal to 

0,20 (class R); 0,25 (class N); 0,38 (class S). 

3.1.1.2 Tensile strength 

The term tensile strength relates to the maximum stress which a concrete can 

carry when subjected to uniaxial tension. Tensile strength of concrete is generally 

less than 20 % of the compressive strength. It is difficult to measure there concrete 

strength in direct tension (see Figure 3.1-3 a) because of the technical problems of 

holding the specimens in axial load (force). The indirect methods have been 

developed for assessing this property. 

 The simplest and most widely used method is the split cylinder test (see 

Figure 3.1-3 b) in accordance with [N4]. This test entails diametrically  loading a 

cylinder in compression along its entire length. This form of loading shown in Figure 

3.1-3 b induces tensile stresses over the loaded diameter plan. Where the tensile 

strength is determined as splitting tensile strength, ,ct spf , an approximate value of 

the axial tensile strength, ctf , may be taken as: 

 

  ,0,9 .ct ct spf f      (3.1-7) 

 

The magnitude of the induced tensile stress ,ct spf  at failure is given by the 

expression: 

 



 

,

2
,u

ct sp

F
f

π d l
     (3.1-8) 

 

where: uF  is the maximum applied load; 

             l, d are the cylinder length and its diameter, respectively. 

Tensile strength of concrete can also be evaluated by means of bending tests 

conducted on plain concrete prismatic specimens (beams) which   have normally 

150 mm square cross section. In this test a simply supported beam is loaded at its 

third points, as it is shown in Figure 3.1-3 c. 
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The resulting bending moments induce compressive and tensile stresses at the 

top and bottom of the beam. The beam fails in tension and the flexural strength 

,ct flf , is defined by: 

 





, 2

,u
ct fl

F l
f

b h
     (3.1-9) 

 

where: uF  is the maximum applied load; 

   l is a distance between the supports; 

     b, h are the beam width and depth, respectively. 

 

 

a) – direct tension; b) – splitting; c) – bending                                                              

Figure 3.1-3 – Specimens for concrete tensile strength testing 

  

According to EN 1992 [N3] requirements, these above mentioned methods can 

be used. However, for prediction of the axial tensile strength ctf  it is necessary to 

use the following conversion factors: 

- for results from the flexure test ( ,ct flf ): 

 

  ,0,5 ;ct ct flf f      (3.1-10) 

 

- for result from splitting test ( ,ct spf ): 
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  ,0,9 .ct ct spf f      (3.1-11) 

 

In the absence of more accurate data, the mean tensile strength of concrete 

can be obtained as follows: 

 

  
2/3

0,30 ,ctm ckf f     (3.1-12) 

 

where: ctmf  is the mean value of the tensile strength; 

  ckf  is the characteristic cylinder compressive strength of concrete. 

 Like for compressive strength the statistical approach for definition of the 

characteristic tensile strength of concrete ctkf  should be used (see Figure 3.1-2) 

according to Normal distribution. This strength can be determined from the 

following simplified equations which are constructed on the basis of Formula (3.1-

12): 

- for lower value of the characteristic strength (5 % fractile): 

 

 ,0.05 0,70 ;ctk ctmf f     (3.1-13) 

 

- for upper value of the characteristic strength (95 % fractile): 

 

 ,0.95 1,30 ;ctk ctmf f      (3.1-14) 

 

The development of tensile strength with time is strongly influenced by the 

curing and drying conditions as well as by the dimensions of the structural 

members. As a first approximation it may be assumed that the tensile strength 

 ctmf t  is equal to: 

 

       ,
α

ctm cc ctmf t β t f      (3.1-15) 

 

where:  ccβ t  follows  from the Expression (3.1-6); 

    α is a coefficient that is equal to 1,0 for t<28 days and equal to 2/3 for t≥28 

days. 

The values for ctmf  are given in Table 3.1-3. 

3.1.1.3 Classes of concrete 

 For design purposes the concrete should be classified into the classes which 

correspond to a specified value of the characteristic compressive strength. 

According to EN1992 [N3] the compressive strength of concrete is based on the 
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cylinder strength ,ck cylf  and simultaneously it can be associated with the cube 

strength, ,ck cubef . 

3.1.2 DEFORMATION OF CONCRETE 

Concrete deforms under load. Deformations increasing with applied load are 

commonly known as elastic deformations. If concrete is deformed with time under 

the constant load this phenomenon is known as time- dependent deformation, or 

creep. 

3.1.2.1 Elastic deformation 

The elastic deformations of concrete largely depend on its composition 

(especially the aggregates). The values given in EN 1992 [N3] should be regarded as 

indicative for general applications. However, they should be specifically assessed if 

the structure is likely to be sensitive to deviations from these general values. The 

modulus of elasticity of a concrete is controlled by the modulus of elasticity of its 

components. Compared to the use of quartzite aggregates, the modulus of elasticity 

can be increased by 20 % or decreased by 30 % only by changing the type of 

aggregate. Table 3.1-4 give the qualitative changes αE in the modulus of elasticity for 

different types of aggregate.  

 
Table 3.1-4 – Effect of type of aggregates on modulus of elasticity  

Type of aggregate Eα  0c EE α , [GPa] 

Basalt, dense limestone aggregates 1,2 25,8 

Quartzite aggregates 1,0 21,5 

Limestone aggregates 0,9 19,40 

Sandstone aggregates 0,7 15,10 

 

In general case, modulus of elasticity of concrete cE , is defined as the ratio of 

load per unit area (stress, cσ ) to elastic deformation per unit of length (strain, cε ): 

 


Δ

,
Δ

c
c

c

σ
E

ε
                 (3.1-16) 

 

 Since the concrete is not a perfectly elastic material the modulus of elasticity 

depends on adopted definition (see Figure 3.1-4). We can define the following 

approaches: 

- initial tangent modulus cE ; 

- secant modulus cmE . 
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Approximate values for the modulus of elasticity cmE  secant value between 

 0cσ  and  0,4c cmσ f  for concretes with quartzite aggregates, are given in Table 

3.1-4. As it was shown in Table 3.4, for limestone and sandstone aggregates the 

value should be reduced by 10 % and 30 % respectively. For basalt aggregates the 

value should be increased by 20 %. It should be noted, that the modulus of 

elasticity Eci does not include the initial plastic strain due to its definition. While the 

limit for the stress σc reached in the SLS it set to  0,4c cmσ f  this stress level gives 

an upper limit for the reduction factor   /i c c iα E E  is increasing with increasing 

concrete strength. For concrete strength classes higher than C80/90 the difference 

between first loading up to  0,4c cmσ f  and the unloading branch is smaller than  

3 % may be neglected. Note that ciE  is considered as the mean value of the tangent 

modulus of elasticity, hence ci cmE E . 

 

 

Figure 3.1-4 – Definition of different moduli of elasticity (according to fib Bulletin 42) 

 

Where only an elastic analysis of a concrete structure is carried out, a reduced 

modulus of elasticity cE  according to Equation (3.1-17) should be used in order to 

account for initial plastic strain, causing some irreversible deformations: 

 

  ,c i ciE α E       (3.1-17) 

where:   
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   0,8 0,2 1,0.
88
cm

i

f
α      (3.1-18) 

 

How it was shown, the tangent modulus has a significance only for low stress 

level, whereas the secant modulus takes into account the total deformation (elastic 

and plastic, or irreversible) at any point. For definition of the secant modulus the 

relevant standards [N7] require repeated loading and unloading before the specimen 

is loaded for determination cmE  from a tested stress-strain curve according to 

Formula (3.1-16). 

It depends only on strength class of concrete but, as well as, on adequate 

properties of the aggregate used. For most concrete classes (at 28 days) modulus of 

elasticity ranges from 27 GPa up to 44 GPa. The modulus cmE  in accordance with 

EN 1992 [N3] may be assumed in term of cmf  to be (see Table 3.1-3): 

   0,322 /10 ,cm cmE f     (3.1-19) 

 

where: cmf  is in MPa. 

Variation of the modulus of elasticity with the time can be estimated by the 

following expression: 

 

 
  

  
 

0,3

,cm

cm cm

cm

f t
E t E

f
     (3.1-20) 

 

where:  cmE t  and  cmf t  are the values at an age of t days and both cmE  and cmf  

are the values determined at an age of 28 days. The relation between  cmf t  and cmf  

follows from Expression (3.1-5). 

3.1.2.2 Poisson’s ratio and coefficient of thermal expansion 

The ratio between transverse strain and the strain in the direction of applied 

uniaxial loading, referred to as Poisson’s ratio is usually found to be in range from 

0,15 to 0,20 for concrete. For design purpose according to EN 1992 [N3] Poisson’s 

ratio may be taken equal to 0,20 for uncracked concrete. If the cracking is 

permitted for concrete in tension, Poisson’s ratio may be taken as zero. 

Unless more accurate information is available, for design purpose, the linear 

coefficient of thermal expansion may be taken equal to 10·10-6 K-1. 
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 3.1.2.3 Creep and shrinkage of concrete  

Creep and shrinkage of the concrete depend on the ambient humidity, the 

dimensions of the element and the composition of the concrete. Creep is also 

influenced by the maturity of the concrete when the load is first applied and 

depends on the duration and magnitude of the loading. Figure 3.1-5 shows 

changing in time of the concrete strains under the load. In Figure 3.1-5:  0ceε t , 

 ce eε t  – elastic strains;  scε t  – shrinkage strain;  0,ccε t t  – creep strain;  0, ,cd eε t t t  

– creep recovery. 

 

 

a) – stresses diagram; b) – strains diagram                                                                   

Figure 3.1-5 – Stresses and strains diagrams for time dependent deformations 

 

3.1.2.3.1 Creep of concrete 

Creep is generally defined as the time-dependent strain caused by a stress 

which is applied onto the material at certain time 0t , and this sress is maintained 

constant in time thereafter. According to this definition, if the specimen is 

simultaneously subjected to drying, temperature changes or other causes of 

deformation, to measure creep experimentally one must use at least two specimens 

subjected to exactly the same conditions except that one is loaded and the other 
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remains load-free. Creep strains are than equal to excess strains experienced by the 

loaded specimen with respect to the unloaded specimen. The resulting strains are 

partially reversible, which can be measured in a loading/unloading cycle.  

The creep deformation of concrete under the constant axial compressive stress 

is illustrated in Figure 3.1-5. The creep deformation proceeds at a decreasing rate 

with time. If the load is removed, the elastic strain is immediately recovered, 

however this recovered elastic strain is less than the initial elastic strain, because of 

the elastic modulus increasing with the age. 

Creep deformations depend mainly on the ambient humidity, composition of 

the concrete and its maturity and also on the duration and magnitude of the 

loading. 

The following two definition are used: 

- creep coefficient, denoted as  0,φ t t , expresses the delayed deformation with 

respect to the elastic strain (typical values fall in the range from 2,0 to 6,0 for the 

maximum attained creep strain); 

- compliance function, denoted as  0,J t t , represents the creep strain per 

unit of imposed stress and it is used to compare the delayed strain that take place 

in concretes loaded at different stress levels (although the principle of superposition 

is valid until approximately 30 % of the peak load in compression test; it includes 

the elastic instantaneous compliance (also called «specific creep»);  

- specific creep, denoted as  0,C t t , expresses only the delayed strains due to 

the application of a unit stress (i.e. it excludes the instantaneous elastic strain) 

With these definition, the following relations are applied: 

 

         0 0 0; ; ,cφ t t E t J t t         (3.1-21) 
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       (3.1-23) 

 

where: 0t  is the age at loading;  

           t is the time at which strains are evaluated.  

The creep coefficient  0,φ t t  is related to cE , the tangent modulus, which one 

in it’s turn may be taken equal to 1,05· cmE . Where accuracy is required, value of the 

creep coefficient  0,φ t t  at time t is calculated in accordance with EN 1992 [N3]. 

The creep coefficient  0,φ t t  may be calculated from the following expression:  

 

    0 0 0; ; ,cφ t t φ β t t           (3.1-24) 
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where: 0φ  is the notional creep coefficient and it can be estimated from the following 

expression: 

 

     0 0 ,RH cmφ φ β f β t             (3.1-25) 

where: RHφ  is a factor that takes into account the effect of the relative humidity on 

the value of the notional creep coefficient: 

 


  

 3 0

1 /100
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0,1
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h
   (3.1-26) 
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  (3.1-27) 

 

where: RH is the relative humidity of the ambient environment (in %); 

  0h  is the notional  size of the member (see Figure 3.1-6) (in mm) and it is 

equal to 2 /cA h  (where: cA   is the cross-sectional area; h  is the perimeter of the 

member in contact with the atmosphere). 

 

 
Figure 3.1-6 – For 0h value calculation 
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 cmβ f  is a factor that takes into account the effect of the concrete strength 

on the value of the notional creep coefficient: 

 

   
16,8

,cm

cm

β f
f

     (3.1-28) 

 

where: cmf  is the mean compressive strength of concrete in MPa at the age of 28 

days; 

   0β t  is a factor that takes into account the effect of the concrete age at 

loading on the value of the notional creep coefficient: 

 

 
 




0 0,2

0

1
.

0,1
β t

t
    (3.1-29) 

 

 0;cβ t t  is a coefficient to describe the development of creep with the time after 

loading, and may be estimated using the following expression: 

 

  
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where: t  is the age of concrete in days at the moment considered; 

           0t   is the age of concrete at loading in days; 

             0t t   is the non-adjusted duration of loading in days. 

Coefficient Hβ  is a coefficient depending on the relative humidity (RH, %) and 

the notional member size ( 0h  in mm). It may be estimated from the following 

expressions: 

 

         
 

18

01,5 1 0,012 250 1500, for 35MPa,H cmβ RH h f      (3.1-31) 

 

           
 

18

0 3 31,5 1 0,012 250 1500 , for 35MPa,H cmβ RH h α α f   (3.1-32) 

 

1/2/3α  are the coefficients to consider the influence of the concrete strength: 
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  (3.1-33) 

 

The effect of cement type on the creep coefficient of concrete may be taking into 

account by modifying the age of loading 0t  in Expression (3.1-30) according to the 

following expression: 
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        (3.1-34) 

 

where: 0,Tt  is the temperature adjusted age of concrete at loading in days adjusted 

according to following Expression (3.1-35); 

            α is a power which depends on cement type and it is equal to -1 (for cement 

class S); 0 (for cement class N); 1 (for cement class R). 

The effect of elevated or reduced temperatures within the range 0–80°C on the 

maturity of concrete may be taken into account by adjusting the concrete age 

according to the following expression: 
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   (3.1-35) 

 

where: Tt  is the temperature adjusted concrete age which replaces t in the 

corresponding equation; 

              Δ iT t  is the temperature in °C during the time period Δ it ; 

             Δ it   is the number of days where a temperature T prevails. 

The mean coefficient of variation of the above predicted creep data, deducted 

from a computerized data bank or laboratory test results, is of the order of 20 %. 

The values of  0;φ t t  are given above should be associated with the tangent 

modulus cE . 

When a less accurate estimate is considered satisfactory, the value given in 

Figure 3.1-7 may be adopted for creep of concrete at 70 years. 

The values given in Figure 3.1-7 are valid for ambient temperatures between       

-40°C and +40°C and a mean relative humidity between RH=40 % and RH=100 %. 

  0;φ t  is the final creep coefficient (at 70 years);  

0h  is the notional size (see Figure 3.1-6). 

Where great accuracy is not required, the value found from the Figure 3.1-6 

may be considered as the creep coefficient, provided that the concrete is not 

subjected to a compressive stress greater than   00,45 ckf t  at an age of 0t , the age 

of concrete at the time of loading. The creep deformation of concrete   0;ccε t  at 

time  t  for a constant compressive stress cσ  applied at the concrete age 0t , is 

given by the following expression:   

 

          
 

0 0; ; .c
cc

c

σ
ε t φ t

E
    (3.1-36) 
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3.1.2.3.2 Shrinkage of concrete 

Shrinkage of concrete is caused by the settlement of solid and the lost of free 

water from a plastic concrete (plastic shrinkage) by the hydration process (chemical 

combination of cement with water) (autogenous shrinkage) and by drying of 

concrete (drying shrinkage). A curve showing the increase in shrinkage strains with 

time appears in Figure 3.1-5. 

Like creep, shrinkage deformations occur at a decreasing rate with time. In 

accordance with EN1992 [N3], the total shrinkage strains are composed of two 

components, the drying shrinkage strains and autogenous shrinkage strains. 

The drying shrinkage strains develop slowly, since it is a function of the migration of 

the water through the hardened concrete. The autogenous shrinkage strains 

develop during hardening of the concrete: the major part therefore develops in the 

early days after casting. Autogenous shrinkage is a linear function of the concrete 

strength. It should be considered specifically when new concrete is casted against 

hardened concrete.  

Hence, the value of the total shrinkage strain csε  follows from:   

 

  ,cs cd caε ε ε      (3.1-37) 

 

where: csε  is the total shrinkage strain; 

  cdε  is the drying shrinkage strain; 

  caε   is the autogenous shrinkage strain. 

The final value of the drying shrinkage strain, , ,cdε , is equal to  ,0h cdK ε .Value 

of the strain ,0cdε , may be taken from Table 3.1-5 (expected mean values, with a 

coefficient of variation of about 30 %). 

 
Table 3.1-5 – Nominal unrestrained drying shrinkage values ,0cdε  (in ‰) for concrete with 

cement CEM Class N (Table 3.2 from EN1992 [N3]) 

ck ck,cubef / f  

(MPa) 

Relative Humidity (in %) 

20 40 60 80 90 100 

20/25 0,62 0,58 0,49 0,30 0,17 0,00 

40/50 0,48 0,46 0,38 0,24 0,13 0,00 

60/75 0,38 0,36 0,30 0,19 0,10 0,00 

80/95 0,30 0,28 0,24 0,15 0,08 0,00 

90/105 0,27 0,25 0,21 0,13 0,07 0,00 
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a) – inside conditions – RH=50 %; b) – outside conditions – RH=80 % 

Figure 3.1-7 – Method for determining the creep coefficient  0;φ t  

for concrete under normal environmental conditions (Figure 3.1 from EN 1992 [N3]) 

 

The basic drying shrinkage strain ,0cdε  in Table 3.1-5 was calculated in 

accordance with the following equation: 
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where: cmf  is the mean compressive strength ( ,0cmf  is equal to 10 MPa); 

                  1dsα  and 2dsα  are coefficients which depend on the cement type and equal to 

3 and 0,13 respectively (for cement class S); to 4 and 0,12 respectively (for cement 

class N); to 6 and 0,11 respectively (for cement class R); 

           RH is the ambient relative humidity (%) ( 0RH  is equal to 100 %); 

           

The development of the drying shrinkage strain in time follows from: 

 

   ,( ) ,0; ,cd t ds s h cdε β t t k ε              (3.1-40) 

 

where: hk  is a coefficient depending on the notional size h0 according to Table 3.1-6. 
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Table 3.1-6 – Values for kh in Expression (Table 3.3 from EN1992 [N3]) 

0h  hk  

100 1,0 

200 0,85 

300 0,75 

≥500 0,70 

 

The autogenous shrinkage strain follows from: 

 

        ,ca as caε t β t ε       (3.1-42) 

 

where:  

 

         62,5 10 10 ,ca ckε f            (3.1-43) 

 

and:  

 

       0,51 exp 0,2 ,asβ t t      (3.1-44) 

 

where: t is given in days. 
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3.1.3 STRESS-STRAIN RELATIONS  

The relation between stress ( cσ ) and strain ( cε ) is shown in Figure 3.1-8, 

obtained under short term uniaxial loading is considered as the generalized 

mechanical characteristic of the concrete. 

For non-linear structural analysis the relation « cσ - cε » is shown in         

Figure 3.1-8 (compressive stress and shortening strain are shown as absolute 

values) and in accordance with EN1992 [N3] it is described by the following 

expression: 

 

  
 
 


  

,
1 2

c

cm

σ k η η

f k η
     (3.1-45) 

 

where: η is equal to 
1

c

c

ε

ε
, where εc1 is the strain at peak stress according to Table 

3.1-3;  

            k is equal to   11,05 / .cm c cmE ε f   

Expression (3.1-45) is valid for 0< cε < 1cuε , where εcu1 is the nominal ultimate 

compressive strain. 

 

 

Figure 3.1-8 – Schematic representation of the stress-strain relation for structural analysis  

(the use 0,4 cmf  for the definition of cmE  is approximate) (Figure 3.2 from EN 1992 [N3]) 

 

As it is shown in EN 1992 [N3] other idealized stress-strain relations may be 

applied, if they adequately represent the behavior of the concrete considered. 

For the design of cross-sections, the following stress-strain relationship may 

be used, see Figure 3.1-9 (compressive strains are shown positive): 
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   2, for 0 ,c cd c cσ f ε ε              (3.1-47) 

 

where: n is the exponent according Table 3.1-3; 

  2cε  is the strain at reaching the maximum strength according to Table 3.1-3, 

  2cuε  is the ultimate strain according to Table 3.1-3. 

 

 
Figure 3.1-9 – Parabola-rectangle diagram for concrete under compression 

 

Other simplified stress-strain relationship may be used if equivalent to or more 

conservative than the one defined above, for instance bi-linear according to       

Figure 3.1-10 (compressive stress and shortening strains are shown as absolute 

values) with values of 3cε  and 3cuε  according to Table 3.1-3. 

 

 
Figure 3.1-10 – Bi-linear stress-strain relation 



87 

 

A rectangular stress distribution (as given in Figure 3.1-11) may be assumed 

according to EN1992 [N3]. The factor α defining the effective height of the 

compression zone and the factor η, defining the effective strength, follows from: 

 

 0,8, for 50 MPa,ckα f                      (3.1-48) 

 

     0,8 50 /400, for 50 MPa 90 MPa,ck ckα f f    (3.1-49) 

 

and:  

 1,0, for 50 MPa,ckη f                      (3.1-50) 

 

     1,0 50 /200, for 50 MPa 90 MPa.ck ckη f f    (3.1-51) 

 

If the width of the compression zone decreases in the direction at the extreme 

compression fibre, the value   cdη f  should be reduced by 10 %. 

 

 

Figure 3.1-11 – Rectangular stress distribution (Figure 3.5 from EN 1992 [N3])  

 

3.1.4 DESIGN COMPRESSIVE AND TENSILE 
STRENGTHS  

The value of the design compressive strength is defined as follows: 

 

  


 ,cc ck
cd

c

α f
f

γ
                 (3.1-52) 

 

where: ccα  is the coefficient, that takes into account long term effects on the 

compressive strength as well as unfavorable effects resulting from the way of the 
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load applying. Recommended value is 1, but in general case the value of αcc should 

fall in the diapason between 0,8 and 1,0; 

             cγ  is the partial safety factor for concrete, and it is equal to 1,5. 

The value of the design tensile strength, ctdf , is defined as: 

 

                



,0.05

,
ct ctk

ctd

c

α f
f

γ
         (3.1-53) 

 

where: ctα  is a coefficient, that takes into account influence of the long term effects 

on the tensile strength as well as the influence of unfavorable effects, resulting from 

the way the load applying. The recommended value is 1,0. 
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3.2 REINFORCING STEEL 

3.2.1 GENERAL REQUIREMENTS 

Steel reinforcing bars are generally round in cross section. To restrict the 

longitudinal movement of the bars relative to the surrounding concrete ribs are 

rolled on the bar surface. The nominal dimensions of a deformed bar are equivalent 

to those of plain bar having the same weight per unit length as the ribbed bar. The 

method of production, the specific characteristics, method of testing and attestation 

are included in EN 10080 [N8]. The requirements for properties of the reinforcement 

are for the material as placed in the hardened concrete. If site operations can affect 

the properties of the reinforcement, then those properties shall be verified after such 

operations. 

Where other steels are used, which are not in accordance with EN10080 [N8], 

the properties shall be verified to be in accordance with EN1992 [N3] (see Sections 

from 3.2.2 to 3.2.6 and Table 3.2-1). 

 
Table 3.2-1 – Properties of reinforcement (Table C.1 from EN1992 [N3]) 

Reinforcing steel B 500A B 500B B 450C 

Product Rings, welded meshes Bars, rings, welded 

meshes 

Bars, rings, welded 

meshes 

Ductility class A B C 

Yield strength, ykf  

[N/mm2] 
500 500 

≥450 

≤550 

Ratio  /t y k
f f   ≥1,052) ≥1,08 

≥1,15 
≤1,35 

Strain at maximum 

load ukε  [‰]  
≥2,52) ≥5,0 ≥7,5 

Deviation from 

nominal value of mass 

[‰] 

±4,5 for Ø>8 mm 

±4,5 for Ø≤8 mm 

Surface ribbed 

Relative rib area rf  

5 mm<Ø≤6 mm 

6,5 mm<Ø≤12 mm 

Ø≥12 mm 

 

0,035 

0,040 
0,056 

Note: 1. The maximum value determined by means of tests may not exceed  yk1,3 f . 

          2. For bars with Ø<6 mm:   t y k
f / f 1,03  and ukε 2,0 % . 

 

The values of ykf , k and ukε  in Table 3.2-1 are characteristic values. The 

maximum % of test results falling below the characteristic value is given for each of 

characteristic values in the right hand column of Table 3.2-2.  
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Table 3.2-2 – Properties of reinforcement (Table C.2N from EN1992 [N3]) 

Product form Bars and de-coiled rods Wire fabrics Requirement 

or quantile 

value (%) 

Class A B C A B C – 

Fatigue stress range (MPa)            

(for N≥2·105 cycles)  

with an upper limit of  ykβ f  
≥150 ≥100 10,0 

 

Bond: 

Minimum 

relative rib   

area, ,R minf  

Nominal            

 

0,035 
0,040 

0,056 

 

 

 

5,0 

bar size (mm) 

5-6 

6,5 to 12 

> 12 

Bond: Where it can be shown that sufficient bond strength is achievable with fr values less than 

specified above, the values may be relaxed. In order to ensure that sufficient bond strength is 

achieved, the bond stresses should satisfy the recommended Expressions (C 1N) and (C 2N) when 

tested using the CEB/RILEM beam test:     0,098 80 1,2 ;Ømτ     0,098 130 1,9 ,Ørτ where ø 

is the normal bar size (mm); mτ  is the mean value of bond stress (MPa) at 0,01, 0,1 and 1mm slip;          

τr is the bond stress at failure by slipping. 

 

3.2.2 Properties of reinforcing steel 

The required properties of reinforcing steel shall be verified using the testing 

procedures in accordance with EN 10080 [N8].  

The behavior of reinforcing steel is specified by following properties: 

–  yield strength ( ykf ); 

–  maximum actual yield strength ( ,y maxf ); 

–  tensile strength ( tf ); 

–  ductility ( ukε  and /t ykf f ); 

–  bendability; 

–  bond characteristics ( Rf ); 

–  section sizes and tolerances; 

–  fatigue strength; 

–  weldability; 

–  shear and weld strength for welded fabric and lattice girders. 

According by EN1992 [N3], this requirements applies to ribbed and weldable 

reinforcement, including fabric. The permitted welding methods are given in       

Table 3.2-1 and in Table 3.2-3. 

The surface characteristics of ribbed bars shall be such to ensure adequate 

bond with the concrete. Adequate bond may be assumed by compliance with the 

specification of projected rib area, Rf  EN 10080 [N8].  

 The yield strength ykf  and the tensile strength tkf  are defined respectively as 

the characteristic value of the yield load, and the characteristic maximum load in 

direct axial tension, each divided by the nominal cross section area. 
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Table 3.2-3 – Permitted welding processes and examples of application (Table 3.4 from          

EN 1992 [N3]) 

Loading case Welding method Bars in tension1 Bars in compression1 

Predominantly 

static              

(see 6.8.1 (2)) 

flash-welding butt joint  

manual metal arc welding       

and metal arc welding           

with filling electrode 

butt joint Ø≥20 mm, splice, lap, cruciform     

joints, joint with other steel members 

metal arc active welding splice, lap, cruciform3 joints & joint with 

other steel members  

– butt joint with Ø≥20 mm 

friction welding butt joint, joint with other steels  

resistance spot welding lap joint4 

confirm joint2, 4 

Not 

predominantly 
static              

(see 6.8.1 (2)) 

flash-welding butt joint 

manual metal arc welding        – butt joint with Ø≥14 mm 

metal arc active welding – butt joint with Ø≥14 mm 

resistance spot welding lap joint4 

confirm joint2, 4 

Notes: 1. Only bars with approximately the same nominal diameter may be welded together; 
            2. Permitted ratio of mixed diameter bars ≥0,57; 
           3. For bearing joints Ø≤16 mm; 
           4. For bearing joints Ø≤28 mm. 

 

The reinforcement shall have adequate ductility as defined by the ratio of 

tensile strength to the yield stress,  /t yk k
f f  and the elongation at maximum force, 

εuk. values of  /t yk k
f f  and ukε  are given in Table 3.2-1 (for class A, B and C). 

Figure 3.2-1 shows stress-strain curves for hot rolled and cold worked steel. 

 

 
Figure 3.2-1 – Stress-strain diagrams of typical reinforcing steel  

(absolute values are shown for tensile stress and strain) 
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3.2.3 DESIGN ASSUMPTIONS 

For normal design, either of following assumptions may be made (see               

Figure 3.2-2): 

a) an inclined top branch with strain limit of udε  and a maximum stress of 

k /yk sf γ  at ukε , where   /t yk k
k f f ; 

b) a horizontal top branch  without the need to check the strain limit. 

The design values, ydf  of strength steel can be derived from the idealized 

characteristic diagram by dividing by the partial factor 1,15sγ . 

The specified characteristic strength, ykf  of steel without a pronounced yield 

stress ykf  may be substituted by the stress corresponding to strain equal to 0,02. 

For purpose of the designing the mean value of density may be assumed to be 

equal to 7850 kg/m3, and design value of the modulus of elasticity, sE , may be 

assumed to be 200 GPa. 

 

 

Figure 3.2-2 – Idealised and design stress-strain diagrams for reinforcing steel  

(for tension and compression) (Figure 3.8 from EN 1992 [N3]) 
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3.3 DURABILITY                                           
AND CONCRETE COVER TO REINFORCEMENT 

3.3.1 GENERAL REQUIREMENTS 

Durability of any reinforced concrete structure may be affected both by the 

direct actions and by the indirect effects in connection with the structure being 

considered such as deformations, cracking or water absorption. 

In accordance with EN1990 [N1] the structure shall be designed such that 

deterioration over its design working life does not impair the performance of the 

structure below that intended having due regard to its environment and the 

anticipated level of maintenance. 

In order to archive an adequately durable structure, the following should be 

taken into account: 

–  the intended or foreseeable use of the structure and the expected 

environmental conditions (the aggressivity of environment to which the member is 

exposed. This is analogous to establishing the design loading where the ultimate or 

serviceability limit states are being considered);  

–  the required design criteria; 

–  the composition, properties and performance of the materials and products 

(select materials and design the structure to be able to resist the environment for a 

reasonable life time); 

–  the choice of the structural system; 

–  the shape of members and the structural detailing 

–  the quality of workmanship, and the level of control; 

–  the particular protective measures; 

–  the intended maintenance during the design working life. 

3.3.2 CONCRETE DETERIORATION MECHANISM 

3.3.2.1 Chemical attack 

Chemical attack may be caused by: 

–  an aggressive environment; 

–  contact with liquids, gases or chemical solutions during service use (usually 

from exposure to acidic solution or sulphate salts); 

–  chlorides contained in concrete 

–  reactions between the materials in concrete. 



94 

 

In general, concrete has a low resistance to chemical attack. Chemical agents 

essentially react with certain compounds of the hardened cement paste. The most 

widely observed chemical corrosive effect are the effect of leaching and carbonation. 

Where the calcium hydroxide Ca(OH)2 consisted in hardened concrete dissolves in 

water we have to do with the process of leaching. The effect is enhanced when the 

water acted on concrete structures is very soft. It has been established that the 

leaching process reduces the compressive strength of concrete: 

–  Corrosion of reinforcement. As it was shown in [3, 8] normal 

circumstances, the highly alkaline nature of concrete protects steel embedded 

within it. Except under the circumstances discussed below, the pH value of the pore 

solution in concrete is in region of 12–14. Steel will not generally corrode in 

uncontaminated concrete, untie of the pH drops below 10. The protection is 

afforded by the formulation of a very thin, coherent layer of iron oxide over the 

surface of the bar under alkaline conditions. Steel protected in this way is described 

as being in passive state. Two mechanisms can lead to the destruction of the 

passive state. There are: 

–  Carbonation of the concrete. This is reaction between carbon dioxide in the 

atmosphere and the alkalis in the cement matrix. The process of carbonation takes 

place where the water contacting with concrete contains the ion of carbone dioxide – 

CO2 or an organic acids. Then free carbon dioxide reacts with water, so: CO2 + H2O 

 H2CO3, and then we have to do with process of carbonation, according to 

chemical formula: Ca(OH)2 + H2CO3  CaCO3 + 2H2O. This process starts at the 

surface, and, with time, penetrates slowly into the concrete. The rate of penetration 

of carbonation into the concrete is related with the environment and the quality of 

the concrete. The rate is fastest where the relative humidity is in the range of 50–60 

%. It is slower at higher humidities, being effectively zero at 100 %. Good-quality 

concrete carbonates more slowly than poor quality material. The speed of the 

phenomenon depends on the rate at which carbon dioxide can diffuse into the 

concrete. It will decrease with the water-to-cement ratio decreasing and, hence, with 

the strength increasing. The effect of carbonation is to reduce the alkalinity of the 

concrete to a level where the natural protection is lost, and corrosion may then 

occur if the concrete, immediately surrounding the reinforcement, is carbonated. 

For the most building structures the above given effects may be avoided by adopting 

an appropriate material specifications for achieving a dense and impermeable 

concrete. 

– The presence of chlorides in the concrete. Chlorides have the capacity to 

destroy the passivity of steel even where alkalinity remains high. It usually occurs 

locally, giving rise to «pitting corrosion». Chlorides may be involved into the concrete 

from the various sources, but the commonest are seawater in marine environments, 

de-icing chemicals on the roads and additives such as a calcium chloride, which 

was used extensively in the past as an accelerator. The rate at which chlorides 

penetrate into the concrete depends upon the rate of application of chlorides to the 

concrete surface and, as with carbonation, on the quality of the concrete. 
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Once the passivity of the steel has been destroyed, corrosion can occur if there 

is 1) sufficient moisture and 2) sufficient oxygen. It is found that these two 

requirements can act against the each other since, if the concrete is wet, oxygen 

cannot penetrate and, if it is dry, so that there is plentiful oxygen, there is 

insufficient moisture for the progress of the reaction. As a result, the greatest risk of 

corrosion is in members subjected to the alternate wetting and drying. 

The normal way to design against the corrosion is to ensure that there is an 

adequate concrete cover to the reinforcement and that the concrete in the cover 

region is of a high quality and it is well cured. In particularly aggressive 

environments, however, there are other, more expensive measures which may be 

taken. 

Possibilities are: 

– usage of the  reinforcement coated with epoxy or similar. Over the recent 

years, this approach seems to have been somewhat discredited due to some high-

profile problem cases; 

– usage of the stainless steel reinforcement; 

– applying of the surface coating to the concrete to inhibit the ingress of 

chlorides or carbon dioxide. Such coatings would have to be meticulously 

maintained to be successful for a long period of time; 

– applying of the cathodic protection to the structure. 

3.3.2.2 Physical attack 

Physical attack may be arise from the following actions: 

–  abrasion effects: abrasion of concrete surfaces may occur due to trafficking of 

the concrete or due to sand or gravel suspended in turbular water; 

–  freeze-thaw actions (frost attack): if saturated concrete is subjected to 

frequent freezing and thawing, the expansive effects of ice formation will disrupt the 

concrete. 

For typical building structures, physical attack can be neutralized through an 

appropriate material specification combined with an adequate limitation of cracking.  

Physical attack, arising from e.g.: 

–  temperature change; 

–  abrasion; 

–  water penetration (EN206 [N4]). 

The composition of the concrete affects both the protection of the reinforcement 

and the resistance of the concrete to attack. Table 3.3-1 gives an indicative strength 

classes for the particular environmental exposure classes. This may lead to the 

choice of higher strength classes than required for the structural design. 
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Table 3.3-1 – Indicative minimum strength class (Table E.1N from EN1992 [N3]) 

Exposure Classes according to Table 4.1 from EN 1992 [N3] 

Corrosion 

 
Carbonation-included corrosion 

Chloride-included 

corrosion 

Chloride-included 

corrosion from sea-water 

XC1 XC2 XC3 XC4 XD1 XD2 XD3 XS1 XS2 XS3 

Indicative 

minimum 

strength 

class 

C20/25 C25/30 C30/37 C30/37 C35/45 C30/37 C35/45 

Damage to Concrete 

 No risk Freeze/Thaw Attack Chemical Attack 

X0 XF1 XF2 XF3 XA1 XA2 XA3 

Indicative 
minimum strength class 

C12/15 C30/37 C25/30 C30/37 C30/37 C35/45 

 

3.3.3 ENVIRONMENTAL CONDITIONS 

Environmental conditions are classified according to Table 3.3-2, based on 

EN206 2014 [N4]. In addition to the conditions in Table 3.3-2, particular forms of 

aggressive or indirect action should be considered including: 

Chemical attack, arising from e.g.: 

–  the usage of the building or the structure (storage of liquids, etc.); 

–  solution of acids or sulfate salts (EN206 [N4]); 

–  chlorides contained in the concrete (EN206 [N4]); 

–  alkali-aggregate reaction (EN206 [N4]). 

 

Table 3.3-2 – Exposure classes related to environmental conditions in accordance with          

EN 206-1 (Table 4.1 from EN 1992 [N3])  

Class designation 
Description  

of the environment 

Informative examples, where 

exposure classes may occur 

1. No risk of corrosion or attack 

X0 For concrete without 
reinforcement or embedded 

metal: all exposures except 

where there is freeze/thaw, 

abrasion or chemical attack. 

For concrete with 

reinforcement or embedded 
metal: very dry. 

 

Concrete inside the buildings 
with very low air humidity. 

2. Corrosion induced by carbonation 

XC1 Dry or permanently wet. Concrete inside the buildings 

with low air humidity.  

Concrete permanently 

submerged in water. 

XC2 Wet, rarely dry. Concrete surfaces subjected to 
the long-term contact. 

Many foundations. 

 



97 

 

Table 3.3-2 (end) 

XC3 Moderate humidity. Concrete inside the buildings 

with moderate or high air 

humidity. 

External concrete sheltered 

from the rain. 

XC4 Cyclic wet and dry. Concrete surfaces subjected to 

the water contact, not within 

the exposure class XC2. 

3. Corrosion induced by chlorides 

XD1 Moderate humidity. Concrete surfaces exposed to 

the airborne chlorides. 

XD2 Wet, rarely dry. Swimming pools. 

Concrete components exposed 

to the industrial waters 
containing chlorides. 

XD3 Cyclic wet and dry. Parts of bridges exposed to the 

spray containing chlorides. 

Pavements. 

Car park slabs. 

4. Corrosion induced by chlorides from sea water 

XS1 Exposed to airborne salt but 

not in direct contact with sea 
water. 

Structures nears to or on the 

coast. 

XS2 Permanently submerged. Parts of marine structures. 

XS3 Tidal, splash and spray zones. Parts of marine structures. 

5. Freeze/Thaw Attack 

XF Moderate water saturation, 

without de-icing agent. 

Vertical concrete surfaces 

exposed to rain and freezing. 

XF2 Moderate water saturation, 

with de-icing agent. 

Vertical concrete surfaces of 

the road structures exposed to 

freezing and airborne de-icing 

agents. 

XF3 High water saturation, without 
de-icing agents. 

Horizontal concrete surfaces 
exposed to the rain and 

freezing. 

XF4 High water saturation with de-

icing agents or sea water. 

Road and bridge decks exposed 

to the deicing agents. 

Concrete surfaces exposed to 

the direct spray containing de-

icing agents and freezing.  
Splash zone of marine 

structures exposed to the 

freezing. 

6. Chemical attack 

XA1 Slightly aggressive chemical 

environment according to  

Table 2 from EN 206 [N4]. 

Natural soils and ground 

water. 

XA2 Moderately aggressive chemical 
environment according to  

Table 2 from EN 206 [N4]. 

Natural soils and ground 
water. 

XA3 Highly aggressive chemical 

environment according to  

Table 2 from EN 206 [N4]. 

Natural soils and ground 

water. 
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3.3.4 CONCRETE COVER 

The concrete cover is the distance between the surface of the reinforcement 

closest to the nearest concrete surface (including links and stirrups and surface 

reinforcement where relevant) and the nearest concrete surface. 

The nominal cover shall be specified on the drawings. It is defined as a 

minimum cover, minc , plus an allowance in design for deviation, Δ devc : 

 

= Δ .nom min devc c c      (3.3-1) 

 

Minimum concrete cover, minc , shall be provided in order to ensure: 

–  the safe transmission of bond forces; 

–  the protection of the steel against the corrosion; 

–  an adequate fire resistance. 

The great value for minc , satisfying the requirements for the both bond and 

environmental conditions shall be used: 

 

    , , , , ,; Δ Δ Δ ; 10 mm ,min min b min dur dur γ dur st dur addc max c c c c c   (3.3-2) 

 

where: ,min bc  is a minimum cover due to bond  requirement; 

  ,min durc  is a minimum cover due to environmental conditions; 

  ,Δ dur γc  is an additive safety element; 

  ,Δ dur stc  is a reduction of minimum cover for use of stainless steel; 

  ,Δ dur addc  is a reduction of minimum cover for use of additional protection. 

In order to transmit bond forces safely and to ensure adequate compaction of 

the concrete, the minimum cover should be no less than ,min bc  given in Table 3.3-3. 

 
Table 3.3-3 – Minimum cover, min,bc , requirements with regard to bond (Table 4.2 from          

EN 1992 [N3]) 

Bond Requirement 

Argument of bars Minimum cover cmin,b* 

Separated Diameter of bar 

Bundled Equivalent diameter (Øn) 

Note: If the nominal maximum aggregate size is greater than 32 mm, cmin,b, should be increased by 5 
mm. 

  

The minimum cover values for reinforcement in normal weight concrete taking 

account the exposure classes and the structural classes is given by ,min durc  in 

EN1992 [N3]. The recommended structural class (design working life of 50 years) is 

S4 for the indicative concrete strengths given in Table 3.3-1, and the recommended 

modifications to the structural class is given in Table 3.3-4. The recommended 
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minimum structural class is S1. The recommended values of ,min durc  are given in 

Table 3.3-5. 

 
Table 3.3-4 – Recommended structural classification (Table 4.3 N from EN1992 [N3]) 

Structural Class 

Criterion 

Exposure Class according to Table 4.1 from EN 1992 [N3] 

X0 XC1 
XC2/ 
XC3 

XC 4 XD1 XD2/XS1 
XD3/XS2/

XS3 

Design 

working life 

of 100 years 

Increase 

class by 

2 

Increase 

class by 

2 

Increase 

class by 

2 

Increase 

class by 

2 

Increase 

class by 

2 

Increase 

class by 2 

Increase 

class by 2 

Strength 

Class1)2) 

≥C30/37 

Reduce 

class by 
1 

≥C30/37 

Reduce 

class by 
1 

≥C35/45 

Reduce 

class by 
1 

≥C40/50 

Reduce 

class by 
1 

≥C40/50 

Reduce 

class by 
1 

≥C40/50 

Reduce 

class by 1 

≥C45/55 

Reduce 

class by 1 

Member with 

slab 

geometry 

(position of 

reinforce-

ment not 
affected by 

construction 

process) 

Reduce 

class by 

1 

Reduce 

class by 

1 

Reduce 

class by 

1 

Reduce 

class by 

1 

Reduce 

class by 

1 

Reduce 

class by 1 

Reduce 

class by 1 

Special 

quality 

control of the 
concrete 

production 

ensured 

Reduce 
class by 

1 

Reduce 
class by 

1 

Reduce 
class by 

1 

Reduce 
class by 

1 

Reduce 
class by 

1 

Reduce 
class by 1 

Reduce 
class by 1 

Notes to Table 3.3-3:   1. The strength class and w/c ratio are considered to be related values. A 
special composition (type of cement, w/c value, fine fillers with the intent to produce low permeability 
may be considered. 

2. The limit may be reduced by one strength class if air entrainment of 
more than 4 % is applied. 

 
Table 3.3-5 – Values of the minimum cover min,durc  requirements with regard to durability for 

reinforcement steel in accordance with EN 10080 (Table 4.4N from EN1992 [N3]) 

Environmental Requirement for min,durc  (mm) 

Structural 
Class 

Exposure Class according to Table 4.1 [N3] 

X0 XC1 XC2/XC3 XC4 XD1/XS1 XD2/XS2 XD3/XS3 

S1 10 10 10 15 20 25 30 

S2 10 10 15 20 25 30 35 

S3 10 10 20 25 30 35 40 

S4 10 15 25 30 35 40 45 

S5 15 20 30 35 40 45 50 

S6 20 25 35 40 45 50 55 

 

Where in-situ concrete is placed against the other concrete elements (precast 

or in-situ), the minimum concrete cover of the reinforcement to the interface may be 

reduced to a value corresponding to the requirement for the bond provided that: 

–  the strength class of concrete is at least C25/30; 

–  the exposure time of the concrete surface to an outdoor environment is short 

(<28 days); 
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–  the interface has been roughened. 

To calculate the nominal cover, nomc , an addition to the minimum cover shall 

be made in design to allow for the deviation (Δ devc ). The required minimum cover 

shall be increased by the absolute value is Δ 10devc  mm in certain situations, the 

accepted deviation and, hence, allowance, Δ devc , may be reduced. The 

recommended values are: 

– where fabrication is subjected to a quality assurance system, in which the 

monitoring includes measurements of the concrete cover, the allowance in design 

for deviation ∆cdev may be reduced:  5 mm Δ 10 mmdevc . 

–  where it can be assured that a very accurate measurement device is used for 

monitoring and non-conforming members are rejected (e.g. precast elements), the 

allowance in design for deviation ∆cdev may be reduced as follows: 

 0 mm Δ 10 mmdevc . 
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CHAPTER 4 

 

 
ULTIMATE LIMIT STATES 

4.1 BENDING AND BENDING WITH AXIAL LOAD 

4.1.1 BENDING 

4.1.1.1 Flexural behavior of beams 

Stage I (Uncracked concrete sections). 

Before cracking, the concrete strains and stresses in compression and tension 

zones increase with load increasing. At small loads when the tensile strains ctε  are 

less than value of the concrete ultimate strain  in tension ctuε , the entire cross-

section of the beam resists bending moment, with compression on the top face and 

tension on the bottom side (see Figure 4.1-1). The distribution of strains and 

stresses in cross-section of the beam for these stage Ia is shown in Figure 4.1-1. As 

it  is shown in Figure 4.1-1 strains and stresses are distributed linearly.  

As the load is increased tensile strain ctuε  in the bottom of the cross-section of 

the beam reaches value close to the ultimate tensile  strain value ctuε  and 

distribution of the tensile stresses becomes to be non-linear in accordance with 

relationship « ctσ – ctε » for concrete in tension (see Figure 4.1-1, stage Ia). The 

compressive stresses in concrete are distributed linearly by the height (depth) of the 

compression zone of the cross-section in accordance with curve « cσ – cε » for concrete 

(see Figure 1, stage Ia). First cracking occurs at the weakest cross-section and this 

is usually assumed to occur when the concrete tensile strain ctε  reaches the 

ultimate value ctuε . 
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Figure 4.1-1 – Flexural Behavior of Beam. Stage I (Uncracked section),  

strains and stresses distribution in cross-section 
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Stage II (Concrete Cracked). 

As the load is increased after the ultimate tensile strain in concrete ctuε  is 

exceeded, cracks begin to develop in the bottom face of the beam. The moment at 

which these cracks begin to form – that is, when tensile strain in the bottom of the 

beam ctε  becomes equal to the ultimate tensile strain ctuε   – is reffered to as the 

cracking moment, crM . 

Now, that the bottom has cracked and another stage is presented because the 

concrete in cracked zone obviously cannot resist tensile force – steel reinforcement 

must do it. As it is shown in [6], when first cracks occur, the stress in tensile 

concrete at the crack drops to zero (see Figure 4.1-2 a). The concrete strains and 

stresses increase with distance from the crack face due to the steel-concrete bond, 

until at the same distance s from crack, concrete is not longer affected by the crack, 

as shown in Figure 4.1-2 a. Slip at the concrete-steel interface in the region of 

significant bond stress (s on either side of the crack) causes the crack opening. 

A relatively small load increasing will cause a second crack developing at a 

cross-section at the same distance x s  from first crack, there by the reducing of 

the concrete stress in the vicinity of the crack. Eventually, under the increasing 

load, primary cracks form at somewhat regular intervals along the member and the 

primary crack patterns are established. 

The concrete tensile stress at the each crack is zero, rising to a maximum value 

σct (less than the concrete tensile strength ctmf ) mid-way between adjacent cracks, 

as it shown in Figure 4.1-2. 

After cracking, tensile force is redistributed on the reinforcement at the crack. 

At the cracked cross-section the concrete at the top resists compression and steel 

reinforcement resists tension. But in the cross-section, what is situated between 

two adjacent cracks, concrete and steel reinforcement resist tensile force together. 

Cracking is therefore accompanied by a drop in the average tensile stress 

carried by the concrete and, hence, a reduction in tension stiffening. 

After primary crack patterns are established, further load increasing may 

result in further slip at the concrete-steel interface causing cover-controlled cracks 

to develop between the primary cracks and gradual breaking down of the bond 

between the steel and concrete, thereby reducing tension stiffening still further, as 

it is shown in Figure 4.1-2 b. At this stage, relation between moment and deflection 

is linear, but bending stiffness of the cracked beam is reduced. As the load 

increasing hereinafter, these cracks quickly spread up to the vicinity of the neutral 

axis and then the neutral axis begins to move upward. 

This stage will continue as long as the compressive stress in the top face is less 

then then about one-half of the concrete compressive strength, cmf ,  and as long as 

the steel strains are less than its yield strain syε . The strains and stresses 

distribution for this stage are shown in Figure 4.1-2 b. In this stage the compressive 

strains and stresses in concrete vary linearly with the distance from the neutral axis 

or as a straight line. The straight-line strain-stress variation normally occurs in 

reinforced concrete beams under normal service-load conditions. 
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Figure 4.1-2 – Flexural behavior of beam. Stage II (cracked section). 

Strains and stresses distribution on cross-section 
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Stage III (ultimate/strength). 

As the load increasing herein after so that the compressive stress becomes 

greater than 0,4 cmf  (limit value of the concrete elastic compressive stress), the 

tensile cracks move further upward, as does to the neutral axis, and the concrete 

compressive stress begin to change appreciably from straight line. The stress 

variation in compression zone is much like relationship « cσ – cε » that is shown in 

Figure 4.1-3. Further load increasing on this stage leads to failure of the beam.  

 

 
Figure 4.1-3 – Flexural behavior of Beam. Stage III (Ultimate/Strength).  

Strains and stresses distribution in cross-section 

 

There are two possible ways in which reinforced concrete beam can fail in 

bending in the ultimate stage and the mode of failure depends on the amount of 

tensile reinforcement used: 

1) Under-reinforced cross-section (element) ( l limρ ρ ; limx x ). 

In an under-reinforced beam what happens as the load on the beam increases? 
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If the tensile force that the steel bar can provide is less than compressive force 

which concrete can provide then the steel will reach its yield point (strains syε , see 

Figure 4.1-3 b) before the concrete crushed ( s syε ε ; cc cuε ε ). In this mode of tensile 

cracks become visible before the steel finally fails ( s suε ε ; cc cuε ε ). This mode of 

failure is preceded by large emptiness deflection (ductile mode); 

2) Over-reinforced cross-section (element) ( l limρ ρ ; limξ ξ ). 

In an over-reinfored section steel is stronger than concrete. The tensile force 

which the steel reinforcement can provide is larger than compressive force which 

concrete can provide, then the concrete will reach its ultimate strain cuε  before the 

steel yields (see Figure 4.1-3 c). If it happens the concrete starts to loose strength 

and the beam fails suddenly without warning with concrete failing in compression. 

This mode of failure gives little if any prior warning and it is less safe failure mode 

(brittle failure mode). 

3) Balanced cross-section 

In balanced section the concrete is almost at its ultimate strain ( cuε ) when the 

steel yields ( s syε ε ). Figure 4.1-4 represents strains and stresses distribution for 

this case.  

 

 
Figure 4.1-4 – Modes of the failure. Balanced state limξ  

 

Figure 4.1-5 represents different types of the «moment–curvature» diagrams 

that represent effect of reinforcement percentage. If Figure 4.1-5 from [5] be 

examined, there appears two distinct patterns of the beam behavior under the load. 

The first pattern is where there is a considerable increasing in curvature after the 

attainment of the maximum moment and where the behavior exhibits 

characteristics close to elastic-perfectly plastic behavior (see Figure 4.1-5, ductile 

failure). The second type of the behavior is where failure occurs as the maximum 

moment is achieved with no subsequent ductility. The first type of behavior clearly 

allows a large degree of rotation after yield, albeit accompanied by severe and 

increasing cracking and deflection (ductile mode of failure for under-reinforced 

sections). The behavior with no post-yield plateau is given by an over-reinforced 
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section where steel remains elastic and the concrete reaches its maximum strain 

before the steel yields (see Figure 4.1-5, brittle failure). 

 

 

Figure 4.1-5 – «Moment-curvature» diagram showing effect of reinforcement percentage 

 

So, in accordance with EN 1992 [N3], it is recommended to design bending 

reinforced concrete members based on the under-reinforced sections with a higher 

ductility. 

4.1.1.2 Assumptions 

In accordance with EN1992 [N3] (clause 6.1 (2) P), when determining the 

ultimate moment resistance of reinforced concrete cross-sections, the following 

assumpions are made: 

- the strain in the concrete and reinforcement are derived assumed that plain 

section remain plane; 

- strain in bounded reinforcement, whether in tension or compression, is the 

same as that in the surrounding concrete; 

- the tensile strength of concrete is ignored; 

- the stress in concrete in compression are derived from the design «stress-

strain» relationship given in Chapter 3 (see Figure 3.1-10 and Figure 3.1-11) with 

1,5cγ ; 

- the stress in the reinforcement (reinforcing steel) are derived from the design 

curve in Chapter 3 (see Figures 3.1-8–3.1-11). 

Note that in both cases (rectangular-parabolic and rectangular block) the 

compressive strain in the concrete shall be limited to ,2cuε  or ,3cuε , depending on the 

«stress-strain» diagram used (see Figure 3.1-10, Figure 3.1-11 and Table 3.1-3).  

The strains in the reinforcing steel shall be limited to udε  (where applicable). 
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For cross-sections not fully in compression and concrete classes less than 

C50/60, to fail when the strain reaches ,2 ‰3,5cuε   the strain in the tension 

reinforcement need not to be limited where a horizontal top branch is assumed for 

the reinforcement stress-strain curve, and limited to udε , when relationship « sσ – sε » 

is bilinear, as it was shown in Figure 3.2-2.  

For cross-sections that are completely in compression, the strain is limited to 

2 ‰2cε  at the height of 
 

  
 

2

2

1 c

cu

ε
h

ε
 or 

 
  

 

3

3

1 c

cu

ε
h

ε
 from the most compressive 

face of section.  

For cross-sections loaded by the compressive force it is necessary to assume 

the minimum eccentricity 0 /30e h  but not less than 20 mm, where h is the depth 

of section.  

In part of cross-sections which are subjected to approximately concentric load 

( / 0,1de h ), such as compression flanges of box girders, the mean compressive 

strain in the part of the section should be limited to 2cε  (or 3cε  it the bilinear 

relations for concrete is used). 

The possible range of strain distribution is shown in Figure 4.1-6 and is 

described in Table 4.1-1.  

  

 
Figure 4.1-6 – Possible strain distributions in ultimate limit state                                              

in accordance with EN1992 [N3] 

 

It should be noted, that some basic assumptions, formulated above (for 

example, plane cross-section hypothesis) are not strictly true. The deformations 

within a section is very complex, and, locally in cracks, plane sections don’t remain 

plain. Nor, due to the local bond slip between cracks are the strains in the concrete 

exactly the same as those in the steel. 
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It is a universal approach to define failure of concrete in compression by means 

of a limiting compressive strain ccε . For concrete strength not exceeding 50 N/mm2, 

the EN 1992 [N3] adopts value of  ‰3,5cuε  for flexure and for combined bending 

and axial load, where the neutral axis remains within a cross-section, and a limit of 

between 3,5 ‰ and 2,0 ‰ for cross-section loaded so that whole section is in 

compression (see Figure 4.1-6). The values for the ultimate compressive strains for 

situation, where the neutral axis lies within the section and for axial compression 

vary for higher-strength concretes, with the ultimate strain reducing with increasing 

strength for cases where the neutral axis is within the section, while the values of 

the axial compression increases with increasing strength. The logic behind the 

reduction in the strain limit for axial compression is that, in axial compression, 

failure will occur at the strain corresponding to the attainment of the maximum 

compressive stress. 

This is 0,002 (2 ‰) for concrete strength is not exceeding 50 N/mm2. In 

flexure, considerably higher strains can be reached before the maximum capacity of 

the section is reached, and the value of  ‰3,5cuε  has been obtained empirically. 

A means is needed to be interpolated between the value of  ‰3,5cuε  for flexure 

and 2 ‰2cε  for axial load (see Figure 4.1-6).   

Figure 4.1-7 represents cross-sections with strain diagram, stress blocks 

internal forces for possible ranges of strain distribution in accordance with               

Table 4.1-1.  

 
Table 4.1-1 – Description of the possible ranges of strain distributions 

Range of strain 

distribution 

Strain 

Comments Reinforcing steel, stA , 

tension strain, stE  

Concrete compression 

strain ccε  (most 

compressive face) 

1a 

(Figure 4.1-7 a) 
st udε ε  

 2cc cε ε  

or 

 3cc cε ε  Mechanical properties of 
reinforcing steel are utilized 

completely; bending; bending 

with axial force (large 

eccentricity); 

1b 

(Figure 4.1-7 b) 
st udε ε  

 2 2c cc cuε ε ε  

 3 3c cc cuε ε ε  

2 

(Figure 4.1-7 c) 
 sy st udε ε ε  

 2cc cuε ε  

or 

 3cc cuε ε  

3a 

(Figure 4.1-7 d) 
 0 st syε ε  

 2cc cuε ε  

or 

 3cc cuε ε  
Mechanical properties of 

reinforcing steel are not 

utilized completely, but 

concrete properties are used 

completely bending with 

axial force with small 
eccentricity. 

3b 

(Figure 4.1-7 e) 
 0stε  

 2cc cuε ε  

or 

 3cc cuε ε  

4 

(Figure 4.1-7 f) 
 2 0c stε ε  

 2 2c cc cuε ε ε  

 3 3c cc cuε ε ε  
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Figure 4.1-7 – Cross-section, strain diagram and stress block  

for the possible ranges of strain distribution 1a, 2b and 2 in accordance with Table 4.1-1 
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Figure 4.1-7 (end) – Cross-section, strain diagram and stress block  

for the possible ranges of strain distribution 3a, 3b and 4 in accordance with Table 4.1-1 
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4.1.1.3 Rectangular-parabolic compressive stress block in 
concrete 

4.1.1.3.1 Rectangular cross-section 

(1) Singly reinforced rectangular cross-section. Basic equations 

A rectangular-parabolic stress block may be used to provide a more rigorous 

analysis of the reinforced concrete section. The stress block is similar in shape to 

the stress-strain curve for concrete in Figure 3.1-9 a, having a maximum stress of 

cdf  at the ultimate strain 2, ‰3,5c uε . 

A section subjected to an applied design moment EdM  (as the effect of the 

loading) is shown in Figure 4.1-8 a, and the strain diagram, stress block and 

internal forces are  shown in Figure 4.1-8 b, c, d. Figure 4.1-8 shows the simplified 

rectangular-parabolic stress block which are used in EN1992 [N3] to develop the 

design equations for bending. 

Bending of the section (see Figure 4.1-8) will induce a resultant tensile force stF  

in the reinforcing steel and a resultant compressive force in the concrete ccF  which 

acts through the centroid of the effective compression zone. 

How it was shown previously (see Chapter 1), based on ULS/STR checking by 

partial factors method for equilibrium, applied design moment EdM  has to be 

balanced by resisting moment RdM , so that: 

 

 ,Ed RdM M          (4.1-1) 

 

where:  EdM   is the design value of the applied moment (as an action effect) at the 

critical section; 

   RdM  is the design value of the corresponding resisting moment. 

 

 

a) – cross-section; b) – strain diagram; c) – stress block; d) – internal forces 

Figure 4.1-8 – Rectangular-parabolic concrete compressive stress block,  

singly reinforced cross-section 

 



113 

 

The beam section is in equilibrium and, hence, the law of static must hold. The 

moment of resistance of the section, RdM , using the rectangular-parabolic stress 

block (see Figure 4.1-8), is calculated from the equilibrium conditions for cross-

section. The sum of the compressive and tensile forces must be zero, and: 

 

 .cc stF F                      (4.1-2) 

 

Because the internal forces are equal the moment of resistance with respect to 

the centroid to the steel reinforcement and centroid of concrete in compression are 

equal, i.e.: 

 

    .Rd cc stM F z F z       (4.1-3) 

 

where: ccF   is the resultant compressive force resisted by concrete (as a resultant of 

the compressive stress block); 

            stF  is the resultant tensile force in steel reinforcement; 

            z is the lever arm of internal force. 

In general case, resultant compressive force resisted by concrete can be 

calculated as follows: 

 

 

 

  
          
   

    
        
     





20

20

( )
1 1

( )
1 1

p

p

nx

c
cc cd cd p

c

nx

c
cd p

c

ε y
F f b dy f b x x

ε

ε y
f b dy x x

ε

   (4.1-4) 

 

From strain compatibility diagram (plane section hypothesis, see               

Figure 4.1-9): 

 

    2( ) ,c
c

p

ε
ε y y φ y

x
       (4.1-5) 

 

where: φ is the curvature at the particular section, what is given by (see          

Figure 4.1-9): 

  

 2 ,c

p

ε
φ

x
        (4.1-6) 

 

where: px  is the distance from the neutral axis to strain εc2. 

            2cε  is the concrete strain at the end of the parabolic section.  
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Figure 4.1-9 – Parameters of the rectangular-parabolic stress block 

 

Substituting Equation (4.1-5) in Equation (4.1-4): 

 

 
                  


0

1 1
p

nx

cc cd p

p

y
F f b dy x x

x
   (4.1-7) 

 

To compute a resultant compressive force resisted by concrete, the 

rectangular-parabolic stress block is replaced by the equivalent rectangular stress 

block with mean (average) concrete stress, ,c avf , that is given by (see Figure 4.1-9). 

 


, ,

pqrs rst

c av

A A
f

x
         (4.1-8) 

 

where:  pqrs cdA f x  is the area of the conventional rectangular stress block    

(  ;cdα f x ). 

 


 / / .rst st t r st t

A A A             (4.1-9) 

 

The area of compressive stress block /st t
A  is defined as follows: 

 

  
        

/

0

1 1 ,
p

nx

cdst t
p

y
A f dy

x
       (4.1-10) 

 

and the area 
/st t r

A  is given by: 
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
 / .cd pst t r

A f x        (4.1-11) 

 

Therefore: 

 

                                      

 2

0 0

1 1 1 1 .
p p

n nx x

cd p cd cd p

p p

y y
A f x f dy f x dy

x x
   (4.1-12) 

 

From strain compatibility diagram the distance px  from the neutral axis to 

strain 2cε  is given by: 

 

       2
2

2, 2 2,

.
p c

cd p p

c u c c u

x εx
A f x x x

ε ε ε
          (4.1-13) 

 

Hence, in general case, the mean compressive stress, ,c avf , can be calculated: 

 
 

 2
, .cd
c av

f x A
f

x
     (4.1-14) 

 

Table 4.1-2 gives values of the coefficients 1fk , 2fk , which are used to calculate 

the areas 1A  and 2A  according following expressions: 

 

  1 1 ;f p cdA k x f              (4.1-15) 

 

  2 2 .f p cdA k x f              (4.1-16) 

 

The values of the coefficients 1fk , 2fk , wk , 2wk , in Table 4.1-2 were obtained 

from Equation (4.1-10) by integration for range  0 py x . 

Combining of the Equation (4.1-14) and Equation (4.1-16) gives: 

 

 
             

  
        

   

2
2

2,2

,

2
2

2,

1 ,

c
cd cd f

c ucd f p cd

c av

c
cd f c cd

c u

ε
f x f k x

εf x k x f
f

x x

ε
f k ω f

ε

      (4.1-17) 

 

where: 

  
     
   

2
2

2,

1 .c
c f

c u

ε
ω k

ε
                  (4.1-18) 
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For strength classes for concrete from C12/15 to C50/60 in accordance with 

Table 4.1-2: 2, ‰3,5c uε ; 2 ‰2,0cε , 2 0,333fk , value of the coefficient cω  is 

given by: 

 

  
     

  

2,0
1 0,333 0,809 0,81.

3,5
cω          (4.1-19) 

 

(Note: this value is used for simplified rectangular block: λ=0,8). 

Table 4.1-2 gives values of the coefficient cω  for different strength classes for 

concrete. Values of cω , as it can be seen from Table 4.1-2 decrease with increasing 

of strength class for concrete (for high strength classes (more C50/60) value 

 0,5cω ). 

 
Table 4.1-2 – Value of the coefficients that are used for calculation of the rectangular 

parabolic stress block parameters 

Parameters ≤C50/60 C55/67 C60/75 C70/85 C80/95 C90/105 

n 2,0 1,75 1,60 1,45 1,4 1,4 

 
 

1
1

1
f

cd

A n
k

ω f n
 0,667 0,635 0,615 0,597 0,590 0,590 

 
 

2
2

1

1
f

cd

A
k

ω f n
 0,333 0,364 0,385 0,403 0,410 0,410 


 

 

1
1

3

2 ( 2)
ω

a n
k

ω n
 0,625 0,595 0,576 0,559 0,552 0,552 

 


2
2

1

2
ω

a
k

ω n
 0,250 0,274 0,289 0,303 0,308 0,308 

 2, ‰cε  -2,0 -2,2 -2,3 -2,4 -2,5 -2,6 

 2, ‰cuε  -3,5 -3,1 -2,9 -2,7 -2,6 -2,6 

 2

2

p c

cu

x ε

x ε
 0,571 0,710 0,793 0,888 0,961 1,0 

  
     
   

2
2

2,

1 c
c f

c u

ε
ω k

ε
 0,810 0,754 0,694 0,642 0,605 0,590 

 
     

 
 

2

2
2 2

2,

2

0,5

1

c
f ω

c u

c

ε
k k

ε
k

ω
 

0,416 0,403 0,380 0,371 0,360 0,366 

0

2

cωC
k

 1,947 1,870 1,826 1,730 1,650 1,612 

 

In general case location of the resultant compressive force (depth of the 2k x  

centroid for compression stress block) is calculated by taking area moments of the 

stress block about neutral axis (see Figure 4.1-9): 
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 
 

 

   
  

   

  
  





0
2

0

1 1 /

.

1 1 /

x
n

p

c x
n

p

y x ydy

y x k x

y x dy

            (4.1-20) 

 

For rectangular-parabolic stress block distance (  2x k x ) is determined: 

 

 
  

  
  

2

2

0,5
.

pqrs rst

c cd

A x A a
x k x

ω α f x
               (4.1-21) 

 

In accordance with Table 4.1-2  2 2ω pa k x , and distance (  2x k x ) is equal: 

 

 
    

  
 

2 2

2 2

2

0,5
.

cd cd f ω p

c cd

f x f k k x
x k x

ω f x
           (4.1-22) 

 

Substituting 
 

   
 

2

2,

c
p

c u

ε
x x

ε
  in Equation (4.1-22) and solving for 2k  gives: 

 

   
 

2

2 2 2 2,

2

0,5
1 .

f ω c c u

c

k k ε ε
k

ω
           (4.1-23) 

 

For concrete classes from C12/15 to C50/60: 2, 3,5‰c uε ; 2 0,333;fk   

2 0,25;ωk  0,81cω  (see Table 4.1-2), value 2k  is obtained from Equation (4.1-23): 

 

   
  

2

2

0,5 0,333 0,25 2,0 3,5
1 0,416.

0,81
k           (4.1-24) 

 

Table 4.1-2 contains values of the 2k -coefficient for different concrete strength 

classes. 

The moment of resistance, RdM , with respect to steel reinforcement is 

calculated by: 

 

     ,Rd c cdM ω f b x z              (4.1-25) 

 

and taking in account, that   2z d k x , Equation (4.1-25) can be rewritten as 

follows:  

 

       
2

1
,Rd c cdM ω f b d z z

k
               (4.1-26)  

 

or:  
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      0 ,Rd cdM C f b d z z                (4.1-27) 

 

where: 0

2

.c
ω

C
k

 

Defining  ,
z

η
d

 and replacing RdM  by EdM  Equation (4.1-27) can be rewritten 

as: 

  
  

2

2

0

0.Ed

cd

M
η η

C f b d
                   (4.1-28) 

 

Solving of the quadratic equation for η gives: 

 

    
0

0,5 0,25 0,mαz
η

d C
                (4.1-29) 

 

where: 
  2

.Ed
m

cd

M
α

f b d
 

If the lever arm of internal forces,   ,z η d  is known, then the depth of neutral 

axis x can be calculated from following expression: 

 

   
2

1
1 ,

x
η

d k
          (4.1-30) 

 

From strain compatibility diagram (for plane cross-section) follows: 

 

 




2,
,

c u st
ε ε

x d x
                  (4.1-31) 

 

or: 

      

 
   

 
2, .st c u

d x
ε ε

x
                   (4.1-32) 

 

Substituting Equation (4.1-30) into Equation (4.1-32), the following expression 

is obtained:  

 

 
   

 

2
2, 1 .

1
st c u

k
ε ε

η
            (4.1-33) 

 

The failure mode can be estimated based on the following inequality: 

 

  , ,sy st s Rε ε ε             (4.1-34)  
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where: syε  is a yield strain for the steel reinforcement ( 
yk

sy

s

f
ε

E
); 

            ,s Rε  is an ultimate value of the strain for the steel reinforcement in 

accordance with EN1992 [N3] ( 0,9 suε ). 

If Inequality (4.1-34) is satisfied, then the reinforcement steel yields before 

concrete in compression zone reaches its maximum strain capacity (ultimate 

compression strain 2,c uε ) and crushes (under-reinforced section; «tension failure 

mode»). If Inequality (4.1-34) is not satisfied, then the concrete reaches its 

maximum (ultimate) strain 2,c uε  before the steel reinforcement yields (over-

reinforced section; «compression failure mode»). 

Limit value of the neutral axis depth limx  is defined by the following equation 

(see Figure 4.1-4): 

 

 
  
  

2,

2,

,
c u

lim

sy c u

ε
x d

ε ε
       (4.1-35) 

 

or:  

                                                         

   
 

  
  

2,

2,

,
c u

lim

yk s c u

ε
x d

f E ε
            (4.1-36) 

 

If,  limx x , Inequality (4.1-34) is satisfied, and limx > x , Inequality (4.1-34) is 

not satisfied. 

If,  limx x , moment of resistance Rd,limM  is given by: 

 

    
           

         

2, 2,2

2

2, 2,

1 ,
c u c u

Rd,lim c cd

sy c u sy c u

ε ε
M ω f b d k

ε ε ε ε
     (4.1-37) 

 

Defining:  


2,

2,

,
c ulim

lim

sy c u

εx
ξ

d ε ε
 Equation (4.1-37) can be rewritten as follows:  

 

        2

21 ,Rd,lim c cd lim limM ω f b d ξ k ξ           (4.1-38) 

 

Hence, 

 

     
 

22
1 ,

Rd,lim

c lim lim

cd

M
ω ξ k ξ

f b d
              (4.1-39) 

 

or:    
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     21 .m,lim c lim limα ω ξ k ξ         (4.1-40) 

 

For the concrete strength classes from C12/15 to C50/60: 2, 3,5‰c uε  and 

for the steel reinforcement, for example S500 grade:  500ykf  N/mm2, 

 
 3

500
2,5‰,

200 10
syε  and:  0,81cω  and 2 0,416k  (see Table 4.1-2): 

 

    
         

     

3,5 3,5
0,81 1 0,416 0,368.

2,5 3,5 2,5 3,5
m,limα  

 

(a) Determination of the required bending reinforcement 

If inequality m m,limα α  is satisfied, then required steel reinforcement area is 

calculated from following equation (moment resistance with respect to compression 

concrete):  

 

      .Ed Rd st yd stM M F z f A z             (4.1-41) 

 

Solving Equation (4.1-41) for stA  gives: 

 

 
  

.Ed Ed
st

yd yd

M M
A

f z f η d
         (4.1-42) 

 

(b) Checking of ULS for bending 

According with the basic requirement of the partial factors method the 

following inequality shall be satisfied: 

 

 
  

.Ed Ed
st

yd yd

M M
A

f z f η d
                  (4.1-43) 

 

Equilibrium of axial forces gives: 

 

 ,st ccF F                  (4.1-44) 

  

or: 

 

     ,c cd yd stω f b x f A                 (4.1-45) 

 

Neutral axis depth is calculated from the following equation: 

 




 
.

yd st

c cd

f A
x

ω f b
            (4.1-46) 
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If  limx x , then moment of resistance, RdM , is given by: 

 

            2 .Rd c cd c cdM ω f b x z ω f b x b k x          (4.1-47) 

 

If, limx > x , then the reinforced steel does not yield and moment of resistance, 

MRd, is calculated, assuming  limx x : 

 

     2

, .Rd Rd,lim m lim cdM M α f b d           (4.1-48) 

 

(c) Short calculation algorithm 

Required area of the steel reinforcement. 

The required area of the steel reinforcement can be calculated based on stream 

line procedure using coefficient from Table 4.1-3. 

 

Table 4.1.3 – Coefficients for bending members section design 

Range of 

strain 

distribution 

Design parameters 

Coefficients Strains, ‰ 

ξ=x/d ω ζ μ ccε  in concrete 

(compression) 

1sε  in reinforcement 

(tension) 

Ia 

0,02 0,002 0,993 0,002 0,20 10,0 

0,03 0,004 0,990 0,004 0,31 10,0 
0,04 0,008 0,986 0,008 0,42 10,0 
0,05 0,012 0,983 0,012 0,53 10,0 
0,06 0,017 0,979 0,017 0,64 10,0 
0,07 0,023 0,976 0,022 0,75 10,0 
0,08 0,030 0,972 0,029 0,87 10,0 
0,09 0,037 0,969 0,036 0,99 10,0 
0,10 0,045 0,965 0,044 1,11 10,0 
0,11 0,054 0,961 0,052 1,24 10,0 
0,12 0,063 0,957 0,061 1,36 10,0 
0,13 0,073 0,953 0,070 1,49 10,0 
0,14 0,083 0,949 0,079 1,63 10,0 
0,15 0,093 0,945 0,088 1,76 10,0 
0,16 0,104 0,940 0,098 1,90 10,0 

Limit 

values for 

range Ia 

0,167 0,111 0,938 0,104 2,00 10,0 

Ib 

0,17 0,115 0,936 0,107 2,05 10,0 

0,18 0,125 0,931 0,117 2,20 10,0 

0,19 0,136 0,927 0,126 2,35 10,0 

0,20 0,147 0,922 0,135 2,50 10,0 

0,21 0,157 0,917 0,144 2,66 10,0 

0,22 0,168 0,912 0,153 2,82 10,0 

0,23 0,179 0,907 0,162 2,99 10,0 

0,24 0,189 0,902 0,171 3,16 10,0 

0,25 0,200 0,897 0,179 3,33 10,0 

Limit 

values for 
range Ib 

0,259 0,211 0,892 0,187 3,50 10,0 

 

0,26 0,210 0,892 0,188 3,50 9,96 

0,27 0,219 0,888 0,194 3,50 9,46 

0,28 0,227 0,884 0,200 3,50 9,00 

0,29 0,235 0,879 0,206 3,50 8,57 
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Table 4.1-3 (cont.) 

Ib 

0,30 0,243 0,875 0,213 3,50 8,17 

0,31 0,251 0,871 0,219 3,50 7,79 

0,32 0,259 0,867 0,225 3,50 7,44 

0,33 0,267 0,863 0,230 3,50 7,11 

0,34 0,275 0,859 0,236 3,50 6,79 

0,35 0,283 0,854 0,242 3,50 6,50 

0,36 0,291 0,850 0,248 3,50 6,22 

0,37 0,300 0,846 0,252 3,50 5,96 

0,38 0,308 0,842 0,259 3,50 5,71 

0,39 0,316 0,838 0,264 3,50 5,47 

0,40 0,324 0,834 0,270 3,50 5,25 

II 

0,41 0,332 0,829 0,275 3,50 5,04 

0,42 0,340 0,825 0,281 3,50 4,83 

0,43 0,348 0,821 0,286 3,50 4,64 

0,44 0,356 0,817 0,291 3,50 4,45 

0,45 0,364 0,813 0,296 3,50 4,28 

0,46 0,372 0,809 0,301 3,50 4,11 

0,47 0,380 0,805 0,306 3,50 3,95 

0,48 0,388 0,800 0,311 3,50 3,79 

0,49 0,397 0,796 0,316 3,50 3,64 

0,50 0,405 0,792 0,321 3,50 3,50 

0,51 0,413 0,788 0,325 3,50 3,36 

0,52 0,421 0,784 0,330 3,50 3,23 

0,53 0,429 0,779 0,334 3,50 3,10 

0,54 0,437 0,775 0,339 3,50 2,98 

0,55 0,445 0,771 0,343 3,50 2,86 

0,56 0,453 0,767 0,348 3,50 2,75 

0,57 0,461 0,763 0,352 3,50 2,64 

0,58 0,469 0,759 0,356 3,50 2,53 

0,59 0,478 0,755 0,360 3,50 2,43 

0,60 0,486 0,750 0,364 3,50 2,33 

0,61 0,494 0,746 0,368 3,50 2,24 

0,62 0,502 0,742 0,372 3,50 2,15 

III 

0,79 0,640 0,671 0,429 3,50 0,93 

0,80 0,648 0,667 0,432 3,50 0,87 

0,81 0,656 0,663 0,435 3,50 0,82 

0,82 0,664 0,659 0,437 3,50 0,77 

0,83 0,672 0,655 0,440 3,50 0,72 

0,84 0,680 0,651 0,442 3,50 0,67 

0,85 0,688 0,646 0,445 3,50 0,62 

0,86 0,696 0,642 0,447 3,50 0,57 

0,87 0,704 0,638 0,449 3,50 0,52 

0,88 0,712 0,634 0,452 3,50 0,48 

0,89 0,720 0,630 0,454 3,50 0,43 

0,90 0,729 0,626 0,456 3,50 0,39 

0,91 0,737 0,621 0,458 3,50 0,35 

0,92 0,745 0,617 0,460 3,50 0,30 

0,93 0,753 0,613 0,462 3,50 0,26 

0,94 0,761 0,609 0,463 3,50 0,22 

0,95 0,769 0,605 0,465 3,50 0,18 

0,96 0,777 0,601 0,467 3,50 0,15 

0,97 0,785 0,597 0,468 3,50 0,11 

0,98 0,793 0,592 0,470 3,50 0,07 

0,99 0,801 0,588 0,471 3,50 0,04 

1,00 0,810 0,584 0,473 3,50 0,00 

1,01 0,818 0,580 0,474 3,50 -0,04 

1,02 0,826 0,576 0,476 3,50 -0,07 
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Table 4.1-3 (end) 

 

1,03 0,834 0,572 0,477 3,50 -0,10 

1,04 0,842 0,568 0,478 3,50 -0,13 

1,05 0,850 0,564 0,479 3,50 -0,17 

1,06 0,858 0,560 0,480 3,50 -0,20 

1,07 0,866 0,555 0,481 3,50 -0,23 

1,08 0,874 0,550 0,481 3,50 -0,26 

1,09 0,882 0,546 0,482 3,50 -0,29 

1,10 0,890 0,543 0,483 3,50 -0,32 

1,11 0,899 0,538 0,484 3,50 -0,35 

1,12 0,907 0,534 0,484 3,50 -0,38 

1,13 0,915 0,530 0,485 3,50 -0,40 

1,14 0,923 0,525 0,485 3,50 -0,43 

1,15 0,931 0,522 0,486 3,50 -0,46 

 

Table 4.1-3 gives values of  ,xξ
d

 η and ω for singly reinforced beams 

sections as a function mα . In this case following procedure can be utilized: 

1. Calculate 
  2

.Ed
m

cd

M
α

f b d
  

2. Choose coefficients ξ, η and ω from Table 4.1-3 as a function of αm. 

3. Check on steel yielding:  

           3.1. If m m,limα α  or  limξ ξ  – steel yields before concrete crushes and 

singly reinforced section will suffice. 

Hence, 
 

.Ed
st

yd

M
A

f η d
          

           3.2. If m m,limα α  or  limξ ξ  – design doubly reinforced section in 

accordance with 4.1.1.3.1 (2) (compression reinforcement must be supplied), or 

increase effective depth of the section, d, or increase strength class of the concrete. 

Checking of the bending capacity (for a given input data). 

1. Calculate 



  

st yd

c cd

A f
x

ω f b d
 and  .

x
ξ

d
  

2. Table 4.1.3 gives values of αm, η as a function of ξ. 

3. Check the steel yielding:  

3.1. If  limξ ξ or m m,limα α  – steel yields before concrete crushes, and:  

    2,Rd m cdM α f b d  or     .Rd st ydM A f η d   

3.2. If  limξ ξ  or m m,limα α  – concrete crushes before steel yields, m m,limα α :    

     2

, , .Rd Rd lim m lim cdM M α f b d  

4. Check ULS/STR conditions:  .Ed RdM M  

(2) Doubly reinforced rectangular cross-section. Basic equations 

If the moment applied to the cross-section is such that the limiting value 


 ,

lim
lim

m lim

x
ξ

d α
 is exceeded when it is attempted to design the section as singly 

reinforced, then compression reinforcement must be supplied in order to resist the 

excess moment. 
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Doubly reinforced cross-section is given in Figure 4.1-10. The applied moment 

on the section EdM  is resisted in part by the limiting moment ,Rd limM  determined 

from  the maximum allowed value of ξ and the remainder by the couple introduced 

by the forces in the compression reinforcement (and the additional equal force in 

the tension reinforcement). 

 

 
a) – cross-section; b) – strain diagram; c) – stress block; d) – internal forces 

Figure 4.1-10 – Doubly reinforced cross-section 

 

Equilibrium of axial forces and moments gives (see Figure 4.1-10): 

 

    ;Rd cc sc sM F z F z     (4.1-49) 

 

  ,st cc scF F F             (4.1-50) 

 

where: ccF  is the resultant compressive force resisted by concrete; 

            scF  is the resultant force in the compression reinforcement; 

            stF  is the resultant tensile force in steel reinforcement; 

            z is the lever arm of internal forces;  

           sz  is the lever arm as a distance between the centroid of the tension and 

compression reinforcement. 

Ultimate moment of resistance respect to tension steel reinforcement is given 

by: 

 

       .Rd c cd sc sM ω f b x z F z           (4.1-51) 

 

Taking in account, that    
2

1
x d z

k
;  sc sc scF σ A  and   1sz d c ,      

Equation (4.1-51)  can be rewritten as follows: 
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              1

2

1
.Rd c cd sc scM ω f b d z z σ A d c

k
             (4.1-52) 

 

Defining  zη
d

  and 0
2

cωC
k

, Equation (4.1-52) can be rewritten as follows: 

 

    
 

  

12

2

0

,Rd sc sc

cd

M σ A d c
η η

C f b d
            (4.1-53) 

 

where: scσ  is the stress in compression reinforcement in general case  2sc s ydσ k f              

( 2 1,sk  if sc syε ε  and 2 ,sc
s

sy

ε
k

ε
 if sc syε ε ).  

Equation (4.1-53) can be rewritten as follows (with RdM  replaced by EdM ): 

 

  2

0

0,mαη η
C

          (4.1-54) 

 

where: 
     


 

2 1

2
.

Ed s yd sc

m

cd

M k f A d d
α

f b d
 

Solving Equation (4.1-54) for η to gives: 

 

   
0

0,5 0,25 .mαz
η

d C
       (4.1-55) 

 

Limit value of the moment following of resistance (if  limx x )can be calculated 

from the following equation: 

 

              , 2 2 1 .Rd lim c cd lim lim s yd scM ω f b x d k x k f A d c  (4.1-56) 

 

Defining 
 

  
  

2,

2,

c u

lim

sy c u

ε
x d

ε ε
, Equation (4.1-56) can be rewritten as follows:  

 

         2

, 2 1 ,Rd lim cd m,lim s yd scM f b d α k f A d c   (4.1-57) 

 

or:  

 

     


 

2 1

2
.

Rd s yd sc

m,lim

cd

M k f A d c
α

f b d
      (4.1-58) 

 

(a) Determination of the required bending reinforcement 

Equation (4.1-57) can be rewritten (with RdM  replaced by EdM ): 
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         22 1 .Ed s yd sc cd m,limM k f A d c f b d α       (4.1-59) 

 

From Equation (4.1-59) compression steel area can be calculated as: 

 

 

   


  

2

2 1

.
Ed m,lim cd

sc

s yd

M α f b d
A

k f d c
         (4.1-60) 

 

The resultant compression force ccF  is given by: 

 

   
 

                  
 

0

2 2

1
1 1 .c

cc c cd cd cd

ω z
F ω f b d z f b d C f b d η

k k d
  (4.1-61) 

 

Tensile steel area can be calculated from equilibrium of axial forces: 

 

        


0 21
,

cd s yd sc

st

yd

C f b d η k f A
A

f
       (4.1-62) 

 

or defining       0 1 ,c c

x
C η ω ω ξ

d
 Equation (4.1-62) can be rewritten as follows: 

 

      


2
.

c cd s yd sc

st

yd

ω f b d ξ k f A
A

f
             (4.1-63) 

 

(b) Checking of ULS for bending. Ultimate moment of resistance  

Checking of ULS for bending is performed based on Inequality (4.1-1). In this 

case ultimate moment of resistance RdM  can be calculated using Table 4.1-3 and 

Table 4.1-4.  

 
Table 4.1-4 – Coefficients for calculation reinforcement area scA    

Range of 
strain 

distribution 

Neutral 
axis 

depth, 

ξ 

Coefficient 2sk  

Steel grade 400 Steel grade 500 

a2/d= 

=0,04 

a2/d= 

=0,08 

a2/d= 

=0,12 

a2/d= 

=0,16 

a2/d= 

=0,04 

a2/d= 

=0,08 

a2/d= 

=0,12 

a2/d= 

=0,16 

Ia 

0,04 0 -40,23 -0,47 -0,72 0 -0,19 -0,39 -0,60 

0,05 0,06 -0,18 -0,42 -0,66 0,05 -0,15 -0,35 -0,55 

0,06 0,12 -0,12 -0,36 -0,61 0,10 -0,10 -0,30 -0,51 

0,07 0,19 -0,06 -0,31 -0,55 0,16 -0,05 -0,26 -0,46 

0,08 0,25 0 -0,25 -0,50 0,21 0 -0,21 -0,42 

0,09 0,31 0,06 -0,19 -0,44 0,26 0,05 -0,16 -0,37 

0,10 0,38 0,12 -0,12 -0,38 0,32 0,10 -0,14 -0,32 

0,11 0,45 0,19 -0,06 -0,32 0,37 0,16 -0,05 -0,27 

0,12 0,51 0,26 0 -0,26 0,42 0,22 0 -0,22 

0,13 0,59 0,32 0,06 -0,20 0,49 0,27 0,05 -0,17 

0,14 0,66 0,40 0,13 -0,13 0,55 0,33 0,11 -0,11 

0,15 0,74 0,47 0,20 -0,07 0,62 0,39 0,17 -0,06 

0,16 0,81 0,54 0,27 0 0,67 0,45 0,22 0 
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Table 4.1-4 (end) 

Ib 

0,167 0,86 0,59 0,32 0,04 0,72 0,49 0,27 0,03 

0,90 0,62 0,34 0,34 0,07 0,75 0,52 0,28 0,06 

0,98 0,70 0,42 0,42 0,14 0,82 0,58 0,35 0,12 

1 0,77 0,50 0,50 0,21 0,88 0,64 0,42 0,17 

1 0,86 0,58 0,58 0,28 0,95 0,72 0,48 0,23 

1 0,94 0,64 0,64 0,36 1 0,78 0,53 0,30 

1 1 0,74 0,74 0,44 1 0,85 0,62 0,37 

1 1 0,82 0,82 0,52 1 0,93 0,68 0,43 

1 1 0,90 0,90 0,60 1 1 0,75 0,50 

1 1 0,99 0,99 0,68 1 1 0,82 0,57 

1 1 1 1 0,76 1 1 0,89 0,63 

II 

1 1 1 1 0,77 1 1 0,90 0,64 

1 1 1 1 0,81 1 1 0,93 0,67 

1 1 1 1 0,86 1 1 0,95 0,71 

1 1 1 1 0,90 1 1 0,98 0,75 

1 1 1 1 0,93 1 1 1 0,78 

1 1 1 1 0,97 1 1 1 0,81 

1 1 1 1 1 1 1 1 0,83 

1 1 1 1 1 1 1 1 0,86 

1 1 1 1 1 1 1 1 0,88 

1 1 1 1 1 1 1 1 0,90 

1 1 1 1 1 1 1 1 0,93 

1 1 1 1 1 1 1 1 0,95 

1 1 1 1 1 1 1 1 0,97 

1 1 1 1 1 1 1 1 0,98 

1 1 1 1 1 1 1 1 1 

Note. In table signs with «+» – compression. 

 

For given section and areas of steel reinforcement stA , scA  relative depth of 

neutral axis can be calculated from equilibrium of axial forces: 

 

   
 

  

2
.

st yd sc s yd

c cd

A f A k fx
ξ

d ω f b d
           (4.1-64) 

 

Table 4.1-3 gives values of η and αm as a function ξ and Table 4.1-4 gives value 

of 2sk  as a function of ξ too. 

Ultimate moment of resistance EdM  is given by:  

 

          2

2 1 .Rd m cd s yd scM α α f b d k f A d c         (4.1-65) 

 

4.1.1.3.2 Flanged cross-section  

Flanged cross-section beams occur where it is necessary to deepen a cross-

section in order to carry the reaction  from one or two spanning slabs and any 

additional loads from cladding or permanent partions. Such beams are cast as a 

part of the slab system, and the flexural resistance is calculated with an allowance 

of part of the slab acting integrally with the beam. For one way spanning slabs half 

of total loading from the slab is taken by each beam and slab system. For two 
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spanning slab the load is determined on the basis of a 45° dispersion or where the 

Hillerborg strip. 

For singly reinforced flanged cross-section it is necessary to consider two 

conditions (two cases must be considered, see Figure 4.1-11): 

a) If,  fx h  or    ,
fhx

ξ β
d d

 then the neutral axis is in the flange, and 

b) If,  fx h  or    ,
fhx

ξ β
d d

  then the neutral axis is in the web. 

 

 
a) – neutral axis is in the flange fx h ; b) – neutral axis is in the web fx h  

Figure 4.1-11 – Flanged cross-section 

 

For case (a) the design follows the calculations for rectangular cross-sections 

with the width of the section taken as the effective width of the flange  effb b  

(determination of effective width effb , see Chapter 2). This is because the non-

rectangular cross-section below the neutral axis is in tension and is, therefore, 

considered to be cracked and inactive (according in assumption, the tensile strength 

of concrete is ignored). If x is less than the flange thickness ( fh ), the stress block 

does lie within the flange as assumed and the area of reinforcement is given by the 

following expression: 

 


 

.Ed
st

yd

M
A

f η d
               (4.1-66) 

 

For case (b) general solution can be obtained by assuming two superimposed 

sections ① and ②, as it shown in Figure 4.1-12. In accordance with the stress 

block given for the section ① a compressive zone is situated in the flange ( eff wb b ) 

only, and for the section ② it is in the web (see Figure 4.1-13).    
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Figure 4.1-12 – Flanged cross-section. Dividing on the two superimposed sections ① and ② 

 

 
Figure 4.1-13 – Flanged cross-section. Stress blocks in concrete 

 

For section 1 from the proportions of the strain distribution diagram follows: 
If,   0 0,259,ξ  (strain ranges 1a, 1b), then  

 

 
   


,

,

, [‰].
f f

f s R

f s R

x h x hd x
ε ε

ε ε d x
               (4.1-67) 

 
If,   0,259,ξ  (strain range 2 or 3), then 

 

 
   2,

2,

, [‰].
f f

f c u

f c u

x h x hx
ε ε

ε ε x
          (4.1-68) 

 

Defining 
x

ξ
d

and 
fh

β
d

, following design conditions can be written: 

If,   0 0,259,ξ (strain ranges 1a, 1b), then: 

 

  
1 5

.
6 6

ξ β                     (4.1-69) 

 
If,   0,259,ξ  ( strain range 2 or 3 ), then: 
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 
7

.
3

ξ β                    (4.1-70) 

 

In general case, for section 1 equilibrium conditions of axial forces and 

moments about the neutral axis (stress block A and B, see Figure 4.1-13) can be 

written as: 

 

 1 1, 1, ,c c A c BF F F               (4.1-71) 

 

   ,1 1, 1, 1, 1, .Rd c A c A c B c BM F z F z             (4.1-72) 

 

For rectangular-parabolic stress block the resultant compressive force in 

concrete (see Figure 4.1-13) is expressed as follows:  

 

 
   

        
                             
 1

,2 ,20 0

1 1 1 1 .
f

n nx hx

c c

c eff w cd

c c

ε y ε y
F b b f dy dy

ε ε
    (4.1-73) 

 

For strength classes of the concrete from C16/20 to C50/60, 

(  2,n 2 2,0 ‰cε ), Equation (4.1-73) can be rewritten as follows: 

 

   
  

 
      

          
    
    
 

2 2

1

0 0

,
4 4

fx hx
c c

c eff w cd c c

ε y ε y
F b b f ε y dy ε y dy    (4.1-74) 

 

and, after integration can be written: 

 

      1 ,c T eff w cdF ω β d b b f              (4.1-75) 

 

where: ωT is the dimensionless coefficient in accordance with Table 4.1-5.          

Table 4.1-5 gives value of Tω  for singly reinforced section as a function β and ξ. 

 
Table 4.1-5 – Values of the Tω  coefficient  

Range of 

strain 

distribution 

Neutral 

axis 

depth, ξ 

Coefficient Tω   

β=0,08 β=0,10 β=0,12 β=0,14 β=0,16 β=0,18 β=0,20 

Ia 

0,08 – – – – – – – 

0,09 0,037 – – – – – – 

0,10 0,043 – – – – – – 

0,11 0,049 0,054 – – – – – 

0,12 0,055 0,061 – – – – – 

0,13 0,060 0,068 0,073 – – – – 

0,14 0,065 0,074 0,081 – – – – 

0,15 0,068 0,080 0,088 0,093 – – – 

0,16 0,072 0,085 0,095 0,102 – – – 

0,167 0,073 0,088 0,099 0,107 0,111 – – 
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Table 4.1-5 (end) 

Ib 

0,17 0,075 0,090 0,101 0,110 0,115 – – 

0,18 0,076 0,093 0,106 0,116 0,123 – – 

0,19 0,078 0,095 0,110 0,122 0,131 0,136 – 

0,20 0,079 0,098 0,114 0,127 0,138 0,145 – 

0,21 0,079 0,098 0,116 0,131 0,143 0,152 0,157 

0,22 0,080 0,099 0,118 0,134 0,148 0,159 0,166 

0,23 0,080 0,100 0,119 0,137 0,152 0,165 0,174 

0,24 0,080 0,100 0,119 0,138 0,154 0,168 0,179 

0,25  0,100 0,120 0,139 0,157 0,172 0,185 

II 

0,26   0,120 0,139 0,158 0,175 0,189 

0,27   0,120 0,140 0,159 0,177 0,192 

0,28   0,120 0,140 0,160 0,178 0,194 

0,29    0,140 0,160 0,178 0,195 

0,30    0,140 0,160 0,179 0,196 

0,31    0,140 0,160 0,179 0,197 

0,32    0,140 0,160 0,179 0,197 

0,33    0,140 0,160 0,179 0,198 

0,34     0,160 0,179 0,198 

0,35     0,160 0,180 0,199 

0,36     0,160 0,180 0,199 

0,37     0,160 0,180 0,200 

0,38     0,160 0,180 0,200 

0,39      0,180 0,200 

0,40      0,180 0,200 

0,41      0,180 0,200 

0,42      0,180 0,200 

0,43       0,200 

0,44       0,200 

0,45       0,200 

0,46       0,200 

0,47       0,200 

 

The lever arm,  1, 1,c A c Bz z  is given by: 

 

   1, ,0 .c A Az z d x     (4.1-76) 

 

   1, ,0 .c B Bz z d x     (4.1-77) 

 

Moment of resistance ,1RdM  (for section 1) is given by: 

 

      2

,1 ,Rd T eff w cdM α d b b α f          (4.1-78) 

 

where: Tα  is the dimension less coefficient according to Table 4.1-6. Table 4.1-6 

gives value of Tα  as a function β and ξ. 
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Table 4.1-6 – Values of the 
Tα  coefficient 

Range of 

strain 

distribution 

Neutral 

axis 

depth, ξ 

Coefficient 
Tα  

β=0,08 β=0,10 β=0,12 β=0,14 β=0,16 β=0,18 β=0,20 

Ia 

0,08 – – – – – – – 

0,09 0,036 – – – – – – 

0,10 0,042 – – – – – – 

0,11 0,048 0,052 – – – – – 

0,12 0,053 0,059 – – – – – 

0,13 0,058 0,066 0,070 – – – – 

0,14 0,062 0,071 0,077 – – – – 

0,15 0,066 0,076 0,084 0,088 – – – 

0,16 0,069 0,081 0,090 0,096 – – – 

0,167 0,071 0,084 0,094 0,101 – – – 

Ib 

0,17 0,072 0,085 0,095 0,103 0,107 – – 

0,18 0,074 0,089 0,100 0,109 0,115 – – 

0,19 0,075 0,091 0,104 0,114 0,122 0,126 – 

0,20 0,076 0,092 0,107 0,118 0,127 0,133 – 

0,21 0,076 0,093 0,109 0,122 0,132 0,140 0,144 

0,22 0,077 0,094 0,111 0,125 0,137 0,145 0,151 

0,23 0,077 0,095 0,112 0,127 0,140 0,150 0,158 

0,24 0,077 0,095 0,113 0,129 0,143 0,155 0,163 

0,25  0,095 0,113 0,129 0,144 0,157 0,167 

II 

0,26   0,113 0,130 0,146 0,159 0,171 

0,27   0,113 0,130 0,146 0,161 0,173 

0,28   0,113 0,130 0,147 0,162 0,174 

0,29    0,130 0,147 0,162 0,175 

0,30    0,130 0,147 0,163 0,176 

0,31    0,130 0,147 0,163 0,177 

0,32    0,130 0,147 0,163 0,178 

0,33    0,130 0,147 0,163 0,178 

0,34     0,147 0,163 0,178 

0,35     0,147 0,163 0,179 

0,36     0,147 0,163 0,179 

0,37     0,147 0,163 0,179 

0,38     0,147 0,163 0,180 

0,39      0,163 0,180 

0,40      0,163 0,180 

0,41      0,163 0,180 

0,42      0,163 0,180 

0,43       0,180 

0,44       0,180 

0,45       0,180 

0,46       0,180 

0,47       0,180 

 

Under consideration section ② (see Figure 4.1-13) was assumed that moment 

,2RdM , is calculated for rectangular section with  wb b . Finally, moment of 

resistance, RdM , for flanged section, can be calculated: 

 

        
 

2

,1 ,Rd T eff w m w cdM α b b α b d f       4.1-79) 

 

or: 

 



133 

 

        
 

2

,1 .Rd cd T eff w m wM f α b b α b d              (4.1-80) 

 

4.1.1.4 Rectangular compressive stress block in concrete  

In accordance with EN 1992 [N3], the rectangular stress block, as shown in 

Figure 3.1-11, may be used in preference to the more rigorous rectangular-parabolic 

stress block. This simplified stress distribution will facilitate the analysis and 

provide more manageable design equation in particular when dealing with non-

rectangular cross-sections or when undertaking hand calculations [6]. 

It can be seen from Figure 3.1-11 that in this case the stress block does not 

extend to the neutral axis of the section but has a depth  effx λ x . This will result 

in the centroid of the stress block being  /2 /2effx λ x  from the top (compressive) 

edge of the section, which is very nearly the same location as for the more precise 

rectangular-parabolic stress block (as it was shown in previous Section 4.1.1.3.1,  

2 0,416k  for rectangular-parabolic block). Also the areas of the two types of the 

stress block are approximately equal. This the moment of resistance of the cross-

section, RdM , will be similar using calculation based on either of the two stress 

blocks. 

4.1.1.4.1 Rectangular cross-section 

(1) Singly reinforced rectangular cross-section. Determination of the 

required bending reinforcement  

Bending of the section will induce a resultant force stF  in the reinforcement 

steel, and a resultant compressive force ccF  in the concrete, which act through the 

centroid of the effective area of concrete in compression, as it is shown in          

Figure 4.1-14. 

 

 
a) – cross-section; b) – strain diagram; c) – stress block; d) – internal forces  

Figure 4.1-14 – Singly reinforced cross-section with rectangular stress block  
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For equilibrium, the ultimate design moment, EdM , must be balanced by the 

moment of the resistance of the section RdM , so that: 

 

     ,Ed Rd cc stM M F z F z            (4.1-81) 

 

where: z is the lever arm between the resultant forces ccF  and stF ; 

 ccF  is the resultant compressive force, that is given by the following 

expression:  

 

       0,8 ,cc cd cdF f b λ x f b x             (4.1-82) 

and: 

 
      0,5 0,4 .z d λ x d x          (4.1-83) 

 

Substituting Equation (4.1-82) and Equation (4.1-83) into Equation (4.1-81): 

 

         0,5 ,Ed Rd cdM M f b λ x d λ x        (4.1-84) 

 

and, replacing λ·x from Equation (4.1-83) gives: 

 

 
        

 

2 1 2.Ed Rd cd

z z
M M f b d

d d
          (4.1-85) 

 

Defining 
z

η
d

  and    2/m Ed cdα M f b d , Equation (4.1-85) can be rewritten as 

follows: 

 

    2 1 .mα η η                  (4.1-86) 

 

From Equation (4.1-86) it follows that: 

 

    0,5 0,25 0,5 ,m
z

η α
d

                 (4.1-87) 

 

or rewritten in another way: 

 

     0,5 1 1 2 .m

z
η α

d
             (4.1-88) 

 

This Equation (4.1-88) is valid under the assumption that reinforcing steel 

yields before the concrete crushes. As it was shown in Section 4.1.1.1, at ultimate 

state (ULS/STR) it is important that member sections in flexure should be ductile 
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and that failure should occur with the gradual yielding of the tension steel and not 

by a sudden catastrophic failure of the concrete.  

Hence, to ensure yielding of the tension steel at the ultimate limit state (ULS): 

 

   ,lim
lim

xx
ξ ξ

d d
                         (4.1-89) 

 

or: 

 

 ,m m,limα α                      (4.1-90) 

 

where: 

 

 


  




,3 ,3

,3
,3

,
cu culim

lim
ydcu sy

cu

s

ε d εx
ξ

fd ε ε
ε

E

     (4.1-91) 

 

and:  

 

     0,8 1 0,4 .m,lim lim limα ξ ξ                     (4.1-92) 

     

For steel with  500ykf  N/mm2 the yield strain is  2 17‰,syε . Inserting 

these values for ,3 ‰3,5cuε  and syε  into Equation (4.1-91): 

 

  


3,5
0,617.

3,5 2,17
lim

lim

x
ξ

d
        (4.1-93) 

 

      0,8 0,617 1 0,4 0,617 0,372.m,limα        (4.1-94) 

 

From the other hand, EN1992 [N3] (clause 5.6.3) limits the depth of the neutral 

axis to 0,45·d for concrete strength classes less than or equal to C50/60 (and 0,35·d 

for concrete classes C55/67 and greater) in order to provide a ductility (possibility to 

moment redistribution) i.e. under reinforced section, 

Thus:   0,45,lim
lim

x
ξ

d
 and  0,295.m,limα  

Area of tensile reinforcement steel ( stA ) can be calculated from               

Equation (4.1-81): 

 

      .Ed Rd st st ydM M F z A f z                 (4.1-95) 

 
Defining  z η d , Equation (4.1-95) can be rewritten as follows: 

 

    .Ed st ydM A f η d      (4.1-96) 
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And area of tensile reinforcement is expressed from Equation (4.1-96) as 

follows: 

 


 

.Ed
st

yd

M
A

f η d
               (4.1-97) 

 

Equation (4.1-97) can be used to calculate the area of tension reinforcement 

provided that the design ultimate moment, Ed RdM M . 

(2) Doubly reinforced rectangular cross-section  

For equilibrium of the section in Fugure 4.1-15: 

 

  ,st sc ccF F F               (4.1-98) 

 

and taking moment about the centroid of the tension steel reinforcement: 

 

         ,Ed Rd cd sc yd sM M f b λ x z A f z         (4.1-99) 

 

                20,5 .Ed Rd cd sc ydM M f b λ x d λ x A f d d  (4.1-100) 

 

 

a) – cross-section; b) – strain diagram; c) – stress block; d) – internal forces 

Figure 4.1-15 – Doubly reinforced cross-section with rectangular stress block  

 

If the design ultimate moment EdM  is greater than the ultimate limit moment of 

resistance ,Rd limM , i.e  ,Ed Rd limM M  (or  ,m m limα α ) then compression reinforcement is 

required. 

Provided that: 2 0,38,
d

x
 i.e. compressive steel yield (where: 2d  – is the depth 

of the compression steel from the must compression face), and:  
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
 .
0,4

d z
x          (4.1-101) 

 

The area of compression reinforcement scA  is given by: 

 

 




 

,

2

.
Ed Rd lim

sc

yd

M M
A

f d d
            (4.1-102) 

 

And the area of tension reinforcement stA  is given by: 

 

 
 

,
,

Rd lim

st sc

yd

M
A A

f η d
         (4.1-103) 

 

where:       ,0,5 1 1 2 ;m lim

z
η α

d
  

           ,m limα  – is calculated in accordance with Equation (4.1-92); 

           ,Rd limM  – limit moment of resistance, that is given by: 

 

       2 2

, , 0,372 .Rd lim m lim cd cdM α f b d f b d           (4.1-104) 

 

Equation (4.1-102) and Equation (4.1-103) have been derived using the 

rectangular stress block shown in Figure 4.1-15. This is similar to that used to 

derive equations for the design of singly reinforced cross-sections, except for the 

additional force due to the steel in the compression face. 

The values of the coefficients η, ξ and ,m limα  which are used for calculating of 

the sections in bending can be obtained from Table 4.1-7 as a function of the mα . 

 

Table 4.1-7 – Coefficients for sections design, based on rectangular stress block  

ξ η αm ξ η αm 

0,02 0,990 0,020 0,33 0,835 0,275 

0,03 0,985 0,030 0,34 0,830 0,282 

0,04 0,980 0,039 0,35 0,825 0,289 

0,05 0,975 0,048 0,36 0,820 0,295 

0,06 0,970 0,058 0,37 0,815 0,301 

0,07 0,965 0,067 0,38 0,810 0,309 

0,08 0,960 0,077 0,39 0,805 0,314 

0,09 0,955 0,085 0,40 0,800 0,320 

0,10 0,950 0,095 0,41 0,795 0,326 

0,11 0,945 0,104 0,42 0,790 0,332 

0,12 0,940 0,113 0,43 0,785 0,337 

0,13 0,935 0,121 0,44 0,780 0,343 

0,14 0,930 0,130 0,45 0,775 0,349 

0,15 0,925 0,139 0,46 0,770 0,354 

0,16 0,920 0,147 0,47 0,765 0,359 

0,17 0,915 0,155 0,48 0,760 0,365 

0,18 0,910 0,164 0,49 0,755 0,370 
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Table 4.1-7 (end) 

0,19 0,905 0,172 0,50 0,750 0,375 

0,20 0,900 0,180 0,51 0,745 0,380 

0,21 0,895 0,188 0,52 0,740 0,385 

0,22 0,890 0,196 0,53 0,735 0,390 

0,23 0,885 0,203 0,54 0,730 0,394 

0,24 0,880 0,211 0,55 0,725 0,400 

0,25 0,875 0,219 0,56 0,720 0,403 

0,26 0,870 0,226 0,57 0,715 0,408 

0,27 0,865 0,233 0,58 0,710 0,412 

0,28 0,860 0,241 0,59 0,705 0,416 

0,29 0,855 0,248 0,60 0,700 0,420 

0,30 0,850 0,255 0,61 0,695 0,424 

0,31 0,845 0,262 0,62 0,690 0,428 

0,32 0,840 0,269 0,63 0,685 0,432 

 

4.1.1.4.2 Flanged cross-section  

For the singly reinforced cross-sections it is necessary to consider two 

conditions: 

1) The stress block lies within the compressive flange; 

2) The stress block extends below the flange. 

 

(1) Flanged cross-section – the depth of stress block  fλ x < h                  

(see Figure 4.1-16) 

 

(a) Required area of reinforcement 

For this depth of stress block, the beam flanged cross-section can be 

considered as an equivalent rectangular cross-section of width be equal to the 

flange width,  fb b . This is because of the non-rectangular part of the section 

below the neutral axis is in tension and it is, therefore, considered to be cracked 

and inactive. 

 

 
Figure 4.1-16 – Flanged cross-section – rectangular stress block within the flange             

(case:  fλ x < h ) 
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Thus, 
 

,
Ed

m eff

cd f

M
α

f b d
 can be calculated and the lever arm η, depth of the 

neutral axis ξ is determined from Table 4.1-7. As it was shown, relation between the 
lever arm  z η d  and the depth x of the neutral axis (see Figure 4.1-16) is given by: 

 


  ,

2

λ x
z d       (4.1-105) 

 

or: 

 

                2 2 2 1 ,λ x d z d η d d η     (4.1-106) 

 

and: 

 

   
2
1 ,

x
ξ η

d λ
        (4.1-107) 

 

If 


eff

λ x
ξ

d
 is less than the flange relative thickness  ,

fh
β

d
the stress block 

does lie within the flange as it was assumed and it is necessary to check on the 

following conditions:  .eff limξ ξ  If this condition is satisfied, than the area of tensile 

reinforcement stA  is given by:   

 


 

,Ed
st

yd

M
A

f η d
        (4.1-108) 

 

If  ,eff lim,effξ ξ  than doubly reinforced cross-section should be designed. If 


  ,eff

λ x
ξ β

d
 then the depth of the stress block extends below the flange and 

design procedure according in section 4.1.1.4.1 should be utilized.  

 

(b) Checking of ULS for bending 

For the cross section equilibrium (see Figure 4.1-16): 

 

 .cc stF F               (4.1-109) 

 

Therefore: 

 

     ,cd f yd stf λ x b f A     (4.1-110) 

 

and solving for the depth of the stress block: 
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


 
.

yd st

cd f

f A
x

f λ b
            (4.1-111) 

 

If  ,fx h  the stress block lies within the flange and with this depth of neutral 

axis, the steel reinforcement stA  will have yielded as it was assumed. Lever arm is 

equal to:  

 


  .

2

λ x
z d                  (4.1-112) 

 

Taking moments about the centroid of the reinforcement stA , the moment of 

resistance is calculated as follows: 

 

        .Rd cc cd fM F z η f λ x b z        (4.1-113) 

 

The ultimate limit state (ULS) criterion should be satisfied: 

 

 ,Rd EdM M      (4.1-114) 

 

otherwise → in the flanged cross-section the depth of the stress block extents 

below the flange,   .fλ x h  

 

(2) Flanged cross-section – the depth of stress block  fλ x > h               

(see Figure 4.1-17) 

 

(a) Required area of reinforcement 

As it was shown, for design of the flanged cross-section, the procedure 

described in previous section, will check if the depth of the stress block extends 

below the flange. As an alternative procedure, proposed in [6], is to calculate the 

moment of resistance RdM  of the cross section with   ,fλ x h  the depth of the 

flange. Hence, if the design moment EdM  is such that: 

 

 ,Ed RdM M                    (4.1-115) 

 

then, the stress block must be extended below the flange, and   .fλ x h  

In this case the design can be carried out either: 

(1) using an exact method to determine the depth of the neutral axis, as it 

was shown in Section 4.1.1.4.2. 
(2) designing for the conservative condition of  0,45 ,x d  which is the 

maximum value for x for singly reinforced section and concrete classes less than    

C50/60 in accordance with EN 1992 [N3]. 
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Figure 4.1-17 – Flanged cross-section – the depth of the stress block extends below the flange  

(case:  fλ x > h )  

 

In case of the rectangular stress block, solution can be the most easily 

achieved by considering the base stress block to be made up of two parts (subblock 

1 and subblock 2) as it is shown in Figure 4.1-17. 

It will be assumed that the neutral axis is large enough for the whole flange to 

be at a stress cdf .  

Hence, by equilibrium (see Figure 4.1-17): 

 

    ,2 / ,st f w f cd ydA b b h f f         (4.1-116) 

 

and: 

 

 
    

 
,2 ,2 .

2

f

Rd st yd

h
M A f d       (4.1-117) 

 

The steel area required for the rectangular web ,1stA  can now be obtained by 

using Table 4.1-3 to assess the reinforcement area needed for the rectangular 

section of the width wb  to support a moment  ,1 ,2.Rd Ed RdM M M  Although very 

unlikely to be exceeded, the limiting (balanced) moment for flange section, where 

  /lim lim
ξ x d  exceed  /fβ h d  is given by: 

 

 
       

 
, , 1 .

2
Rd lim Rd lim, f cd f

η
M M b η f h d   (4.1-118) 

 

The procedure for the design of flanged section is summarized as follows: 

1. Calculate 
  2

Ed
m

f cd

M
α

b d η f
. 

2. Follow Table 4.1-7 to obtain values of the ω, η, ξ. 

3. If   / ,fξ β h d  calculate Ast as for the rectangular cross section with 

the width  .fb b  

           If  ,ξ β  then: 

  calculate ,2stA  and ,2RdM  in accordance with Equation (4.1-116) and     

Equation (4.1-117). 



142 

 

  calculate   1 ,2Δ .Rd, Ed RdM M M M   

4. Use the provisions from Section 4.1.1.3.1 to calculate steel 

reinforcement area ,1stA  for the moment  ,1Δ RdM M  (rectangular cross-section of 

width wb  to resist the moment ,1RdM ). 

5. Calculate area of the tensile steel reinforcement  ,1 ,2.st st stA A A  

 

(b) Checking of ULS for bending 

In case, when   fλ x h  
 

  
 

f

eff

h
ξ β

d
 the following design procedure should 

be used to obtain the moment of resistance of the flanged cross-section. As it is 

shown in Figure 4.1-17, the resultant of compressive force ,2ccF , developed in 

concrete and acting through the centroid of the stress subblock 2 is equal:  

 

             ,2 ,cc f w cd f w f cdF b b β d η f b b h η f     (4.1-119) 

 

and resultant of compressive force ,1ccF  acting throughout the centroid of the stress 

subblock (subblock 1, Figure 4.1-17):  

 

    ,1 .cc eff w cdF ξ d b η f       (4.1-120) 

 

Applying the principle of superposition to stress subblock 1 and subblock 2 

(see Figure 4.1-17), the equilibrium of longitudinal forces can be written as: 

 

  ,1 ,2 0,cc cc stF F F     (4.1-121) 

 

and taking into account moments about the centroid of reinforcement stA , the 

moment of resistance RdM  can be written as follows:  

 

   ,1 1 ,2 2,Rd cc c cc cM F z F z                (4.1-122) 

 

or: 

 

                    
 

21 0,5 1 0,5 .Rd f w eff eff w cdM β β b b ξ ξ b η f d   (4.1-123) 

 

Further, Criterion (4.1-1) of the Ultimate Limit States (ULS/STR) should be 

checked. 

In case, when  ,eff eff ,limξ ξ  section should be designed in accordance with the 

provisions, that were formulated for the tension failure mode, otherwise – cross-

section should be designed as a flanged cross-section with double reinforcement 

(doubly reinforced flanged section). 
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4.1.2 BENDING WITH AXIAL LOAD 

As it is shown in [13], reinforced concrete elements (for example, short 

columns) under the axial load with uniaxial bending behave in different manner 

than when it is subjected to the axial load, though the column subjected to axial 

load can also carry some moment that may appear during construction or 

otherwise. 

4.1.2.1 Behaviour of short column under the axial load and 
uniaxial moment  

As it is shown in [13], depending on position of the neutral axial, the column 

(compressed element) may or may not have tensile stress to be taken by 

longitudinal reinforcement. In the compression region, however, longitudinal steel 

reinforcement will carry the compression force along with the concrete as in case of 

axially loaded column (member). 

The position of the neutral axis and eccentricities of the axial force EdN  are 

widely varying as follows (see Figure 4.1-18): 

1)       for the strain profile EF, the depth of neutral axis x is infinity and 

the eccentricity of the load is zero (point ①); 

2) for the strain profile LM (point ②), the depth of the neutral axis is 

outside the section ( x h ), with an appropriate eccentricity having compressive 

strain in the section; 

3) for the strain profile IH (point ③), the depth of the neutral axis is just at 

the left edge of the section ( x h ), with an appropriate eccentricity, having zero and 

εcu,2=3,5 ‰ compressive strain at the left and right edges of the section respectively;   

4) for the strain profile IN (point ④), the depth of the neutral axis is within 

the section ( x h ), with an appropriate eccentricity, having tensile strains of the left 

of the neutral axis and ,2 ‰3,5cuε  compressive strain at the right edge. 

As it is shown in [13], it is evident that gradual increase of the eccentricity of 

the load EdN  from zero is changing the strain profiles (strain distributions across 

the section height) from EF to LM, IH and then to IN (point ④) (see Figure 4.1-18). 

Therefore, we can accept that if we increase the eccentricity of the load to infinity, 

there will be only RdM  acting on the column (compressed RC-element). 

Designing by ,Rd uN  as the load causes collapse of the column when acting alone 

and ,Rd uM  as the moment that also causes collapse when acting alone, mark them 

in Figure 4.1-19 in vertical and horizontal axis respectively. 

These two points are extreme points of the diagram of « RdN – RdM » (see        

Figure 4.1-19), any point on which of ,Rd iM  and ,Rd iN  (of different magnitudes) that 

will cause collapse of the same element having the neutral axis either outside or 

within the member cross-section. 
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a) – cross-section; b) – strains profile 

Figure 4.1-18 – Cross-section and strains profile for short compressed member  

under the axial load with bending moment 
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Figure 4.1-19 – Typical interaction diagram 

 

The plot of « RdN – RdM » on Figure 4.1-19 is designated as interaction diagram 

since any points on the diagram give a pair of values of ,Rd iN  and ,Rd iM  causing 

collapse of the same compressed element in an interactive manner.      

4.1.2.2 Rectangular-parabolic stress block in concrete 

4.1.2.2.1 Modes of failure of columns and the basic equations formulation 

In according with [6, 13], two distinct categories of the location of the neutral 

axis clearly indicate the following types of failure modes:  

– compression failure, when the neutral axis is outside the cross-section, 

causing compression throughout the section, and 

– tension failure, when the neutral axis is within the cross-section developing 

tensile strain on the left of the neutral axis. 

Balanced failure mode. Before taking up these two failure modes, let us 

discuss about the third model of failure, i.e. the balanced failure. Under this 

model of failure, yielding of outer most row of longitudinal steel reinforcement near 

the tensile fiber of the cross section occurs simultaneously with the attainment of 

the maximum compressive strain of ,2 ‰3,5cuε  in concrete at the compressive 

edge of the cross-section. As a result, yielding of longitudinal steel reinforcement at 

the outermost row near tensile edge and crushing of concrete at the opposite edge of 

the cross-section occurs simultaneously. Such a strain profile (strain distribution) is 
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known as «balanced» strain profile which is shown by the strain profile IQ in Figure 

4.1-18 and point ⑤ (see Figure 4.1-19). 

The depth of the neutral axis is designated as  3,5‰limx  and it is shown in         

Figure 4.1-18. The balanced strain profile IQ (point ⑤) (see Figure 4.1-18) also 

shows the strain st syε ε , whose numerical value would change depending on the 

grade of steel reinforcement.  

It is important to observe that this balanced profile IQ does not pass through 

the fulcrum point V in Figure 4.1-18, while other points ①, ②, ③, i.e. profiles EF, 

LM, IH-lines pass through the fulcrum point V as none of them produce tensile 

strain anywhere in the cross section of the element. 

To have the balanced strain profile IQ (see Figure 4.1-18) caused balanced 

failure of the structural element, the required load and moment are designated as 

Rd,limN  and Rd,limM  respectively are shown in Figure 4.1-19, as the coordinates of 

point ⑤.  

The corresponding eccentricity of the load (force) Ed,limN  is defined by the 

notation  .
Rd,lim

tot ,lim

Rd,lim

M
e

N
 The four parameters of the balanced failure are, therefore, 

Rd,limN , Rd,limM , tot,lime  and limx  (the coefficient of the neutral axis depth limξ ). 

Compression failure mode. Compression failure of the column occurs when 

the eccentricity of the axial force EdN  is less than that of balanced eccentricity 

( tot tot ,lime e ) and the depth of the neutral axis is more than that of balanced failure 

(the limit value of the limx ,  limx x ). 

It is evident from the Figure 4.1-20, that these strain profiles may develop 

tensile strain of the left on the neutral axis depth x h . All these strain profiles 

having  limx x h  will not pass through the fulcrum point V (see Figure 4.1-20). 

On the other hand, all of the strain profiles having x greater than h pass 

through the fulcrum point V and cause compression failure (see Figure 4.1-20). 

The axial loads (forces) causing compression failure are higher than the 

balanced load Rd,limN  having respective eccentricities less than that of the load of 

balanced failure.   

The extreme strain profile is EF marked by the point with number 1 in       

Figure 4.1-20. Some of these points causing compression failure are shown in 

Figure 4.1-20 and marked as ①, ②, ③ and ④, having  limx x  (or  limξ ξ ), either 

within or outside the section. Three such strain profiles are interesting and need for 

the further elaboration. One of them is the profile IH marked by point ③ (see Figure 

4.1-20), for the which one x h . Denoting the depth of the neutral axis by h and 

eccentricity of the load for this profile by tot,he , we observe that the strain profiles LM 

and EF (see Figure 4.1-20) marked by ② and ①, have the respective x h  and 

tot tot ,he e . The second profile is EF marked by point 1 in Figure 4.1-20, is for the 

maximum capacity of the column to carry out the axial load EdN , when eccentricity 

is zero and for the which one moment EdM  is zero and the neutral axis theoretically 

is at infinity. 
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a) – cross-section; b) – strains profile; c) – compressive concrete stress block 

Figure 4.1-20 – Compression failure mode (the neutral axis is within and outside the section)  
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The third important strain profile LM, marked by point ② in Figure 4.1-20, is 

also due to the another pair of collapse internal forces EdN  and EdM , having the 

capacity to accommodate the minimum eccentricity of the load, which hardly can be 

avoided in practical construction or for the other reason. 

The load ,Ed maxN , as it is seen from the Figure 4.1-19, is less then ,Ed uN  and 

column can carry ,Ed minN  and EdM  in an interactive mode to cause collapse. Hence, 

a column having a capacity to carry the truly concentric force ,Rd uN  (when 

 0Rd,uM ), shall not be allowed in the design. 

Instead, its maximum load (force) shall be resisted up to ,Rd maxN  ( ,Rd uN ) along 

with ,Rd minM  (due to the minimum eccentricity). As it was shown in [13], accordingly 

the actual interaction diagram to be used for the purpose of the design shall 

terminate with horizontal line /2  at point 2 on the Figure 4.1-19. Point 2 on the 

interaction diagram has the capacity ,Rd maxN  with ,Rd minM  having eccentricity of mine  

(
rd,min

rd,max

M

N
) and depth of the neutral axis x h  (see Figure 4.1-19). 

It is seen that from point ① to point ⑤ (i.e. from compression failure to 

balanced failure) of interaction diagram (see Figure 4.1-19), the forces are gradually 

decreasing and the moments are correspondingly increasing. The eccentricities of 

the successive loads are also increasing and the depth of the neutral axis is 

decreasing from infinity to finite but outside and then within the section up to limx  

at balanced failure (point ⑤, see Figure 4.1-19). Moreover, this region of 

compression failure can be subdivided into two zones: 1) zone from point ① to point 

②, where eccentricity of the load is less than minimum eccentricity that should be 

considered in design, and ②) zone from point ② to point ⑤, where the eccentricity 

of the load is equal or more than the minimum that specified in EN 1992 [N3]. It 

has been mentioned also that the first zone x from point ① to point ② should be 

avoided in the design of the column. 

Figure 4.1-21 represents the stress block for a typical strain profile LM having 

neutral axis depth x outside the section ( x h , 
h

ξ
d

). The strain profile LM in 

Figure 4.1-21 shows that up to a distance 
 

 
 

3

7
h  from the right (the most 

compressed) edge (point 0A ) the compressive strain is  0,02ccε  and, therefore, the 

compressive stress shall remain constant at cdf . The remain part of the column 

cross-section of the length 
 

 
 

4

7
h , i.e. up to the left edge, has been reducing 

compressive strains (but not to zero!). The stress block is, therefore, parabolic from 

0A  to H, which becomes zero at U (outside the section).     
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a) – cross-section; b) – strains profile; c) – compressive concrete stress block 

Figure 4.1-21 – Compression failure mode (the neutral axis is outside the section, x>h)  
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In this case, the applied design force EdN  and moment EdM  must be balanced 

by the resistance force RdN  and moment of the resistance RdM  of the forces 

developed within the cross-section. In general case, equilibrium conditions can be 

written as follows (see Figure 4.1-21): 

 

    0;cc sc st EdF F F N         (4.1-124) 

 

      1 2 ,Ed s cc c scN e F z F d a             (4.1-125) 

 

where: 

 

   1 10,5 .s tote e h a        4.1-126) 

 

For linear strain distribution (see Figure 4.1-21) values of the strain can be 

expressed as follows: 

 

   
    

  
 

,1

2

0,002
.

3

7

cccc st sc
εε ε ε

x x h x d x a
x h

      (4.1-127) 

 

For the design purpose, the Ratio (4.1-127) can be rewritten as a function of 

the relative depth of the neutral axis 
x

ξ
d

 and relative height (depth) of the cross-

section hβ  (see Table 4.1-3) can be calculated as follows: 

 

   11 .h

ah
β

d d
         (4.1-128) 

 

With the usage of the dimensionless parameters ξ  and hβ  values of the strains 

can be calculated from the Ratios (4.1-127) as: 

 concrete compressive strain at the most stressed (compressed) fiber (right 

edge) of the cross-section:  

 


  

   
  
 

14
2,0 [‰];

3 7 3

7

cc

h
h

ξ ξ
ε

ξ β
ξ β

           (4.1-129) 

 

 compressive strain in steel reinforcement scA , which is situated near the most 

stressed (compressed) fiber (right edge) of the cross-section:  

 

   
 
  

214

[‰];
7 3

sc

h

a
ξ

d
ε

ξ β
       (4.1-130) 
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 compressive strain in steel reinforcement stA , which is situated near the less 

stressed (compressed) fiber (left edge) of the cross-section:  

 

  


  

14 1
[‰].

7 3
sc

h

ξ
ε

ξ β
      (4.1-131) 

 

At the state, when x h  and  hξ β , compressive strain in reinforcement stA  is 

equal to: 

 

  
 



7 1
[‰].

2

h

st

h

β
ε

β
         (4.1-132) 

 

Resultant compressive force resisted by concrete ccF  (see Figure 4.1-21) can be 

calculated based on the superposition principle applying to the resultant forces 

,1ccF , ,2ccF , ,3ccF , obtained by the division of the initial (original) stress block to the 

three subblocks: I, II and III, as it is shown in Figure 4.1-21: 

 

  ,1 ,2 ,3,cc cc cc ccF F F F              (4.1-133) 

 

where: 

 

    ,1

3
,

7
cc h cdF β b d f              (4.1-134) 

 

   
             

   
,2

2 3 2 3
,

3 7 3 7
cc cd h cdF x h b f ξ β b d f      (4.1-135) 

 
  

     
 


2

,3

0

.
4

x h
cy

cc cd cy

ε
F f b ε dy                 (4.1-136) 

 

From the linear strain distribution: 

 

 
 


  

   

2,0 2
[‰].

3 3

7 7

c

c

ε y y
ε y

y
x h x h

       (4.1-137) 

 

Figure 4.1-22 represents the stress block for a typical strain profile IN having 

neutral axis depth x h  within the section. The strain profile IN in Figure 4.1-22 

shows that from point E to point /

0A , i.e. up to distance 
 

 
 

3

7
x  from the right edge, 

the compressive strain ccε  is  2 ‰ , and, therefore, the compressive stress remain 
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constant at cdf . From /

0A  to U, i.e. for a distance 
 

 
 

4

7
x , the strain is reducing from 

1 2 ‰cε  to zero and stress in this zone is parabolic as it is shown in              

Figure 4.1-22. 

 

 
a) – cross-section; b) – strains profile; c) – compressive concrete stress block 

Figure 4.1-22 – Strain profile and stress distribution, when limx x  
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Substituting Equation (4.1-137) in Equation (4.1-136), the resultant 

compressive force ,3ccF  can be written: 

 

 
 

    
     

 
  

 

2

,3

1

2 7
,

33

7

h h

cc cd

h

ξ β ξ β

F b d f

ξ β

                (4.1-138) 

 

and after substituting Equations (4.1-134), (4.1-135), and (4.1-138) to the     

Equation (4.1-133), the resultant compressive force resisted by concrete ccF  is 

expressed as follows: 

 

 
  

     
        

       

2 1

2 3 7
.

33 14

7

h h

cc h cd

h

ξ β ξ β

F ξ β b d f

ξ β

           (4.1-139) 

 

Moment of resistance RdM , taking about the centroid of the reinforcement stA  

is calculated as: 

 

     ,1 1 ,2 2 ,3 3.Rd cc cc ccM F z F z F z      (4.1-140) 

 

The values of the internal force ccF , lever arm z and moment of the resistance 

RdM  can be obtained with the usage of the coefficients mα , ω and η from the      

Tables 4.1-3. In this case: 

– resultant compressive force in concrete: 

 

    , ;cc h cdF ω ξ β b d f                (4.1-141) 

 

– lever arm between ccF  and stF : 

 

  , ;c hz η ξ β d         (4.1-142) 

 

– moment of resistance RdM , taking about centroid of the reinforcement stA : 

 

    2, .Rd m h cdM α ξ β b d f              (4.1-143) 

 

If  limx x h  or  lim

h
ξ ξ

d
 (see Figure 4.1-22) strain in tensile reinforcement 

stε  is less, than syε : 
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  ,
yd

st sy

s

f
ε ε

E
               (4.1-144) 

 

and stress stσ  in reinforcement stA  is equal: 

 

 1 ,st s ydσ k f             4.1-145) 

 

where: 1sk  is coefficient, which is obtained as a function of the relative neutral axis 

depth: 

 

  
  1

0,0035 1
.st s

s

sy yd

ξε E
k

ε ξ f
       (4.1-146) 

 

Tension failure mode. Tension failure occurs when the eccentricity of the load 

is greater than the balanced eccentricity (  ,tot tot lime e ). The depth of the neutral axis 

is less than that of the balanced failure (  limx x  and  limξ ξ ). The longitudinal steel 

in the outermost row in the  tension zone of the cross-section yields first. 

Gradually, with increasing of the tensile strain, longitudinal steel of the inner 

row, if provided, starts yielding till the compressive strain reaches  3,5 ‰cuε  at 

the most compressed fiber (edge) of the cross section. 

The line IR in Figure 4.1-23 represents such a profile for the which some of the 

inner row of steel bars have yielded and concrete compressive strain has reached 

 3,5 ‰cuε  at the most compressed fiber of the cross-section. The depth of the 

neutral axis is designated by the ultx  or  ult
ult

x
ε

d
. 

It is interesting to note that in this region of interaction diagram (from point ⑤ 

to point ⑥, see Figure 4.1-19), both of the load (force) and the moment are found to 

decrease till point ⑥ when the column fails due to ,Rd uM  is acting alone. 

At point 6, let us to consider that the column is loaded in simple beginning to 

the point (when  ,Ed Rd uM M ) at which yielding of the steel in tension begins. 

Addition of some axial compressive force EdN  at this stage will reduce the previous 

tensile stress of steel reinforcement to the value less than its yielding strength. As a 

result, it can carry additional moment. This increasing of the moment carrying 

capacity with the increasing of the load shall continue till the combined stress in 

steel, due to the additional axial load and increased resistance moment, reaches the 

yield strength. 

For the case, when  limx x  (  limξ ξ  or  ,tot tot lime e ), design procedure is the same 

as it is in case of the pure uniaxial bending without axial force. 
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a) – cross-section; b) – strains profile; c) – compressive concrete stress block 

Figure 4.1-23 – Strain profile and stress distribution, when limx x  

 

4.1.2.2.2 Calculation of the required area of the reinforcement 

The required area of the steel reinforcement can be calculated based on the 

streamlined procedure using coefficients from Table 4.1-3. Table 4.1-3 give values of 

the depth of the neutral axis  xξ
d

, dimensionless parameters η and ω for 

reinforced concrete element as a function of mα . In this case the following procedure 

can be utilized: 
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1. Calculate:  

 


 

,1

2
,

Ed

m

cd

M
α

b d f
         (4.1-147) 

 

where: ,1EdM  is the substituted moment obtained from the following equations: 

 

     ,1 10,5 ,Ed Ed EdM M N h c       (4.1-148) 

 

or: 

 

     ,1 10,5 ,Ed Ed totM N e h c      (4.1-149) 

 

with  Ed
tot

Ed

M
e

N
. 

2. Choose the parameters ξ, η, ω from Table 4.1-3 or Table 4.1-8 a, b, c 

and value of the coefficient ,m limα  from Table 4.1-3. 

 
Table 4.1-8 a) – Coefficients for calculation of the rectangular section under compression for 

x > h , and =1,05hβ    

ξ=x/d 

Coefficients Strains, ‰ 

ω η mα  ccε  in concrete 

(compression) 
stε  in reinforcement 

(tension) 

1,06 0,857 0,559 0,479 3,475 -0,179 

1,08 0,869 0,554 0,481 3,429 -0,254 

1,10 0,880 0,550 0,482 3,385 -0,308 

1,12 0,890 0,543 0,483 3,343 -0,358 

1,14 0,899 0,538 0,484 3,304 -0,406 

1,16 0,907 0,534 0,484 3,268 -0,451 

1,18 0,915 0,530 0,485 3,233 -0,493 

1,20 0,922 0,527 0,486 3,200 -0,533 

1,25 0,938 0,520 0,487 3,125 -0,625 

1,30 0,950 0,515 0,489 3,059 -0,706 

1,35 0,961 0,510 0,490 3,000 -0,778 

1,40 0,970 0,506 0,491 2,947 -0,842 

1,45 0,978 0,503 0,492 2,900 -0,900 

1,50 0,985 0,499 0,492 2,857 -0,952 

1,55 0,990 0,498 0,493 2,818 -1,000 

1,60 0,996 0,495 0,493 2,783 -1,043 

1,65 1,000 0,494 0,494 2,750 -1,083 

1,70 1,004 0,492 0,494 2,720 -1,120 

1,75 1,007 0,491 0,494 2,692 -1,154 

1,80 1,010 0,490 0,495 2,667 -1,185 

1,85 1,013 0,489 0,495 2,643 -1,214 

1,90 1,016 0,488 0,495 2,621 -1,241 

1,95 1,018 0,487 0,496 2,600 -1,267 

2,00 1,020 0,486 0,496 2,581 -1,290 

2,10 1,024 0,484 0,496 2,545 -1,330 

2,20 1,026 0,483 0,496 2,514 -1,371 

2,30 1,029 0,482 0,497 2,486 -1,405 

2,40 1,031 0,482 0,497 2,462 -1,436 
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Table 4.1-8 a) (end)   

2,50 1,033 0,481 0,497 2,439 -1,463 

2,60 1,034 0,481 0,497 2,419 -1,488 

2,70 1,035 0,480 0,497 2,400 -1,511 

2,80 1,037 0,480 0,497 2,383 -1,532 

2,90 1,038 0,480 0,498 2,367 -1,551 

3,00 1,039 0,479 0,498 2,353 -1,569 

3,10 1,040 0,479 0,498 2,340 -1,585 

3,20 1,040 0,479 0,498 2,327 -1,600 

3,30 1,041 0,478 0,498 2,316 -1,614 

3,40 1,042 0,478 0,498 2,305 -1,627 

3,50 1,042 0,478 0,498 2,295 -1,639 

3,60 1,043 0,477 0,498 2,286 -1,651 

3,70 1,043 0,477 0,498 2,277 -1,662 

3,80 1,044 0,477 0,498 2,269 -1,672 

3,90 1,044 0,477 0,498 2,261 -1,681 

4,00 1,044 0,477 0,498 2,254 -1,690 

5,00 1,047 0,476 0,498 2,198 -1,758 

∞ 1,050 0,475 0,499 2,000 -2,000 

 
Table 4.1-8 b) – Coefficients for calculation of the rectangular section under compression for 

x > h , and =1,10hβ    

ξ=x/d 

Coefficients Strains, ‰ 

ω η mα  ccε  in concrete 

(compression) 

stε  in reinforcement 

(tension) 

1,12 0,903 0,534 0,484 3,454 -0,370 

1,14 0,915 0,530 0,484 3,410 -0,419 

1,16 0,925 0,524 0,485 3,369 -0,465 

1,18 0,935 0,520 0,486 3,331 -0,508 

1,20 0,944 0,515 0,486 3,294 -0,549 

1,25 0,963 0,506 0,487 3,211 -0,642 

1,30 0,979 0,498 0,488 3,138 -0,724 

1,35 0,993 0,492 0,489 3,073 -0,797 

1,40 1,004 0,488 0,490 3,015 -0,862 

1,45 1,014 0,483 0,490 2,964 -0,920 

1,50 1,022 0,480 0,491 2,917 -0,972 

1,55 1,029 0,477 0,491 2,874 -1,020 

1,60 1,035 0,474 0,491 2,835 -1,063 

1,65 1,040 0,473 0,492 2,800 -1,103 

1,70 1,045 0,471 0,492 2,767 -1,140 

1,75 1,049 0,496 0,492 2,737 -1,173 

1,80 1,053 0,467 0,492 2,700 -1,204 

1,85 1,056 0,467 0,493 2,684 -1,233 

1,90 1,059 0,466 0,493 2,660 -1,260 

1,95 1,062 0,464 0,493 2,638 -1,285 

2,00 1,065 0,463 0,493 2,617 -1,308 

2,10 1,069 0,461 0,493 2,579 -1,351 

2,20 1,072 0,460 0,493 2,545 -1,388 

2,30 1,075 0,460 0,494 2,516 -1,422 

2,40 1,078 0,458 0,494 2,489 -1,452 

2,50 1,080 0,457 0,494 2,465 -1,479 

2,60 1,082 0,456 0,494 2,443 -1,503 

2,70 1,083 0,456 0,494 2,423 -1,526 

2,80 1,085 0,455 0,494 2,405 -1,546 

2,90 1,086 0,455 0,494 2,388 -1,565 

3,00 1,087 0,454 0,494 2,373 -1,582 

3,10 1,088 0,454 0,494 2,359 -1,598 
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Table 4.1-8 b) (end)  

3,20 1,089 0,454 0,494 2,346 -1,613 

3,30 1,090 0,453 0,494 2,333 -1,626 

3,40 1,090 0,453 0,494 2,322 -1,639 

3,50 1,091 0,453 0,494 2,311 -1,651 

3,60 1,092 0,453 0,495 2,301 -1,662 

3,70 1,092 0,453 0,495 2,292 -1,673 

3,80 1,093 0,453 0,495 2,283 -1,682 

3,90 1,093 0,453 0,495 2,275 -1,692 

4,00 1,093 0,453 0,495 2,267 -1,700 

5,00 1,096 0,452 0,495 2,208 -1,767 

6,00 1,097 0,451 0,495 2,171 -1,809 

8,00 1,099 0,450 0,495 2,125 -1,860 

10,00 1,099 0,450 0,495 2,099 -1,889 

∞ 1,100 0,450 0,495 2,000 -2,000 

 
Table 4.1-8 c) – Coefficients for calculation of the rectangular section under compression for 

x > h , and =1,15hβ    

ξ=x/d 

Coefficients Strains, ‰ 

ω η mα  ccε  in concrete 

(compression) 
stε  in reinforcement 

(tension) 

1,16 0,937 0,519 0,486 3,478 -0,480 

1,18 0,950 0,512 0,486 3,435 -0,524 

1,20 0,961 0,506 0,486 3,394 -0,566 

1,25 0,985 0,493 0,486 3,302 -0,660 

1,30 1,005 0,485 0,487 3,221 -0,743 

1,35 1,021 0,477 0,487 3,150 -0,817 

1,40 1,035 0,470 0,487 3,087 -0,882 

1,45 1,047 0,465 0,487 3,030 -0,940 

1,50 1,057 0,462 0,488 2,979 -0,993 

1,55 1,065 0,458 0,488 2,932 -1,041 

1,60 1,073 0,455 0,488 2,890 -1,084 

1,65 1,079 0,452 0,488 2,852 -1,123 

1,70 1,085 0,450 0,488 2,817 -1,160 

1,75 1,090 0,448 0,488 2,784 -1,193 

1,80 1,095 0,446 0,488 2,754 -1,224 

1,85 1,099 0,444 0,488 2,726 -1,253 

1,90 1,101 0,443 0,488 2,701 -1,279 

1,95 1,105 0,442 0,488 2,676 -1,304 

2,00 1,108 0,440 0,488 2,654 -1,327 

2,10 1,113 0,438 0,488 2,613 -1,391 

2,20 1,118 0,436 0,488 2,577 -1,406 

2,30 1,121 0,435 0,488 2,545 -1,439 

2,40 1,124 0,434 0,488 2,517 -1,468 

2,50 1,127 0,433 0,488 2,491 -1,495 

2,60 1,129 0,432 0,488 2,468 -1,519 

2,70 1,131 0,431 0,488 2,447 -1,540 

2,80 1,132 0,431 0,488 2,427 -1,560 

2,90 1,134 0,431 0,489 2,409 -1,579 

3,00 1,135 0,431 0,489 2,393 -1,595 

3,10 1,136 0,430 0,489 2,378 -1,611 

3,20 1,137 0,430 0,489 2,364 -1,625 

3,30 1,138 0,430 0,489 2,351 -1,639 

3,40 1,139 0,429 0,489 2,339 -1,651 

3,50 1,140 0,429 0,489 2,328 -1,663 

3,60 1,140 0,429 0,489 2,317 -1,674 

3,70 1,141 0,429 0,489 2,307 -1,684 

3,80 1,141 0,429 0,489 2,298 -1,693 
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Table 4.1-8 c) (end)  

3,90 1,142 0,428 0,489 2,289 -1,702 

4,00 1,142 0,428 0,489 2,281 -1,711 

5,00 1,145 0,427 0,489 2,219 -1,775 

6,00 1,147 0,426 0,489 2,179 -1,816 

8,00 1,148 0,426 0,489 2,131 -1,865 

10,00 1,149 0,426 0,489 2,104 -1,893 

∞ 1,150 0,425 0,489 2,000 -2,000 

 

3. Check on design case – failure mode: 

3.1. If  ,m m limα α , then failure mode is tension failure mode (large 

eccentricity case) and steel yields before concrete crushing. In this case 

reinforcement scA  is not required and ,sc provA  can be taken without any calculation 

as , ,sc prov sc minA A . Taking into account area of reinforcement ,sc provA , new value of 

the coefficient mα  can be calculated as follows: 

 

     


 

,1 2, 2 2

2
,

Ed s prov s yd

m

cd

M A d a k f
α

b d f
      (4.1-150) 

 

where: 2sk  is taken from Table 4.1-4. For calculated value of mα , dimensionless 

parameters ξ, ω can be obtained from Table 4.1-3. 

Required area of the reinforcement stA  is calculated from the following 

equation: 

 

         


2

1

1
,st cd sc s yd Ed

s yd

A ω d b f A k f N
k f

       (4.1-151) 

 

where: 1 1sk  for the case of tension failure mode (case of the «large» eccentricity). 

3.2. If  ,m m limα α , then failure mode is compression failure mode (case 

of the «small» eccentricity).  

In this case value of Δ mα  is calculated as follows: 

 

  ,Δ ,m m m limα α α        (4.1-152) 

 

where: ,m limα  limit value is obtained from Table 4.1-3 as a function of limξ . 

Required area of reinforcement scA  in this case can be calculated from the 

following equation: 

 

   



2

1 2

Δ
.

1

m cd
s

s yd

α f
A d b

d k f

d

            (4.1-153) 
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If assume, that relative depth of neutral axis ξ is equal to limξ  (i.e.  limξ ξ ), 

independently from ratio 1a
d

, value of the coefficient 2 1sk  and required area of 

the reinforcement stA :  

 

  
  

        
  

   

1 1

Δ 1
,

1

m
st lim cd Ed

s yd

α
A ω d b f N

d k f

d

       (4.1-154) 

 

or, if the area of reinforcement ,sc provA  is taken greater, then calculated value scA : 

 

          
,

1

1
.st lim cd sc prov yd Ed

s yd

A ω d b f A f N
k f

       (4.1-155) 

 

If calculated from Equation (4.1-155) area of reinforcement  0stA , then 

strength properties of steel is not utilized completely. In this case it is necessary to 

find the corresponding value of the coefficient 2 1sk  (compression failure mode – 

case of the «small» eccentricity). The depth of the neutral axis can be determined by 

assuming, that whole axial force EdN  is resisted by concrete in cross section: 

 


 

.Ed

cd

N
ω

b d f
          (4.1-156) 

 

For obtained value of dimensionless parameters ω, the depth of neutral axis ξ 

and αm should be chosen from the Table 4.1-3 in such way, that equilibrium 

conditions (Equation (4.1-124) and Equation (4.1-125) will be satisfied. 

The area of the reinforcement stA  is calculated from Equation (4.1-151) taking 

into account 2 1sk , and the area of reinforcement scA  is calculated from the 

following equation: 

 

 

   


 

2

,1

1

.
Ed m cd

sc

yd

M α d b f
A

f d d
      (4.1-157) 

 

4.1.2.3 Equivalent rectangular compressive stress block in 
concrete  

In general case, the applied axial force may be tensile or compressive. In the 

analysis that follows, a compressive force is considered. For the tensile load, the 

same basic principles of equilibrium, compatibility of strains, stress-strain 
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relationships would apply, but it could be necessary to change the sign of the 

applied load EdN , when we consider the equilibrium of forces on the cross-section. 

Figure 4.1-24 represents the cross section of a member with typical strain and 

stress distribution for the varying position of the neutral axis. The cross section is 

subjected to a bending moment EdM  and axial compressive force EdN , and in the 

Figure 4.1-24 and Figure 4.1-25 the direction of the moment is such as to cause 

compression on the right edge of section and tension on the left edge. 

For cases where is tension in the section (see Figure 4.1-23), the limiting 

concrete strain is taken as  3,5 ‰cuε  – the value used in design and analysis of 

section for bending.   

However, for cases where it is no tension in section (see Figure 4.1-25), the 

limiting strain is taken as a value of ,2 2 ‰cε  at the level of 
 

 
 

3

7
h  of the depth of 

the section. 
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a) – cross-section; b) – strains profile; c) – stress block 

Figure 4.1-24 – Strains profile and stress distribution for the case when λ x h  
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a) – cross-section; b) – strains profile; c) – stress block 

Figure 4.1-25 – Strains profile and stress distribution for the case when λ x h  

  

4.1.2.3.1 Modes of failure and the basic equations formulation  

The applied force EdN  must be balanced by the forces developed within the 

cross section, therefore: 

 

   ,Ed cc sc stN F F F              (4.1-158) 

 

where: ccF  is the resultant compressive force developed in the concrete and acting 

through the centroid of the stress block; 



164 

 

           scF  is the resultant compressive force developed in the reinforcement Asc and 

acting through its centroid; 

           stF  is the resultant tensile or compressive force developed in the 

reinforcement stA  and acting through its centroid. 

In the Equation (4.1-158), force stF  will be negative whenever the position of 

the neutral axis is such that reinforcement stA  is in tension, as it is shown in   

Figure 4.1-24. Substituting into Equation (4.1-158) the term for the stress and 

areas:  

 

          ,Rd Ed cd sc sc st stN N η f b λ x σ A σ A      (4.1-159) 

 

where scσ  is the compressive stress in reinforcement scA ; 

          stσ  is the tensile or compressive stress in reinforcement stA . 

Thus, 
  

Ed

cd

N

η f b h
 and 

   2

Ed

cd

M

η f b h
 can be calculated for the specified ratios of 



stA

b h
 and x

h
, so that the column design charts for a symmetrical reinforcement 

arrangement such as one shown in Figure 4.1-26 can be plotted. 

 

 
Figure 4.1-26 – Design charts for columns 
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a) – for circular columns with d/h=0,6; 0,7; 0,8; 0,9;                                                         

b) – for rectangular columns with d/h=0,8; 0,85; 0,9; 0,95 

Figure 4.1-26 (end) – Design charts for columns 

 

The direct solution of the Equation (4.1-162) and Equation (4.1-163) for the 

design of column reinforcement would be very tendinous and, therefore, a set of 

design charts for the usual case of symmetrical sections is available in special 

publications, such as [8].  

As it was shown earlier the magnitude of the eccentricity (  Ed
tot

Ed

M
e

N
) affects the 

position of the neutral axis and, hence, the strains and stresses in the 

reinforcement. 

 For the linear strain distribution (see Figure 4.1-24 and Figure 4.1-25): 

 
 

   
 

1 ,sc cu

x d
ε ε

x
          (4.1-164) 

 

and: 

 

 
   

 
.st cu

d x
ε ε

x
               (4.1-165) 
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For values of x greater than h, when neutral axis extends below the cross-

section, as it is shown in Figure 4.1-25, the steel strains are given by the alternative 

expression: 

 

 

 

 
 

  

17
0,002 ,

7 3
sc

x d
ε

x h
         (4.1-166) 

 

and: 

 

 

 

 
 

  

7
0,002 .

7 3
st

x d
ε

x h
                (4.1-167) 

 

In the Equation (4.1-165) and Equation (4.1-166): 

scε  is the compressive stress in reinforcement scA ; 

stε  is the tensile or compressive strain in reinforcement stA . 

Let’s consider the following modes of failure of the section as it is shown on the 

interaction diagram of Figure 4.1-19 for the case of rectangular compressive stress 

block in concrete. 

a) tensile failure st syε ε . 

This type of failure is associated with large eccentricity ( tote ) and small depth of 

the neutral axis (x). 

Failure begins with yielding of the tensile reinforcement, followed by crushing 

of the concrete as the tensile strains rapidly increase. 

b) balanced failure st syε ε , between points ⑤ and ⑥ on Figure 4.1-19. 

When failure occurs with yielding of the tension steel and crushing of the 

concrete at the same instant it is describes as a «balanced» failure. With st syε ε : 

 

 



.

1
lim

sy

cu

d
x x

ε

ε

                   (4.1-168) 

 

Substituting the value of  2,17 ‰syε  (for steel grade S500): 

 

 0,617 .limx d           (4.1-169) 

 

Equation (4.1-158) and Equation (4.1-160) become: 

 

           0,8 ,lim cc sc st cd lim sc sc yd stN F F F η f b x σ A f A       (4.1-170) 

 

and: 
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     
            

    
1

0,8
,

2 2 2 2
lim

lim cc sc st

xh h h
M F F d F d         (4.1-171) 

 

where:  .sc ydf f    

At the point ⑤ of the interaction diagram of Figure 4.1-20,  ,Ed limN N  

 ,Ed limM M  and   .sc ydσ f  When the design load  ,Ed limN N  the section will be fail in 

compression, while if  ,Ed limN N  where will be an initial tensile failure, with yielding 

of reinforcement stA . 

c) compression failure between points ① and ⑤ on Figure 4.1-19. 

In this case  limx x  and  .Ed limN N  The change in slope at point ④ in        

Figure 4.1-19 occurs when: 

 

 ,sc syε ε                (4.1-172) 

 

and from the Equation (4.1-172): 

 

 


  


1
(c) 1

0,0035
2,63 ,

cu sy

d
x d

ε ε
            (4.1-173) 

 

for steel grade S500 and  3,5 ‰.cuε   

When  :x d  st ydσ f  and tensile;  

When  :x d   0,stσ  and  

When  :x d  st ydσ f  and compressive. 

When x become very large and section approaches a state of uniform axial 

compression,   .st sc syε ε ε  At this stage (see Figure 4.1-25), the both layers of steel 

will have yielded and there will be zero moment of resistance RdM  with symmetrical 

cross-section, so that: 

 

         .Rd,n cd yd st scN η f b h f A A             (4.1-174) 

 

At the stage, where the neutral axis coincides with the bottom of the cross-

section, the strain diagram changes from that shown in Figure 4.1-23 to the 

alternative strain diagram shown in Figure 4.1-25. 

To calculate Rd,iM  and Rd,iN  at this stage, corresponding to point ② in        

Figure 4.1-19, Equation (4.1-159) and Equation (4.1-160) should be used, taking 

the neutral axis depth equal to the overall section depth h.  
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4.1.2.3.2  Calculation of the required area of the reinforcement  

(1) Rectangular cross-section with an asymmetric reinforcement 

arrangement  

For the assymetric arrangement of the reinforcement in cross section, the area 

of reinforcement is determined from the equilibrium conditions (4.1-159)–(4.1-161), 

assuming that:  ,eff eff limξ ξ  (where 


 
eff

eff

x λ x
ξ

d d
). Hence: 

 

 
 

        


 

2

1

1

1 0,5
,

Ed s eff eff cd

sc

yd

N e ξ ξ b d η f
A

d d f
    4.1-175) 

 

where: 1se  is the eccentricity of the axial load, that is equal to    10,5 .tote h a   

In case when obtained area of the compressive reinforcement  0scA , required 

area of the reinforcement stA  can be calculated assuming that  ,eff eff limξ ξ  as 

follows: 

 

         
1
.st eff cd sc yd Ed

yd

A ξ d b η f A f N
f

         (4.1-176) 

 

If the area of the compressive reinforcement ,sc prov scA A  (when  0scA ), the 

depth of the neutral axis effξ  have to be corrected, taking a new value of the depth 

of the neutral axis effξ  from Table 4.1-7 as a function of ,m effα , calculated from the 

following equation: 

 

     

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1 , 1

, 2
.

Ed s sc prov yd

m eff

cd

N e A d d f
α

η f b d
      4.1-177) 

 

Substituting into Equation (4.1-176), a new area of the reinforcement stA  have 

to be calculated. If the obtained area of the reinforcement is positive (  0stA ), than 

the result of the calculation is considered as satisfactory. When obtained area of the 

reinforcement stA  is negative (  0stA ), this means that there is a case of small 

eccentricity:  ,eff eff limξ ξ  and 1sk  (see Figure 4.1-25). In the case of small 

eccentricity, the reinforcement area stA  will not be used in its entirety, and, 

therefore, it can be assumed that , ,st prov st minA A . Actual depth of the neutral axis 

 ,eff eff limξ ξ  is calculated from the following moment equation: 

 

         2 , , 1 ,Ed s cc eff cd st prov s ydN e S η f A d d k f          (4.1-178) 

 

where: ,cc effS  is the moment of the resultant of the compressive stress in concrete 

about the centroid of the reinforcement scA ; 
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             2se  is the eccentricity of the axial load EdN  and it is equal:    20,5 .toth e a    

The value of the depth of the neutral axis effξ  can be obtained by means of the 

Table 4.1-9, depending on the ratio 1a
d

 and coefficient ,m effα : 

 



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2
, 2

.Ed s
m eff

cd

N e
α

η f b d
            (4.1-179) 

 
Table 4.1-9 – Coefficients m,effα  values for the rectangular section under compression (case of 

the snall eccentricities) 

effξ  

Coefficient m,effα  

Ratio 1 /a d  

0,04 0,08 0,12 0,16 0,20 

0,41 0,068 0,051 0,035 0,018 0,002 

0,42 0,071 0,054 0,038 0,021 0,004 

0,43 0,074 0,059 0,040 0,024 0,007 

0,44 0,077 0,062 0,042 0,025 0,009 

0,45 0,083 0,065 0,047 0,029 0,011 

0,46 0,088 0,069 0,051 0,032 0,014 

0,47 0,092 0,073 0,055 0,036 0,017 

0,48 0,096 0,076 0,057 0,038 0,019 

0,49 0,100 0,081 0,061 0,042 0,022 

0,50 0,105 0,085 0,065 0,045 0,025 

0,51 0,110 0,089 0,069 0,048 0,028 

0,52 0,114 0,093 0,073 0,052 0,031 

0,53 0,119 0,098 0,076 0,055 0,034 

0,54 0,124 0,103 0,081 0,060 0,038 

0,55 0,128 0,106 0,084 0,062 0,040 

0,56 0,135 0,112 0,090 0,067 0,045 

0,57 0,139 0,116 0,094 0,071 0,048 

0,58 0,145 0,122 0,098 0,075 0,052 

0,59 0,150 0,127 0,103 0,080 0,056 

0,60 0,156 0,132 0,108 0,084 0,060 

0,61 0,162 0,137 0,113 0,088 0,064 

0,62 0,167 0,142 0,118 0,093 0,068 

0,63 0,173 0,148 0,122 0,097 0,072 

0,64 0,179 0,154 0,128 0,103 0,077 

0,65 0,185 0,159 0,133 0,107 0,081 

0,66 0,192 0,165 0,139 0,112 0,086 

0,67 0,198 0,171 0,144 0,117 0,090 

0,68 0,204 0,178 0,149 0,122 0,095 

0,69 0,210 0,183 0,155 0,128 0,100 

0,70 0,217 0,189 0,161 0,133 0,105 

0,71 0,224 0,195 0,167 0,138 0,110 

0,72 0,230 0,201 0,173 0,144 0,115 

0,73 0,237 0,208 0,178 0,149 0,120 

0,74 0,244 0,215 0,185 0,156 0,126 

0,75 0,251 0,221 0,191 0,161 0,131 

0,76 0,259 0,228 0,198 0,167 0,137 

0,77 0,265 0,234 0,204 0,173 0,142 

0,78 0,273 0,242 0,210 0,179 0,148 

0,79 0,280 0,249 0,217 0,186 0,154 

0,80 0,288 0,256 0,224 0,192 0,160 

0,81 0,296 0,263 0,231 0,198 0,166 

0,82 0,303 0,270 0,238 0,205 0,172 
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Table 4.1-9 (end) 

0,83 0,311 0,278 0,244 0,211 0,178 

0,84 0,319 0,286 0,252 0,219 0,185 

0,85 0,327 0,293 0,259 0,225 0,191 

0,86 0,336 0,301 0,267 0,232 0,198 

0,87 0,343 0,308 0,273 0,239 0,204 

0,88 0,352 0,317 0,281 0,246 0,211 

0089 0,360 0,325 0,289 0,254 0,218 

0,90 0,369 0,333 0,297 0,261 0,225 

0,91 0,378 0,341 0,305 0,268 0,232 

0,92 0,386 0,349 0,313 0,276 0,239 

0,93 0,395 0,358 0,320 0,283 0,246 

0,94 0,404 0,367 0,329 0,292 0,254 

0,95 0,413 0,375 0,337 0,299 0,261 

0,96 0,423 0,384 0,346 0,307 0,269 

0,97 0,431 0,392 0,354 0,315 0,276 

0,98 0,441 0,402 0,362 0,323 0,284 

0,99 0,450 0,411 0,371 0,332 0,292 

1,00 0,460 0,420 0,380 0,340 0,300 

1,01 0,470 0,429 0,389 0,348 0,308 

1,02 0,479 0,438 0,398 0,357 0,316 

1,03 0,489 0,448 0,406 0,365 0,324 

1,04 0,500 0,458 0,416 0,375 0,333 

1,05  0,467 0,425 0,383 0,341 

1,06  0,477 0,435 0,392 0,350 

1,07  0,486 0,444 0,401 0,358 

1,08  0,497 0,453 0,410 0,367 

1,09   0,463 0,420 0,376 

1,10   0,473 0,429 0,385 

1,11   0,483 0,438 0,394 

1,12   0,493 0,448 0,403 

1,13    0,457 0,412 

1,14    0,468 0,422 

1,15    0,477 0,431 

1,16    0,487 0,441 

1,17     0,450 

1,18     0,460 

1,19     0,470 

1,20     0,480 

 

The required area of the reinforcement scA  is calculated from the general 

Equation (4.1-175). 

In case coefficient , , ,m eff m eff maxα α  ( , ,m eff maxα  is the maximum values from       

Table 4.1-9 for an assumed ratio of 1a
d

), than obtained area of the reinforcement 

 ,st st minA A . 

In case coefficient , , ,m eff m eff maxα α , required area of the reinforcement Asc is 

calculated from the Equation (4.1-175) and stA  from the following equation:   

 

   
     


   

2

2

2

0,5
.

1
Ed s cd

st

yd

N e η f b d
A

f d a
          (4.1-180) 
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If the obtained from Equation (4.1-171) area of the reinforcement scA  is 

negative, this means that the cross-sectional area is an excessive (applied forces 

balanced by the concrete compressive stresses resultant only) and  ,sc sc minA A . 

 

(2) Rectangular cross-section with symmetrical reinforcement 

arrangement 

For this case ( st scA A  and 1 1a d ) depth of the neutral axis effξ  can be 

calculated as follows: 

 


  

.Ed
eff

cd

N
ξ

η f b d
                     (4.1-181) 

 

If the condition  ,eff eff limξ ξ  is satisfied, the required area of the reinforcement is 

obtained from the following equation: 

 

 
 

     
  

 

1

1

1 0,5
.

Ed s eff

st sc

yd

N e d ξ
A A

d d f
        (4.1-182) 

 

For very small value of the neutral axis depth   12effξ d d , the required area of 

reinforcement is calculated: 

 

 


 

 

2

1

.Ed s
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yd

N e
A A

d d f
         (4.1-183) 

 

If  ,eff eff limξ ξ , the case of small eccentricity takes place, and actual depth of the 

neutral axis is calculated from the following equation: 
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 
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      (4.1-184) 

 

where: 
 


  
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N e
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  


  

2

2
.

Ed

cd

N d a
B

η f b d
 

If the obtained value 1,0effξ , then for the further calculation it should be 

taken 1,0effξ  and the required area of the reinforcement is calculated as follows:   

 

   
 


.

2
Ed cd

st sc

yd

N η f b d
A A

f
                   (4.1-185) 

 

If the obtained value 1,0effξ , then the required area of the reinforcement is 

equal: 
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   
 

      
 
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,
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1
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N ξ η f b d ξ
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ξ ξ f
  (4.1-186) 

 

4.1.2.3.3  Cross-section resistance checking based on the rectangular 

compressive stress block 

For a given dimensions of the rectangular cross-section of the compressed 

element and for the accepted reinforcement area st scA A , cross section resistance 

RdM  and RdN  can be calculated from the following equations:  

 

             


2

1

1

1 0,5
,

eff eff cd sc yd
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s

ξ ξ η f b d A f d d
M

e
  (4.1-187) 

 

and: 

 

          .Rd eff cd sc yd st s ydN ξ η f b d A f A k f   (4.1-188) 

 

The value of the neutral axis depth effξ  can be calculated from the following 

equation: 

 

    2

1 22 ,eff s sξ B B μ μ             (4.1-189) 

 

where:   11 ;seB
d
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The coefficient 2sμ  in the Equation (4.1-189) should be taken with a «minus»-

sign, if   1 1 .se d d  

If the obtained from the Equation (4.1-185) value  ,eff eff limξ ξ , 1sk  and: 

 

         
2

1 22 ,eff s sξ B C B C C μ μ            4.1-190) 

 

where: 





1

,

2
.

1
s

eff lim

μ
C

ξ
 

In the obtained from Equation (4.1-189) value 1,0effξ , than in           

Equation (4.1-187) and Equation (4.1-188) 1,0effξ  and  1sk  should be taken. 
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4.1.2.4 Interaction diagram 

As it was shown, a reinforced concrete column with specified amount of 

longitudinal steel reinforcement has different carrying capacities of a pair of EdN  

and EdM  before its collapse depending on the eccentricity of the load. In general 

case, the interaction diagram has three distinct zones of failure (see Figure 4.1-19): 

1) from point ① to just before point ⑤ is the zone of compression failure; 

2) point ⑤ is the balanced failure; 

3) from point ⑤ to point ⑥ is the zone of tension failure. 

In the compression failure zone, small eccentricities produce failure of concrete 

in compression, while large eccentricities cause failure triggered by yielding of 

tension steel reinforcement. 

In between, point ⑤ is the critical point at which both the failures of concrete 

in compression and steel in yielding occur simultaneously. 

The interaction diagram further reveals that as the force EdN  becomes larger, 

the section can carry smaller EdM  before failing in the compression zone. The 

reverse is the case in the tension zone, where the moment carrying capacity 

(moment of resistance) ,Rd uM  increases with the axial load increasing ,Rd uN . In the 

compression failure zone, the failure occurs due to the over straining of concrete. 

The large axial force produces high compressive strain of concrete keeping smaller 

margin available for an additional compressive strain line to bending. On the other 

hand, in the tension failure zone, yielding of steel initiates failure. This tensile yield 

stress reduces with the additional compressive stress due to additional axial load. 

As a result, further moment can be applied till the combined stress of steel due to 

the axial force and increased moment RdM  reaches the yield strength. 

Therefore, the design of column with given EdN  and EdM  should be done 

following the three steps, as it is given below: 

1) selection of a trial section with an assumed longitudinal steel; 

2) construction of the interaction diagram of the selected trial column 

section by successive choices of the neutral axis depth from infinity (pure axial load) 

to a very small value (to be found by trial to get  0EdN  for the pure bending). 

3) сhecking of the given EdN  and EdM , if they are within the diagram. 

Such an «MRd–NRd» interaction diagram can be constructed for the any shape of 

the cross-section, which has an axis of symmetry by applying the basic equilibrium 

and strain compatibility equations with the «σ–ε» relations (stress-strain relations). 

This diagrams can be very useful for the design purpose.  
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Example to Section 4.1.2 

Example 1. Example of the interaction diagram construction  

Construct the interaction diagram for the cross-section shown in the        

Figure E 4.1-1 with  25ckf  N/mm2 ( 20
25

C ) and  500ykf  N/mm2 (S500). The 

bending causes maximum compression on the face adjacent to the steel area scA . 

For symmetrical cross section, taking the moment about centre-line of the 

concrete cross section will give  0RdM  with Ed Rd,uN N  and both areas of steel at 

the yield stress. This is no longer true for the unsymmetrical steel areas as sc stF F  

at yield therefore, theoretically, moment should be calculated about an axis referred 

to as the «plastic centroid». The ultimate axial force Rd,uN  acting through the plastic 

centroid causes a uniform strain across the section with compression yielding of all 

of the reinforcement and, thus, there is zero moment of resistance RdM . With 

uniform strain the neutral axis depth x, is at infinity.  

  

 
a) – cross-section; b) – interaction diagram 

Figure E 4.1-1 – Non-symmetrical cross-section « RdM – RdN » interaction example 

 

The location of the plastic centroid is determined by the taking moments of the 

all the stress resultants about an arbitrary axis such as A-A in Figure E 4.1-1, so 

that: 
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     (E 4.1-1) 

 

The fundamental equations for calculating points of the interaction diagram 

with varying the depth of the neutral axis are: 

1) compatibility of strains (used in Table E 4.1-1, columns 2 and 3):  
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     (E 4.1-2) 

 

or, when the neutral axis depth extends below the bottom of the section ( x h ): 
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               (E 4.1-3) 

 

2) Stress-strain relation for the steel reinforcement as it is shown in  

Figure E 4.1-1 (Table E 4.1-1, columns 4 and 5): 
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       (E 4.1-4) 

 

3) Equilibrium equations (Table E 4.1-1, columns 6 and 7): 

 

  
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           (E 4.1-5) 

 

stF  is negative, when stσ  is a tensile stress. 
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Table E 4.1-1 – «MRd–NRd» interaction values for example [6] 

x, мм scε , % 
stε , % 

scσ , [N/mm2] 
stσ , [N/mm2] 

RdN , [kN] 
RdM , [kN·m] 

1 2 3 4 5 6 7 
/d  0 >2,17 0 fyd -189 121,0 

2,63·d1 2,17 >2,17 fyd fyd 899 275 

  



0,617

241

limx d
 >2,17 2,17 fyd -fyd 1229 292 

d=390 >2,17 0 fyd 0 2248 192 

h=450 >2,17 0,47 fyd 93,3 2580 146 

0 2,17 2,17 fyd fyd 3361 0 

 

These equations have been applied to provide the values in Table E 4.1-1 for a 

range values of x. Then « RdM – RdN » interaction diagram has been plotted in          

Figure E 4.1-1 b from the values in Table E 4.1-1 as a series of straight lines. Of 

course, RdM  and RdN  could have been calculated for the intermediate values of x to 

provide a more accurate curve, as it is presented in Figure E 4.1-1 b.   

4.1.3 ANALYSIS OF SECOND ORDER EFFECTS 
WITH AXIAL LOAD  

4.1.3.1 General requirements and definitions in accordance 
with EN 1992 [N3] 

Column design is largely covered within the Section 5.8 and Section 6.1 of     

EN 1992 [N3]. Global second order effects are likely to occur in the structures with a 

flexible bracing system. 

As it was shown in EN 1992 [N3], where second order effects are taken into 

account, equilibrium and resistance shall be verified in the deformed state. 

Deformations shall be calculated taking into account the relevant effects of 

cracking, non-linear material properties and creep. 

The structural behavior shall be considered in the direction in which 

deformations can occur, and biaxial bending shall be taken into account when 

necessary. 

Uncertainties in geometry and position of axial loads shall be taken into 

account as additional first order effects based on the geometric imperfections. 

Second order effects may be ignored if they are less than 10 % of the corresponding 

first order effects. 

Column design generally involves determining the slenderness ratio, λ, of the 

member. If it lies below a critical value, limλ , the column can be simply designed to 

resist axial actions and moment, obtained from an elastic analysis, but including 

the effect of geometrical imperfections. These are termed first order effects. 

In accordance with Section 5.8.1 of EN 1992 [N3]: 
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– first order effects: action effects calculated without consideration of the 

effect of structural deformations, but including geometrical imperfections. However, 

when the column slenderness exceeds the critical value, an additional (second 

order) moments caused by structural deformations can occur and must also be 

taken into account. 

– second order effects: an additional action effects caused by structural 

deformations. In EN 1992 [N3], the slenderness ratio above which one columns are 

subjected to the second order effects has to be evaluated (see Section 4.1.3.2). 

In this chapter (section) only the design of the most common types of columns 

found in building structures, namely braced columns, will be described. 

– braced members or systems: structural members or subsystems, which in 

analysis and design are assumed not to contribute to overall horizontal stability of a 

structure;  

– bracing members or systems: structural members or subsystems, which in 

analysis and design are assumed to contribute to the overall horizontal stability of a 

structure. 

A column may be considered to be braced in a given plane if the bracing 

element or system (e.g. core or shear walls) is sufficiently stiff to resist all the lateral 

forces in that plan. Thus, braced columns are assumed to not contribute to the 

overall horizontal stability of a structure and as such are only designed to resist 

axial load and bending due to the vertical loading. The design of braced columns 

involves consideration of the following aspects, which are discussed individually 

below: slenderness ratio (λ); threshold slenderness ( limλ ); first order effects; second 

order effects (moments); reinforcement details. 

4.1.3.2 Simplified criteria for second order effects 

4.1.3.2.1 Slenderness criterion for isolated members 

As it was noted above, the threshold slenderness value, limλ , is a key element of 

the design procedure as it provides a simple and convenient way of determining 

when to take into account of the first order effects only and when to include second 

order effects. The value of limλ  is given by the following expression:  

 

   20 / ,limλ A B C n               (4.1-191) 

 

where:    1/ 1 0,2 ,efA φ  and in case efφ  is not known,  0,7A  may be used;  

             1 2 ,B ω  and in case ω  is not known, 1,1B  may be used;  

            1,7 ,mC r  and in case mr  is not known,  0,7C  may be used; 

           efφ  is an effective creep ratio; 

           ω  is a mechanical reinforcement ratio, that it is equal to      ;s yd c cdA f A f  

           sA  is the total area of the longitudinal reinforcement; 
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             Ed c cdn N A f  is a relative normal force; 

             0,1 0,2mr M M  is the end moment ratio, taking positive when moments 

produce tension on the same face (i.e. 1,7C ); 

           0,1M  and 0,2M  are the first order end moments, 0,2 0,1M M .  

The value of the creep coefficient, efφ , can be calculated using the guidance in 

EN 1992 [N3] (clause 5.8.4). However, in many cases the extra design effort required 

may not be justified and the recommended value of 0,7 for the factor A should be 

used. 

Factor B depends upon the area of longitudinal steel, which will be unknown of 

the design stage. It would seem reasonable, therefore, to use the recommended 

value of 1,1, at least for the first iteration. 

Factor C arguably has the largest influence on limλ  and it is worthwhile 

calculating its value accurately rather than simply assuming it is equal to 0,7. 

Factor C gives an indication of the column’s susceptibility to buckling under the 

action of applied moments. In the following cases, mr , should be taken as 1,0 (i.e.   

 0,7C ): for the braced members, in which the first order moments arise only from 

or predominantly due to imperfections or transverse loading; for the unbraced 

members in general. 

Thus, buckling is more likely where the end moments act in opposite senses as 

they will produce tension on the same face. Conversely, buckling is less likely when 

the end moments act in the same sense as the member will be in double curvature 

(see Figure 4.1-27). 

 

 
Figure 4.1-27 – Columns buckling modes 

 

4.1.3.2.2 Slenderness and effective length of isolated members 

Slenderness ratio, λ, is defined as follows: 
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 0 ,
l

λ
i

     (4.1-192) 

 

where: 0l  is the effective length of the column; 

           i  is the radius of gyration of the uncracked concrete section. 

–  effective length: a length used to take into account the shape of the 

deflection curve; it can also be defined as a buckling length, i.e. the length of the 

pin-ended column with the constant normal force, having the same cross section 

and buckling load as the actual member, and:  

–  buckling load: the load at which buckling occurs; for an isolated elastic 

members it is synonymous with the Euler load; 

– buckling: failure due to instability of a member or structure under the perfect 

axial compression and without transverse load. 

«Pure buckling», as it is defined above, is not a relevant limit state in the real 

structures, due to an imperfections and transverse loads, but a nominal buckling 

load can be used as a parameter in some of the methods for the second order 

analysis. 

Examples of the effective length for isolated members with a constant cross-

section are given in Figure 4.1-28. 

 

 
Figure 4.1-28 – Examples of the different buckling modes and corresponding effective length  

for isolated members (Figure 5.7 f, EN 1992 [N3]) 

 

Figure 5.7 f from EN 1992 [N3], reproduced here as a Figure 4.1-28, suggests 

that the effective length of braced member ( 0l ) can vary between half and full height 

of the member depending on the degree of the rotational restraint at column ends, 

i.e.: 

 

 0/2 .l l l        (4.1-193) 
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For the members in compression of a regular frames, the slenderness criterion 

should be checked with an effective length 0l  determined in the following way: 

Braced members (see Figure 4.1-28 f): 

 

  
      

    

21
0

1 2

0,5 1 1 ,
0,45 0,45

kk
l l

k k
   (4.1-194) 

 

where: 1k  and 2k  are the relative flexibilities of the rotational restraints at the ends 

1 and 2 respectively, in which:  

 

    / / ,k θ M EI l     (4.1-195) 

 

where: θ  is the rotation of the restraining members for bending moment M (see 

Figure 4.1-28 f); 

    EI  is the bending stiffness of the members in compression; 

    l  is the clear height of the member in compression between end restraints. 

Note, that in theory,  0k  for the fully rigid rotational restraint and  k  for 

the no restraint at all, i.e. pinned support. Since fully rigid restraint is rare in 

practice, EN 1992 [N3] recommends a minimum value of 0,1 for 1k  and 2k . 

It is not an easy matter to determine the values of 1k  and 2k  in practice 

because: 

a) the guidance in EN 1992 [N3] is somewhat ambiguous with regard to 

the effect of stiffness of columns attached to the column under the consideration, 

and: 

b) the effect of cracking on the stiffness of the restraining member. 

Unbraced members (see Figure 4.1-27 g): 

 

    
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     (4.1-196) 

 

In accordance with EN 1992 [N3], if an adjacent compression member (column) 

in a node is likely to contribute to the rotation at buckling, then (EI/l) in the 

definition of k should be replaced by      / /
a b

EI l EI l , a and b representing the 

compression member (column) above and below the node. In general case, in the 

definition of effective length, the stiffness of restraining members should include the 

effect of cracking, unless they can be shown to be uncracked in ULS. 

For the other cases than was presented above, e.g. members with varying 

normal force and/or cross-section, the criterion  limλ λ  should be checked with an 

effective length based on the buckling load (calculated, for example, by a numerical 

method):  

 

 0 / ,Bl π EI N         (4.1-197) 
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where: EI  is a representative bending stiffness; 

           BN  is a buckling load expressed in terms of this EI (in Expression (4.1-192), i 

should also corresponds to this EI). 

The radius of gyration (i) is defined by: 

 

   / ,i π I A                (4.1-198) 

 

where: I  is a moment of inertia of the uncracked concrete section; 

           A is an area of the uncracked concrete section. 

4.1.3.3 Design of braced columns 

Having determined the value of limλ , it is possible to design the column. The 

following sub-sections discuss the procedures recommended in EN 1992 [N3] for the 

design of the braced columns, when  limλ λ  and  .limλ λ  

4.1.3.3.1 Design of braced columns, when limλ λ  

According to the EN 1992 [N3] (clause 5.8.3.1), in case, when slenderness, λ, is 

less than limλ , the column should be designed for the applied axial load (action), 

EdM , being numerical equal to the sum of the larger elastic end moment, 0,2M , plus 

any moment due to the geometric imperfection, Ed iN e , as follows:  

 

  0,2 ,Ed Ed iM M N e          (4.1-199) 

 

where: ie  is the geometric imperfection, that is equal to  0

2
i

l
θ , in the which one iθ  is 

the angle of inclination and can be taken as 1/200 for the isolated braced columns 

and 0l  is the effective length (see Section 4.1.3.2.2). The minimum design 

eccentricity, 0e , is 30,h  but not less than 20 mm, where h is the depth of the 

cross-section. 

Once EdN  and EdM  have been determined, the area of the longitudinal steel can 

be calculated by the strain compatibility using an iterative procedure [8]. However, 

this approach may not be practical for everyday design and, therefore, was 

produced a series of design charts (see Section 4.1.2.4), which can be used to 

determine the area of the longitudinal steel. 

4.1.3.3.2 Design of braced columns, when limλ λ . Methods of analysis 

When  .limλ λ , critical conditions may occur at the top, middle or bottom of the 

column. 
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According to EN 1992 [N3], the methods of analysis include a general method 

based on non-linear second order analysis and the following two simplified 

methods: 

a) method based on the nominal stiffness; 

b) method based on the nominal curvature. 

As it was pointed in EN 1992 [N3], the nominal second order moments 

provided by the simplified methods a) and b) are sometimes greater than those 

corresponding to the instability. This is to ensure that the total moment is 

compatible with the cross-section resistance. 

Method a) may be used for the both isolated members and the whole 

structures, if nominal stiffness values are estimated appropriately;  

Method b) is mainly suitable for the isolated members. 

However, with the realistic assumptions concerning the distribution of 

curvature, the method in this section can also be used for structures.  

(1) General method 

The general method is based on the non-linear analysis, including geometric 

non-linearity, i.e. second order effects. The general rules for the non-linear analysis 

is given in [8] should be applied. In the non-linear analysis, the stress-strain curves 

for concrete and steel are suitable for the overall analysis shall be used. The effect of 

the creep shall be taken into account. 

Stress-strain relationships for concrete and steel are given in the Chapter 3 

may be used. With the stress-strain diagrams based on the design values, a design 

value of the ultimate load is obtained directly from the analysis. In           

Expression (4.1-195) and in the k-value, cmf  is then substituted by the design 

compressive strength cdf  and cmE  is substituted by: 

 

 ,cd cm CEE E γ     (4.1-200) 

 

where: CEγ  is the partial factor, that is equal to 1,2 (the recommended value). 

In absence of more refined models, creep may be taken into account by the 

multiplying all the strain values in the concrete «stress-strain» diagram (see       

Figure 4.1-29) with a factor ( 1 efφ ), where efφ  is the effective creep ratio according 

to EN 1992 [N3] (clause 5.8.4). 

Normally, conditions of the equilibrium and strain compatibility are satisfied in 

a number of the cross-sections. A simplified alternative is to considered only the 

critical cross-section, and to assume the relevant variation of the curvature in 

between, e.g. similar to the first order moment or simplified in another appropriate 

way in accordance with [3]. 
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1 – mean diagram; 2 – design diagram; 3 – transformed long-term diagram  

Figure 4.1-29 – Stress-strain diagrams for concrete 

 

(2) Methods based on nominal stiffness 

General. 

In a second order analysis based on the stiffness, nominal values of the 

flexural stiffness should be used, taking into account the effects of cracking, 

material non-linearity and creep on the overall behaviour. This also applies to 

adjacent members involved in the analysis, e.g. beams, slabs or foundations. Where 

the relevant, soil-structure interaction should be taken into account. 

The resulting design moment is used for the design of the cross sections with 

respect to bending moment and axial force. 

Nominal stiffness. 

The following model may be used to estimate the nominal stiffness of slender 

compression members with arbitrary cross section: 

 

      ,c cd c s s sEI K E I K E I    (4.1-201) 

 

where: cdE  is the design value of the modulus of elasticity of concrete 

( cd cm CEE E γ ); 

      cI  is the moment of inertia of the concrete cross-section; 

      sE  is the design value of the modulus of elasticity of reinforcement; 

      sI  is the second moment of area of reinforcement, about the centre of area 

of the concrete; 

      cK  is a factor for effects of cracking, creep, etc.; 

      sK  is a factor for contribution of reinforcement. 

The following factors may be used in Expression (4.1-201), provided  0,002ρ :  
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 




   1 2

1;

/ 1 ,

s

c ef

K

K k k φ
          (4.1-202) 

 
where: ρ  is the geometric reinforcement ratio, that is equal to As/Ac; 

            As is the total area of reinforcement; 

            Ac is the area of concrete cross-section; 

            φef is the effective creep ratio; 

            k1 is a factor which depends on concrete strength class,                 

Expression (4.1-203); 

            k2 is a factor which depends on axial force and slenderness,            

Expression (4.1-204). 

 

1 /20,ckk f        4.1-203) 

 

  2 0,20,
170

λ
k n               (4.1-204) 

 

where: n  is the relative axial force, that is equal to NEd/( Ac·fcd); 

            λ is the slenderness ratio. 

If the slenderness ratio λ is not defined, k2 may be taken as follows: 

 

  2 0,30 0,20.k n     (4.1-205) 

 

As a simplified alternative, provided  0,001lρ , the following factors may be 

used in Expression (4.1-202):  0;sK    0,3/ 1 0,5 .c efK φ  

In statically indeterminate structures, unfavourable effects of cracking in the 

adjacent members should be taken into account. Expressions (4.1-201)–(4.1.205) 

are not generally applicable to such a members. Partial cracking and tension 

stiffening may be taken into account, e.g. according to EN 1992 [N3] (cl. 7.4.3). 

However, as a simplification, fully cracked sections may be assumed. The stiffness 

should be based on an effective concrete modulus:  

 

  1 ,cd,eff cd efE E φ            (4.1-206) 

 

where: cdE  is the design value of the modulus of elasticity; 

           efφ  is the effective creep ratio; the same value as for columns may be used. 

Moment magnification factor. 

The total design moment, including second order moment, may be expressed 

as a magnification of the bending moments resulting from a first order analysis, 

namely:  
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 

 
   

 
0 1 ,

/ 1
Ed ,Ed

B Ed

β
M M

N N
          (4.1-207) 

 

where: 0,EdM  is the first order moment; 

           β  is a factor, which depends on distribution of the first and second order 

moments; 

           EdN  is the design value of axial load; 

           BN  is the buckling load based on the nominal stiffness. 

For isolated members with constant cross section and axial load, the second 

order moment may normally be assumed to have a sine-shaped distribution. Then: 

 

 2

0/ ,β π c      (4.1-208) 

 

where: 0c  is a coefficient which depends on the distribution of the first order 

moment (for instance, 0 8c  for a constant first order moment; 0 9,6c  for a 

parabolic and 0 12,0c  for a symmetric triangular distribution, etc.). 

For members without transverse load, differing first order end moments 01M  

and 02M  may be replaced by an equivalent constant first order moments 0eM  (see 

Expression (4.1-211)). Consistent with the assumption of a constant first order 

moment, 0 8,0c  should be used. The value 0 8,0c  also applies to members bent 

in double curvature. It should be noted that in some cases, depending on 

slenderness and axial force, the end moment(s) can be greater than the magnified. 

Where cases of isolated members or members without transverse load are not 
applicable, 1β  is normally a reasonable simplification. Expression (4.1-207) can 

then be reduced to:  

  

            
 




0
.

1 /

,Ed

Ed

Ed B

M
M

N N
    (4.1-209) 

 

(3) Method based on the nominal curvature 

General. 

In accordance with EN 1992 [N3] (cl. 5.8.8), this method is primarily suitable 

for isolated members with constant normal force and a defined effective length 0l  

(see Section 4.1.3.2.2). The method gives a nominal second order moment based on 

deflection, which in its turn is based on the effective length and an estimated 

maximum curvature. 

The resulting design moment is used for the design of the cross sections with 

respect to bending moment and axial force according to Section 4.1.2.  

Bending moments. 

The design moment is following: 
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 0 2,Ed ,EdM M M           (4.1-210) 

 

where: 0,EdM  is the first order moment, including the effect of imperfections; 

           2M  is the nominal second order moment. 

The maximum value of EdM  is given by the distributions of 0,EdM  and 2M , the 

latter may be taken as a parabolic or sinusoidal over the effective length. 

For statically indeterminate members moment 0,EdM  is determined for the 

actual boundary conditions, whereas 2M  will depend on the boundary conditions 

via the effective length. 

For members without loads applied between their ends, differing first order end 

moments 01M  and 02M  may be replaced by an equivalent first order end moment 

0eM  (moment including the effect of imperfections at the about mid-height of the 

column): 

 

     0 02 01 020,6 0,4 0,4 ,eM M M M            (4.1-211) 

 

where: 01M  and 02M  are the first order end moments including the effect of the 

imperfections acting on the column. Moments 01M  and 02M  should have the same 

sign if they give a tension of the same side, otherwise opposite sign. Furthermore, 

02 01M M  ( 02M  is numerically larger of the elastic end moment acting on the 

column). 

The nominal second order moment 2M  acting on the column is given by the 

following expression:    

 

 2 2,EdM N e        (4.1-212) 

 

where: EdN  is the design value of the axial force; 

           2e  is the deflection equal to    2

01/ / ;r l c   

           1/r is the curvature; 

           0l  is the effective length; 

           c is a factor depending on the curvature distribution. 

For the constant cross section, 10c  ( 2π ) is normally used. If the first order 

moment is constant, a lower value should be considered (  8c  is a lower limit, 

corresponding to the constant total moment). 

It should be noted, that the value 2π  corresponds to a sinusoidal curvature 

distribution. The value for the constant curvature is  8c . Note, that c depends on 

the distribution of the total curvature, whereas 0c  depends on the curvature 

corresponding to the first order moment only.  

Curvature. 

For members with constant symmetrical cross sections (including 

reinforcement), the following may be used: 
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    
0

1
1/ ,r φr k k

r
            (4.1-213) 

 

where: rk  is a correction factor depending on the axial force (load); 

           φk  is a factor for the concrete creep taking into account. 

 

            
 




0

/
1/ ,

0,45

yd sf E
r

d
    (4.1-214) 

 

where: d  is the effective depth. 

If all the reinforcement is not concentrated on the opposite sides, but the part 

of it is distributed parallel to the plane of bending, d, is defined as follows: 

 

            2 ,sd h i           4.1-215) 

 

where: si  is the radius of gyration of the total reinforcement area. 

Correction factor rk  from the Expression (4.1-213) should be taken as follows: 

 

      / 1,r u u balk n n n n       (4.1-216) 

 

where: 


,Ed

c cd

N
n

A f
 is a relative axial force; 

           EdN  is the design value of axial force; 

             1 ,un ω  where 





;
s yd

c cd

A f
ω

A f
 

            baln  is the value of η at maximum moment resistance and the value 0,4 may 

be used; 

            sA  is the total area of reinforcement; 

            cA  is the area of concrete cross section. 

The effect of creep should be taken into account by the following factor: 

 

  1 1,φ effk β         (4.1-217) 

 

where: effφ  is the effective creep ratio.            

 

  0,35 /200 /250,ckβ f λ          (4.1-218) 

 

where: λ  is the slenderness ratio.            

Once, EdN  and EdM  are known, the area of longitudinal steel can be evaluated 

using an appropriate procedures in accordance with Section 4.1.2 or column design 

charts. 
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4.1.3.4 Biaxial bending 

The general method, described in Section 4.1.3.2 may also be used for biaxial 

bending. The following provisions apply when simplified methods are used. Special 

care should be taken to identify the section along the member with the critical 

combination of moments. 

Separate design in the each principal direction, disregarding biaxial bending, 

may be made as a first step. Imperfections need to be taken into account only in the 

direction where they will have the most unfavourable effect. 

No further check is necessary if the slenderness ratios satisfy the following two 

conditions: 

 

 / 2, and / 2,y z z yλ λ λ λ      4.1-219) 

 

and the relative eccentricities ey/heq and ez/beq (see Figure 4.1-30) satisfy one the 

following conditions: 

 

 
/ /

0,2, or 0,2,
/ /

y eq z eq

z eq y eq

e h e b

e b e h
             (4.1-220) 

 
where: ,b h  are the width and the depth of the cross-section;         

            = 12, and = 12eq y eq zb i h i  for an equivalent rectangular section;   . 

           ,y zλ λ  are the slenderness ratios 0 /l i  with respect to y- and z-axis 

respectively; 

           ,y zi i  are the radii of gyration with respect to y- and z-axis respectively; 

            , /z Ed y Ede M N  is the eccentricity along z-axis; 

            , /y Ed z Ede M N  is the eccentricity along y-axis; 

                ,Ed yM  is the design moment about y-axis, including second order moment; 

                ,Ed zM  is the design moment about z-axis, including second order moment; 

                EdN  is the design value of the axial load in the respective load combination. 
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Figure 4.1-30 – Definition of the eccentricities ye  and ze  (Figure 5.8 from EN 1992 [N3]) 

 

If the condition of Expression (4.1-219) and Expression (4.1-220) is not 

fulfilled, biaxial bending should be taken into account including the second order 

effects in the each direction. In the absence of an accurate cross section design for 

biaxial bending, the following simplified criterion may be used: 

 

  
      

   

,,

, ,

1,0,

aa

Ed yEd z

Rd z Rd y

MM

M M
            (4.1-221) 

 

where: , /Ed z yM  is the design moment around the respective axis, including a second 

order moment; 

           , /Rd z yM  is the moment resistance in the respective direction;  

            a is the exponent: for circular and elliptical sections  2a ; for rectangular 

cross sections:   / 0,1 1,0;Ed RdN N a    / 0,7 1,5;Ed RdN N a  

  / 1,0 2,0Ed RdN N a  with linear interpolation for intermediate values; 

           EdN  is the design value of axial force; 

              Rd c cd s ydN A f A f  is the design axial resistance of section ( cA  is the gross 

area of the concrete cross-section; sA  is the area of longitudinal reinforcement).  

Examples to section 4.1.3 

Example 1. Column supporting an axial load and uni-axial bending 

An internal column in a multi-storey building is subjected to an ultimate axial 

load ( EdN ) of 1600 kN and bending moment ( EdM ) of 60 kN·m including effect of 
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imperfections. Design the column cross-section assuming  230 N/mmckf , 

 2500 N/mmykf  and   5 mmckc . 

Cross-section. 

Since the design bending moment is relatively small, use equation to size the 

column: 

 

     1 1 / .u s yd c cdn ω A f A f                               (E 4.1-6) 

 

Clause 9.5.2 of EN 1992 [N3] stipulates that that the percentage of longitudinal 

reinforcement, sA , should generally lie within the following limits: 

 

greater of 
0,10 Ed

yd

N

f
 and  0,002 0,04 .c s cA A A             (E 4.1-7) 

 

Assuming that the percentage of reinforcement is equal to, say, 2 %, gives: 

 0,02sc cA A . 

Substituting this into the above equation gives: 

 
 

   

6 0.02 (500/1.15)1.6 10
1 .

(0.85 30/1.5) (0.85 30/1.5)
c

c c

A

A A
 Hence,  262267mm .cA  For a square 

column   62267 250mm.b n  Therefore a 300 mm square column is suitable. 

Longitudinal steel. Design moment, EdM . 

Minimum eccentricity,    0

300
10mm 20mm

30 30

h
e . 

Minimum design moment,        3 3

0 20 10 1.6 10 32 kN m .Ede N M  

Hence,   60 kN mEdM M  assuming  limλ λ . 

Design chart. 

Minimum cover to links for exposure class XC1, , 15mmmin durc . 

Assuming diameter of longitudinal bars Ø 25mm , minimum cover to main 

steel for bond, , 25 mmmin bc  and the nominal cover, 

     , 25 5 30 mmnom min b devc c c . 

Assuming diameter of links, /Ø 8mm  minimum cover to links 

        /

min,30 8 5Ø 17 mm 15 mmnom dev durc c c . 

Therefore,   2 30 25/2 42,5 mmd ,  2 42.5
0,142

300

d

h
. 

Round up to 0,15 and use chart from the Figure 4.1-26. 

Longitudinal steel area. 


 

   

61.6 10
0,593;

300 300 30
Ed

ck

N

b h f
 


 

   

6

2 2

60 10
0,074;

300 300 30
Ed

ck

M

b h f
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 
 

   

500
0.28

300 300 30

s yk s

ck

A f A

b h f
 (see Figure 4.1-25), 

  21512 mm .sA  

Provide 4Ø25 S500 (1960 mm2). 

  / 1960/(300 300) 2,2 %sc cA A  (acceptable). 

Links. 

Diameter of links is the greater of: 6 mm;    
1 1

25 6,
4
Ø 25 mm

4
. 

Spacing of links should not exceed the lesser of:    20 20 25Ø 500 mm; the 

least dimension of column, that is equal to 300 mm; 400 mm. 

Therefore, provide Ø8 links at 300 mm centres. 

 

Figure E 4.1-6 – Classification of a column in accordance with EN 1992 [N3] 

 

Determine if column GH shown in Figure E 4.1-7  should be designed for first 

or second order effects assuming that it resists the design loads and moments in b). 

Assume the structure is non-sway and  225 N/mm .ckf  

 

Figure E 4.1-7 – Input data for the worked example Example 1  

 

Slenderness ration of column GH. 

Effective height. 

 
      

  

3
6

3

275 550
2 ( / ) 2 1,525 10 ;

12 5 10
beamA Ak EI L E E  
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 
      

  

3
6

3

275 550
2 ( / ) 2 1,089 10 ;

12 7 10
beamB Bk EI L E E  

 
     

  

3
5

3

275 275
( / ) 1,362 10 ;

12 3,5 10
columnGH GHk EI L E E  


   

   

5

6 6

1,362 10
0,052 0,1.

1,525 10 1,089 10

columnGH

G

beamA beamB

k E
k

k k E E
 

 0,1Hk  (since column is assumed to be fully fixed at the base). 

  
       

    

21
0

1 2

0,5 1 1 ;
0,45 0,45

kk
l l

k k
 

   
           

    
0

0,1 0,1
0,5 3500 1 1 0,59 2068 mm.

0,45 0,1 0,45 0,1
l l  

Radius of gyration. 

Radius of gyration, i, is given by: 

      3( / ) [( /12)/( )] / 12 275/ 12 79,4 mmi I A b h b h h . 

Slenderness ratio. 

Slenderness ratio, λ, is given by: 

  0 2067
26.

79,4

l
λ

i
 

Critical slenderness ratio, limλ . 

 0,7A ; 1,1B ;        01 021,7 1,7 ( / ) 1,7 ( 29,4/58,8) 2,2mC r M M ; 

       3/ 1402 10 /275 275 (0,85/1,5) 25 1,31Ed c cdn N A f ; 

         lim 20 / 20 0,7 1,1 2,2/ 1,31 29,6A B C n ; 

Since  limλ λ , only the first order effects are needed to be considered. 

 

Example 2. Classification of a column in accordance with EN 1992 [N3] 

Determine if column PQ should be designed for second order effects assuming 

it the design loads and moment shown in Figure E 4.1-8. Further assume the 

structure is non-sway and  225 N/mm .ckf  

Figure E 4.1-8 – Input data for the worked Example 2  
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Slenderness ration of column PQ. 

Effective height. 

 
      

  

3
6

3

275 550
2 ( / ) 2 1,525 10 ;

12 5 10
beamA Ak EI L E E  

 
      

  

3
6

3

275 550
2 ( / ) 2 1,089 10 ;

12 7 10
beamB Bk EI L E E  

 
     

  

3
4

3

275 275
( / ) 6,8085 10 ;

12 7 10
column PQ PQk EI L E E  


   

   

4

6 6

6,8085 10
0,026 0,1.

1,525 10 1,089 10

column PQ

P

beamA beamB

k E
k

k k E E
 

 0,1Qk  (since column is assumed to be fully fixed at the base). 

  
       

    

21
0

1 2

0,5 1 1 ;
0,45 0,45

kk
l l

k k
 

   
           

    
0

0,1 0,1
0,5 7000 1 1 0,59 4136 mm

0,45 0,1 0,45 0,1
l l . 

Radius of gyration. 

Radius of gyration, i, is given by: 

      3( / ) [( /12)/( )] / 12 275/ 12 79,4 mm.i I A b h b h h  

Slenderness ratio. 

Slenderness ratio, λ, is given by: 

  0 4136
52.

79,4

l
λ

i
 

Critical slenderness ratio, limλ .  

 0,7A ; 1,1B ;        01 021,7 1,7 ( / ) 1,7 ( 27,5/55) 2,2mC r M M ; 

       3/ 696 10 /275 275 0,567 25 0,6493;Ed c cdn N A f  

        20 / 20 0,7 1,1 2,2/ 0,6493 42limλ A B C n ; 

Since  limλ λ  column will need to be designed for second order moments. 

 

Example 3. Column design: limλ λ ; limλ λ .  

Design the columns in Example 1 and Example 2. Assume the effective creep 

coefficient, efφ , is 0,87 and   5 mm.devc  

Column GH. 

Longitudinal steel. Design moment, EdM . 

     
         

    

0 1 2068
5,2 mm.

2 200 2
i i

l
e  

Minimum eccentricity, 
   

      
   

0

275
9,2 mm 20 mm;

30 30

h
e  

Minimum design moment,      3

0 20 10 1402 28 kN m;Ede N  

First order end moment,         3

02 58,8 5,2 10 1402 66,1 kN m;i EdM M e N  
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Hence, design moment,  66,1 kN m.EdM  

Longitudinal steel area. 
Assume: diameter of longitudinal steel, Ø 32 mm; diameter of links, 

/Ø 8 mm ; minimum cover for durability,  min, 25 mmdurc  

     /

min, 32 mmØ 8Ø 24bc    nominal cover to reinforcement, 

     25 5 30 mmnom devc c c . 

Therefore,       2

//2 32Ø Ø /2 8 30 54 mmnomd c ;  2 54
0,196

275

d

h
. 

Use graph with 2 / 0,2d h  (see Figure 4.1-26): 


 

   

6

2 1,402 10
0,742;

275 275 25ck

N

b h f
 


 

   

6

2 2

66,1 10
0,127;

275 275 25
Ed

ck

M

b h f
 

 
 

   

500
0,7

275 275 25

s yk s

ck

A f A

b h f
 (see Figure 4.1-26), 

  22647 mmsA . 

Provide 4Ø32 S500 (3220 mm2). 

Links. 

Diameter of links is the greater of: 6 mm;    
1 1

3
4

Ø 2 8 mm
4

. 

Spacing of links should not exceed the lesser of:    20 20 32Ø 640 mm ; the 

least dimension of column, that is equal to 275 mm; 400 mm. 

Therefore, provide Ø8 at 275 mm centers. 

 

Figure E 4.1-9 – Column cross-section with the reinforcement arrangement  

 

Column PQ. 

First order end moments, 01M , 02M . 

     
         

    

0 1 4136
10,34 mm;

2 200 2
i i

l
e  

     310,34 10 696 7,2 kN m;i Ede N  

        01 27,5 7,2 20,3 kN m;Q i EdM M e N  

      02 55 7,2 62,2 kN m;P i EdM M e N  

Equivalent first order moment, 0EdM . 

          0 0 02 01 0.2(0,6 0,4 ) 0,4 0,4 62,2 24,9 kN m;Ed eM M M M M  

           0 0 0.2(0,6 62,2 0,4 ( 20,3)) 29,2 kN m 0,4 24,9 kN m;Ed eM M M  
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Nominal second order moment, 2M . 

Assume: diameter of longitudinal steel, Ø 20 mm ; diameter of links, 

/Ø 8 mm ; minimum cover for durability,  min, 30 mmdurc  

    /

min, 20Ø mØ 8 12 mbc    nominal cover to reinforcement, 

     30 5 35 mmnom devc c c . 

Thus: 

        /( /2 ) 27Ø Ø 5 (20/2 8 35) 222 mmnomd h c ; 


   

 

3
5

0

1 (500/1,15)/200 10
2,176 10

0,45 0,45 222

ydε

r d
; 

       


0,35 /200 /150 0,35 25/200 52/150 0,1283
0,45

yd

ck

ε
β f λ

d
; 

       1 1 0,1283 0,87 1,111 1,0φ efK β φ . 

Assume  0,8rK : 

  
         

 

5 5

0

1 1
0,8 1,111 2,176 10 1,934 10r φK K

r r
; 

 

 
      
 

2 5 2

2 0

1
/10 1,934 10 4136 /10 33,1 mme l

r
; 

      3

2 2 696 33.1 10 23 kN mEdM N e . 

Design moment, EdM . 

   0 2 02 01 2maximum of { ; ; 0,5 }Ed EdM M M M M M ; 

         

 

maximum of {29,2 23 52,2 kN m; 62,2 kN m; 20,3 0,5 ( 23)

31,8 kN m}.

EdM
 

Longitudinal steel area. 

      2

//2 20Ø Ø /2 8 35 53 mmnomd c ; 

 2 53
0,193

275

d

h
. 

Use graph with 2 / 0,2d h  (see Figure 4.1-25): 


 

   

3696 10
0,368;

275 275 25
Ed

ck

N

b h f
 


 

   

6

2 2

62.2 10
0,12;

275 275 25
Ed

ck

M

b h f
 

 
 

   

500
0,3

275 275 25

s yk s

ck

A f A

b h f
   21134mmsA . 

Provide 4Ø20 S500 (1260 mm2). 

Checking of the assumed value of rK . 

           1 / 1 1260 (0,87 500)/(275 275 0,567 25) 1,51u s yd c cdn A f A f ; 

       3/ 696 10 /(275 275 (0,85/1,5) 25) 0,65Ed c cdn N A f ; 

 
  

 

1,51 0,65
0,775

1,51 0,4
u

r

u bal

n n
K

n n
. 
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Therefore assumed value is acceptable. 

Links. 

Diameter of links is the greater of: 6 mm;    
1 1

2
4

Ø 0 5 mm
4

. 

Spacing of links should not exceed the lesser of:    20 20 20Ø 400mm ; the 

least dimension of column is equal to 275 mm; 400 mm. 

Therefore, provide Ø6 links at 275 mm centres. 

 

Figure E 4.1-10 – Column cross-section with the reinforcement arrangement  

 

Example 4. Column subjected to combined axial load and biaxial bending 

[7] 

Check the column (see Figure E 4.1-11) using the procedure in EN 1992 [N3]. 

 

Figure E 4.1-11 – Column cross-section with the reinforcement arrangement 

 

Relative eccentricities. 

The column is subject to an axial load, 1250 kNEdN , a moment about the 

major axis (y-y),  35 kN mEdyM  and a moment about the minor axis (z-z), 

 25 kN mEdzM . 


  



6

3

35 10
28 mm

1250 10

Edy

y

Ed

M
e

N
; 


  



6

3

25 10
20 mm

1250 10
Edz

z

Ed

M
e

N
; 

    ( / ) ( / ) (28/275) (20/275) 1,4 0,2y ze h e b . 

Therefore, check column for bi-axial bending. 

Design ultimate moment of resistance, RdM . 

   2 35 8 25/2 55,5 mmd  and  2 / 55,5/275 0,2d h ; 

 
 

   

1960 500
0,518

275 275 25

s yk

ck

A f

b h f
; 
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
 

   

31250 10
0,66

275 275 25
Ed

ck

N

b h f
; 


 2

0,105Rd

ck

M

b h f
 (see Figure 4.1-25)   54,6 kN mRdM . 

Exponent, a. 
          

  

2 3[275 (0,85 25/1,5) 1960 (500/1,15)] 10

1071,35 852,17 1923,5 kN;

Rd c cd s ydN A f A f
 

 
1250

0,65
1923,5

Ed

Rd

N

N
. 

From linear interpolation between 1α , when  0,1Ed

Rd

N

N
, and 1,5α , when 

 0,7Ed

Rd

N

N
, the following value of 1,46α  is obtained. 

Resistance check. 

       
                      

1,46 1,46
6 6

6 6

25 10 35 10
1 0,32 0,52 0,84 1

54,6 10 54,6 10

aa

EdyEdz

Rdz Rdy

MM

M M
. 
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4.2 SHEAR 

4.2.1 SHEAR CAPACITY OF RC-BEAMS 

4.2.1.1 Formation of diagonal cracks due to shear 

The so-called shear failure is one of the failure mode of RC structural element of 

which the mechanism is much different from flexural failure. In actual RC-structures, 

there is a combination of forces as shear forces and flexural moment, axial force, 

torsional moment and their failure modes are very complicated. 

The shear failure follows a formation of diagonal cracks. It is brittle failure 

compared with flexure tension failure. Therefore, in the case of design involving the 

ductility of structures such as seismic design, this type of failure has to be avoided. 

 4.2.1.1.1 Principle tensile stress in an elastic beam 

To illustrate different type of shear failure, let’s consider a beam that is loaded 

by a four point bending test (see Figure 4.2-1). Between the support and the point 

load, a shear force and a moment is presented. The moment decreases linearly over 

the distance from the point load to the support. 

In the case of simply supported beam subjected to two-point concentrate loading 

(see Figure 4.2-1), the moment and shear distribution is such that the moment is 

constant in the mid-span and in two side spans, shear force is constant. These two 

side spans are called «shear span». For the elastic beam, the flexural stress σ , shear 

stress ν  and the principal strains and stresses are determined according to the beam 

theory.  

Since concrete material is weak in tension, the magnitude and direction of 

principal tensile stresses are important. 

Figure 4.2-1 c represents the distribution of principal stresses across the span 

of homogeneous concrete beam. The direction of the principal compressive stresses 

takes the form of an arch, while the tensile stresses have a curve of a catenary and 

suspended chain. Towards mid-span, where shear is low and the bending stresses 

are dominant, the direction of the stresses tends to be parallel to the beam axis. Near 

the supports, where the shearing forces are greater, the principal stresses become 

inclined.  

The tensile stresses due to shear are liable to cause diagonal cracking of the 

concrete near to the support so that shear reinforcement must be provided. 

As it was shown in Figure 4.2-1 c, at the location of zero shear stress, i.e. the 

extreme tension fiber, the principal tensile stress takes the near horizontal direction. 

At the point of zero normal stress σ, i.e., the neutral axis, the principal tensile stress 

is equal to shear stress, and its direction is 45º with respect to member axis (see 

Figure 4.2-1 b and c). 
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Figure 4.2-1 – Stress conditions in the elastic beam subjected to moment and shear force  
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4.2.1.1.2 Types of the cracks, modes of shear failure and crack patterns 

As was shown earlier, before cracking, RC-beams can be considered as an elastic 

body. Hence, the maximum principal tensile stress occurs at the extreme tension fiber 

within the mid-span, and its direction is parallel to the member axis. As this principal 

tensile stress (strain) increases and exceeding the tensile strength of concrete, cracks 

occurs in the direction perpendicular to the direction of principal tension stress. 

These cracks are called «flexural cracks» (see Section 4.1). 

After the flexural crack is formed, a RC-beam is no longer considered to be an 

elastic body. However, since the tensile force is carried by longitudinal reinforcement, 

the state of stress even after flexural cracking is still similar to that of the principal 

stress of an elastic beam. 

When applied load is increased, the flexural crack propagates to the compression 

zone of the cracked section. Also in both of side spans, the formation of cracks occurs 

with an inclination with respect to the member axis. These cracks, in general case, 

are called «diagonal cracks» or «shear cracks». 

The types and formation of cracks depends on the span-to-depth ratio of the 

beam and loading. These variables influence the moment and shear along the length 

of the beam. 

As was shown, in general case, for simply supported beam under uniformly 

distributed load (in case without prestressing), three types of cracks are identified 

(see Figure 4.2-2):  

1) flexural cracks: these cracks form at the bottom near the midspan and 

propagate upwards; 

2) web-shear cracks: these cracks form in the web of the beam near the 

neutral axis (where proved to be the highest shear stress region) close to the support 

and propagate inclined to the beam axis; 

3) flexural-shear cracks: these cracks form at the bottom due to flexure 

and propagate due to both flexure and shear. 

 

 
Figure 4.2-2 – Types of the cracks in reinforced beam 
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Figure 4.2-3 – Types of the cracks failure (crack patterns) depending on the span-to-depth 

ratio of the beam and loading [1] 

 

As was shown in [14], for beam with low span-to-depth ratio or inadequate shear 

reinforcement, the failure can be due to shear.  

A failure due to shear is sudden as compared to a failure due to flexure.  

The occurrence of a mode of failure depends on the span-to-depth ratio, loading, 

cross-section of the beam, amount and anchorage of reinforcement. The modes of 

failure are explained next: 

1) Flexural shear failure. 

Flexural shear failure is a mechanisms in which flexure induced crack grow at 

an angle into the web (see Figure 4.2-4 a). 

Therefore instead of cracks perpendicular to the longitudinal reinforcement, a 

crack rotation will occur. Increasing the load leads to larger crack and eventually 

causes the beam to fail do to this mechanisms. 

In general flexural shear is caused by a standard load situation, with a normal 

ratio between the flexural and shear stresses. The use of transverse reinforcement 

such as stirrups will present the propagation of crack into the web.   
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Figure 4.2-4 – Shear failure modes 
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1.1) Diagonal tension failure. 

In this mode, an inclined crack propagates rapidly due to inadequate shear 

reinforcement (see Figure 4.2-4 a). 

When diagonal crack occurs, the tensile force carried by concrete is released, 

and if reinforcement effective in the direction of principal tensile stress is not 

provided, the RC-beam fails suddenly under so-called «diagonal tension failure» 

mode. 

Diagonal tension failure usually occurs in concrete members with low amount 

of stirrups and longitudinal reinforcement. For concrete members with low amount 

of web reinforcement but adequate longitudinal reinforcement ratio to form a 

compression zone, shear cracks may easily initiate from former flexural cracks but 

do not pass through the compression zone. 

Yielding of the shear reinforcement is a mechanisms that is to be expected if the 

structural design of the beam is correct. In this case the stirrups will yield before 

failure occurs. The failure will be accompanied by a considerable deformations, 

implying that the failure mechanisms provides warning before reaching the moment 

of failure. 

This type of failure has a smeared crack pattern, with a small number of 

dominating cracks. There are no typical load situation in which only this type of 

failure occurs. This type of mechanisms is dependent on the type of structure and 

how it has been designed. 

1.2) Shear compression failure. 

There is crushing of the concrete near the compression flange above the tip of 

the inclined crack (see Figure 4.2-4 a). 

A RC-beam can resist increasing loads after the diagonal crack formation. The 

stress state becomes like a compression arch formed by diagonal cracks. In this case, 

the beam fails when this arch crushes under diagonal compression. This type of 

failure mode depends largely on the shear-effective depth ratio (a/d).  

2) Shear tension failure. 

Shear tension failure is a mechanisms in which a diagonal crack occurs due to 

tension component of the principal stress. When we consider the strut and tie 

analogy, this failure can be considered as failure of the compression diagonal due to 

a biaxial tension-compression state. 

The main crack occurs at a varying angle of approximately 30º to 45º to the 

longitudinal axis, and is characterized by a sudden (brittle) development into the web 

of the beam (Figure 4.2-4 b). This means that this type of shear fracture can be 

considered to be a failure type without warning. In general this type of failure occurs 

for beam structures that have a high level of shear stress and a relative low level of 

flexural stress. For example, beam regions near supports are sensitive to this type of 

fracture. 

In some publication term «shear tension failure» is defined as a failure due to 

inadequate anchorage of the longitudinal bars, the diagonal cracks propagate 

horizontally along the bars (see Figure 4.2-4 b). 
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3) Web crushing failure.  

The concrete in the web crushes due to inadequate web thickness (see           

Figure 4.2-4 c). 

Web crushing occur when a structure has a high shear reinforcement ratio and 

a small amount of web surface. This implies that if a beam is reinforced with a large 

amount of stirrups, the compression diagonal may fail due to crushing of the 

concrete, before the stirrups have the possibility of reaching their yield strength. In 

principle this mechanisms is the equivalent of failure of the compression zone in 

heavily reinforced structure loaded in flexure. There are no typical loading situations 

where only this type of failure occurs. However, this failure does tend to occurs in T-

beam with large flanges and small web dimensions. 

4) Arch rib failure: for deep beams, the web may buckle and subsequently 

crush (see Figure 4.2-4 d). 

For case of so-called deep beams, i.e., where the shear span-effective depth ratio 
is very small 1,0a /d , the tied-arch shear resisting mechanism is formed as a 

compression strut joining the loading and support points, and this failure mode, 

sometimes is called «deep-beam failure». 

It can be summarized, that the concrete itself can resist shear by a combination 

of the un-cracked concrete in the compression zone, the dowelling action of the 

bending reinforcement and aggregate interlock across tension crack but, because 

concrete is weak in tension, the shear reinforcement is designed to resist all tensile 

stresses caused by the shear forces. 

Even where the shear forces are small near the centre of span of a beam a 

minimum amount of shear reinforcement in the form of links must be provided in 

order to form a cage supporting the longitudinal reinforcement and to resist any 

tensile stresses due to factors such as thermal movement and shrinkage of the 

concrete. 

The actual behaviour of reinforced concrete in shear is complex, and difficult to 

analyze theoretically, but by applying the results from many experimental 

investigations, reasonable simplified procedures for analyses and design have been 

developed. 

The objective of design for shear is to avoid shear failure. The beam should fail 

in flexure at its ultimate flexural strength. Hence, each mode of failure is addressed 

in the design for shear. The design involves not only the design of the stirrups, but 

also limiting the average shear stress in concrete, providing adequate thickness of the 

web and adequate development length of the longitudinal bars. 

4.2.1.2 Shear transfer in cracked concrete 

The transfer of shear force in cracked reinforced concrete is characterized by 

number complex phenomena, consisting of: 1) aggregate interlock; 2) axial steel 

stress; 3) residual tensile stresses across the crack. These mechanisms are strongly 
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dependent on the state of stress, the opening of the crack, and the restraint 

conditions. 

The shear transfer capacity is also strongly dependent on the interaction between the 

mentioned transfer mechanisms. When shear stresses arise across a crack surface, 

a displacement (slip) tangential to the crack face occurs and the crack surfaces tend 

to separate. The reinforcing bars provide resistance against the separation of this 

crack face via the dowel mechanism and the axial steel stress. These mechanisms 

cause a strain in the steel and a decreased bond action, this than permits a crack to 

increase in width. The amount of reinforcement is therefore of large influence in the 

containment of the crack face. The shear transfer mechanisms described are depicted 

in Figure 4.2-5 and are elaborated on in the following section. 

 

 

a)                                     b)                                       c) 

a) – aggregate interlock; b) – dowel action; c) – axial steel stress 

Figure 4.2-5 – Shear transfer mechanisms in cracked concrete 

 

Aggregate interlock. In normal strength concrete, the strength of the aggregate 

material will exceed the strength of the cement matrix material. Therefore cracking in 

concrete will commonly occur through the matrix and the bond zone between the 

matrix and the aggregate, as is depicted in Figure 4.2-5 a. Because the protruding 

aggregate particles on the crack face are lager than the crack width, the crack plane 

is considered to be rough. Therefore the crack plane provides resistance against slip, 

and is capable of transmitting shear force. 

This principle is called aggregate interlock. The magnitude of the aggregate 

interlock mechanism is dependent of the width of the crack. A lager crack width 

means a reduction of aggregate interlock because of the decrease of contact area 

between the aggregate particles. Another parameter that influences the aggregate 

interlock mechanism is the aggregate size itself; smaller particles will provide a 

smoother crack plane and therefore less friction. When considering high strength 

concrete, the aggregate interlock contribution becomes even less, due to smoother 

crack faces. This is caused by the fact that the crack will not only propagate through 

the cement matrix, but also through the aggregate particles. 

Dowel action. A dowel is a reinforcement bar that is loaded by transverse force. 

The mechanism of dowel action is based upon the behavior of the bar and 

surrounding concrete. The dowel action consist of two components, namely: bending 

action and shear action of the reinforcing bar. The contribution of dowel action to the 

shear resistance is a function of the amount of concrete cover of the longitudinal bars 
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and the degree to which the vertical displacements of those bars at the inclined crack 

are restrained by transverse reinforcement (see Figure 4.2-5 b). 

Axial steel stress. Reinforcing bars generally cross cracks at different angles, 

this is particularly the case for transverse shear reinforcement. The component of the 

steel stress normal to the crack plane provides a contribution to the transfer of 

stresses across a crack. The magnitude of this force is strongly dependent on the 

amount of reinforcement and the bond properties. In members with shear 

reinforcement a large portion of the shear is carried by the shear reinforcement after 

diagonal cracking has occurs. Next to the contribution to the shear capacity, shear 

reinforcement also provides a level of restraint against the growth of inclined cracks 

and thus helps to ensure a more ductile behaviour (see Figure 4.2-5 c). 

Residual stresses. When cracks are formed in concrete, the concrete still has 

the ability to transfer tensile stresses across the crack face. 

These so-called residual stresses are present until the crack width becomes too 

large. This behaviour is described by the strain softening diagram as was discussed 

in Chapter 3. 

Shear stress in the compression zone. Shear stresses that are present in the 

compression zone of the concrete, contribute to the shear resistance in a concrete 

member. The magnitude of that shear resistance is limited by the depth of the 

compression zone. Therefore, in relative slender beams without axial compression, 

the shear contribution becomes relatively small, due to the minimal height of the 

compression zone. 

4.2.1.3 Internal forces in a beam without stirrups 

The forces transferring shear across an inclined crack in a beam without stirrups 

are shown in Figure 4.2-6. 

 

 
Figure 4.2-6 – Internal forces in a cracked beam without stirrups (see Figure 6-13 from [15]) 
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As was shown in [15] shear is transferred across line A-B-C by ,Rd cyV , the shear 

in the compression zone, by , ,Rd agg yV , the vertical component of the shear transferred 

across the crack by interlock of the aggregate particles on the two faces of the crack, 

and by dV , the dowel action of the longitudinal reinforcement. Immediately after 

inclined cracking, as much 40 to 60 % of the total shear carried by dV  and ,Rd cyV  

together. 

As the crack widens, aggV  decreases, increasing the fraction of shear resisted by 

,Rd cyV  and dV . The dowel shear, dV , leads to splitting crack in the concrete along the 

reinforcement. 

When this crack occurs, dV  drops, approaching zero. When aggV  and dV  

disappear, so ,Rd cyV  and  /

1cV , with the result that all the shear and compression are 

transmitted in the depth AB above the crack [15]. At this point in the loading, the 

section A-B is too shallow to resist the compression forces needed to equilibrium. As 

a result, this region crushes or buckles upward. 

The shear failure of slender beam without stirrups is sudden and dramatic. 

4.2.1.4 Behaviour of beams with web reinforcement by [15] 

The forces in the beam with stirrups and an inclined crack are shown in        

Figure 4.2-7. The loading history of such beam is shown qualitatively in                 

Figure 4.2-8. 

Inclined cracking causes the shear strength of the beams to drop below the 

flexural capacity, as shown in Figure 4.2-8. The purpose of web reinforcement is to 

ensure that the full flexural capacity can be developed.  

 

 

 

Figure 4.2-7 – Internal forces in a cracked beam with stirrups (see Figure 6-17 from [15]) 
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Figure 4.2-8 – Distribution of internal shears in a beam with web reinforcement                    

(see Figure 6-18 [15]) 

 

Prior to inclined cracking, the strain in the stirrups is equal to the corresponding 

strain of the concrete. Because concrete cracks at very small strain, the stress in the 

stirrups prior to inclined cracking will not exceed 20 to 30 MPa. Thus, stirrups do not 

prevent inclined crack from forming; they come into play after the cracks have formed. 

The shear transferred by tension in the stirrups, ,Rd sV , does not disappear when crack 

opens wider, so there will always be a compression force /

1cF  and /

,Rd cyV  acting on the 

part of the beam below the crack. As a result, 2stF  will be less than     1stF , the 

difference depending on the amount of the reinforcement. The force 2stF  will, however, 

be larger than flexural tension  /st EdF M z  based on the moment at C. Components 

of the internal shear resistance must equal to the applied shear, indicated by the 

upper 45º line. Prior to flexural cracking, all the shear is carried by the uncracked 

concrete. Between flexural and inclined cracking, the external shear is resisted by 

,Rd cyV , ,agg yV  and dV . Eventually, the stirrups crossing the crack yield, and ,Rd sV  stay 

constant for higher applied shears. Once the stirrups yield, the inclined crack opens 

more rapidly. As the inclined crack widens, ,agg yV  decreases further, forcing dV  and 

,Rd cyV  to increase at an accelerated rate, until either a splitting (dowel) failure occurs, 

compression zone crushes due to combined shear and compression, or web crushes. 

Each component of this process except ,Rd sV  has a brittle load-deflection response. As 

a result, it is difficult to quantify the contributions of ,Rd cyV , dV  and   ,agg yV . In design, 

they are lumped together as ,Rd cV , referred to somewhat incorrectly as shear carried 

by the concrete. Thus, shear resistance RdV  is assumed to be: 

 

, ,R Rd c Rd sV V V                                          (4.2-1) 
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4.2.2 TRUSS ANALOGY BY RITTER AND MÖRSH 
AND ITS MODIFICATION 

Science the early days of reinforced concrete the so-called classical truss analogy 

developed by Ritter and Mörsh was proposed for shear design of reinforced concrete 

members [11, 12].  

In 1899 and 1902, respectively, the Swiss engineer Ritter and German engineer 

Mörsh independently published papers proposing the truss analogy (see                

Figure 4.2-9) for the design of reinforced beams for shear. 

Mörsh analyzed the angle of inclination on two simply supported T-beams 

subjected to increasing uniformly distributed load. He concluded that the shear 

cracking angle, θ, was variable and not mathematically defined. Consequently, Mörsh 

derived an equation for the required amount of shear reinforcement assuming  

 º45θ . 

This model consists of a tension ties (longitudinal reinforcement bars), a top 

compressive chord, vertical or inclined tension ties between 45º and 90º (stirrups), 

and 45º inclined concrete compression struts. 

The truss is referred as the plastic truss model depending on plasticity in the 

nodes leading to a system, which is statically determinate. In this model the shear 

resisting force is given only by the shear reinforcement. The classical truss analogy is 

based on a truss model with parallel chords and web members connected by means 

of pin joints, where the concrete compressive struts are inclined at 45º with respect 

to the longitudinal axis of the beam while the shear reinforcement represents the 

tensile web members (see Figure 4.2-9).   

As was pointed in [14], according to Zilch and Zehetmaier [1], when the shear 

reinforcement (stirrups) is placed closely to each other the simple truss becomes a 

statically indeterminate truss (see Figure 4.2-9). Generally, the truss model may be 

considered as a statically determined simple truss composed of resultant forces from 

parallel tension and compression stress fields with pinned joints (see Figure 4.2-9). 

In 1960’s Leonhardt and Walter [10] did numerous beam tests called the 

«Stuttgarter Schubversuche» at the University of Stuttgart, Germany. Based on these 

tests series, they came to conclusion that Mörsh’s truss analogy was too conservative 

and had to be modified. It was stated, the stresses in shear reinforcement were 

considerably lower than those predicted by the truss analogy model. This is due to 

the contribution of other components to the shear carrying mechanism, among which 

the most significant are: contribution of concrete in the compression zone, aggregate 

interlock along inclined cracks and dowel action of the longitudinal reinforcement 

crossing the crack. Authors concluded that the actual top compressive chord should 

be inclined and that the angle θ between the compression strut and the x-axis of the 

member is often less than 45º and greatly depends on the shape of the member cross-

section. 
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a) – double frame; b) – single frame; c) – stress field mode; d) – chord forces

Figure 4.2-9 – Mörsh’s truss analogy model [11] 

Consequently, the forces in the tension ties (shear reinforcement) are reduced 

but the forces in the tension chord (longitudinal reinforcement) are increased (see 

Figure 4.2-10).  
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a) – modified truss action; b) – relation « swσ ν »  

Figure 4.2-10 – Modified truss action simply supported reinforced beam (a) and more realistic 

curve on the shear stress versus stress in the stirrups by Leonhardt (b) [10] 

 

Reinforced concrete beams subjected to shear have been traditionally designed 

using one of the two following methods: 

1) truss model with 45º compressive strut inclination angle and directly 

included the so-called concrete contribution (correct term) Δ cV  (see Figure 4.2-10 b). 

This method is the so-called standard method according to [11] and also referred as 

the extended Mörsh analogy.  

2) truss model with variable compressive strut inclination angle lower than 

45º. This method, based on plasticity theory, is accepted in the current European 

Codes [N3]. The truss model with variable compressive strut inclination angle is a 

logical extension of the application of the strut and tie models, which have already 

been included in various Codes [N3, N5], on standard structural members. This 

method fits in the consistent approach of structural analysis, design and detailing of 

reinforced concrete structures and members, such as beams, columns, plates, deep 

beams, corbels, beam-column joints etc., subjected to bending, shear and axial 

forces, torsion and punching shear. 

4.2.2.1 The variable strut inclination method 

4.2.2.1.1 Basic equations 

Consider a reinforced concrete beam with stirrups uniformly spaced at distance 

s, subjected to a design shear force EdV . The resulting strut angle is θ. Assuming the 

height of the analogous truss is z (lever arm), the number of links per strut is equal 

cotz θ

s
. The truss model of the reinforced concrete beam is shown in Figure 4.2-11.  

The notations in Figure 4.2-11 are as follows: 

,,  , Ed Ed Ed sV N M  are the design values of the cross-sectional forces: shear force, 

axial force and bending moment with respect to the centroid of the tensile 

reinforcement, respectively; 

swdF  and cwdF  are the tensile and compressive web member forces respectively; 
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sdF  and cdF  are the tensile and compressive chord member forces respectively; 

θ is the angle of inclination of the concrete compressive strut with respect to the 

longitudinal beam axis; 

α is the angle of inclination of the tensile web member (shear reinforcement) with 

respect to the longitudinal beam axis. 

 

 
Figure 4.2-11 – Forces of the truss model [1] 

 

Compressive stress in concrete cwdσ  as well as the force cwdF  in the compressive 

strut in Figure 4.2-11 should be taken with a negative sign  

(  0cwdσ  and  0cwdF ). Actually, stress in shear reinforcement swA  is defined as the 

web member forces cwdF  and swdF  distributed per area with width wb  and length /c  

and c, respectively:  

 

    ,c z cotθ cotα                                           (4.2-2) 

 

 cot cot    / sin sin .c c θ z θ θ α                             (4.2-3) 

 

Assuming that compressive struts represent the resultant of the inclined stress 

field, we get: 

 

 

 
 

cot

sin cot cot cot cot


  

     

2

/ 2

1
,

Edcwd Ed
cwd

w w w

V θF V
σ

b c b z θ θ α b z θ α
         (4.2-4) 

 

and:  

 

 
 

   
,

sin cot cot
swd Ed

swd

sw sw

F V
σ

a c a z α θ α
                   (4.2-5) 

 

where: wb  is the minimum beam web width; 



213 

 

           z  is the lever arm (distance between the centroid of compressive and tensile 

chord); 

            sw
sw

A
a

s
 is the cross-sectional area of the shear reinforcement with 

longitudinal spacing s.  

From Figure 4.2-11 it can be seen that a concrete struts are wb  width and 

  sin (cot cot )z θ θ α  deep. Hence, the compressive capacity of each strut, cwdF , is 

given by: 

 

    sin cot cot .cwd cwdF σ z θ θ α                            (4.2-6) 

 

Shear failure of the strut will not be occur provided cwdF  equal or exceeds the 

design shear force acting on the strut equal to 
sin

EdV

θ
, i.e.: 

 

     sin (cot cot ).
sin

Ed
cwd cwd

V
F σ z θ θ α

θ
                      (4.2-7) 

 

Replacing cwdσ  in Equation (4.2-7) with effective compressive strength of 

concrete cracked in shear  1cwd cdf ν f , along with  ,Ed Rd maxV V , we obtain the 

maximum design shear resistance of the member controlled (limited) by crushing of 

compression struts, ,Rd maxV : 

 

 

 


     


,  2

cot cot
sin .

1 cot
Rd max cwd w cwd

θ α
V F θ b z f

θ
               (4.2-8) 

For case  90ºα , cot 0α : 

 

 
  




,  2

cot
.

1 cot

w cwd
Rd max

b z f θ
V

θ
                                 (4.2-9) 

 

Using the identity  2 2cos sin 1θ θ  gives: 

 

 
   




, 2 2

cos sin

c s
.

o sin

w cwd
Rd max

b z f θ θ
V

θ θ
                          (4.2-10) 

 

Dividing top and bottom by cos sinθ θ  and simplifying gives: 

 

 


  





,  2 2

cos sin
cos sin

cos sin

cos sin

Rd max w cwd

θ θ
θ θV b z f

θ θ

θ θ

,              (4.2-11) 

 

and: 
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 
    


,  1

1
,

cot cot  
Rd max cd wV ν f b z

θ α
                     (4.2-12) 

 

where (in accordance with clause 6.2.3 (2) from EN 1992 [N3]): 

 0,9z d ; 

 
 

0,8

1,5
cc ck ck

cd

c

α f f
f

γ
 for 

2

N
50

mm
ckf ;  

Note: 1,0ccα  may be used here; 

   
 

1 0,6 1
250

ckfν  for 
2

N
50

mm
ckf ; 

θ  is the angle between concrete strut and axis beam (see Figure 4.2-11). 

Using the identity: 
 

   


1
 cos sin 0,5 sin2

cot cot  
θ θ θ

θ α
, Expression (4.2-12) 

can be transposed to make the concrete strut angle the subject of the formula as 

follows: 

 



 
 

   
    

  




,1
/

0,5 sin

0,153 1
250

Rd max w

ck
ck

V b d
θ

f
f

,                       (4.2-13) 

 

Expression (4.2-13) can be used to calculation the minimum strut angle for given 

value of applied shear by equating ,Rd max EdV V , subjected to the condition that cotθ  

lies between 1,0 and 2,5. 

Replacing swdσ  in Equation (4.2-5) with design yield strength of shear 

reinforcement ywdf  and  ,Ed Rd sVV , we obtain design shear resistance on member, 

limited by yielding of tensile reinforcement ,Rd sV : 

 

        ,  sin cot cot sinsw
Rd s swd ywd

A
V F α z f θ α α

s
,             (4.2-14) 

 

It will be noted from Equation (4.2-14) that the smaller angle θ  is, the greater is 

the shear capacity based on shear reinforcement. However, the shear capacity based 

on the crushing strength of the struts, given by Equation (4.2-12), decreases with 

decreasing values of θ  below 45º. Hence, the maximum capacity corresponds to the 

situation where the capacity based on the shear reinforcement just equals the 

capacity based on the strength of the strut. This implies that the actual conditions at 

failure may be established by using Equation (4.2-13) to estimate the value of θ  for 

which  ,Rd d axE mVV , and then using this value of θ  to obtain the required amount of 

shear reinforcement. It should be noted that ,Rd maxV  reaches a maximum value when 

cot 1,0θ , and hence values of θ  greater than 45º will not only occur if other factors 

constrain the failure to occur at such an angle. 
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 The result of combining the strength defined by the crushing strength of the 

strut and the limitations applied to the strut angle is illustrated in Figure 4.2-12.  

 

 
Figure 4.2-12 – Relationship between the design shear and amount of shear reinforcement  

(see Figure 6.4 from [8]) 

 

Term ,Rd maxV  also denotes the maximum shear capacity which a member can 

sustain for a chosen angle θ , provided that the shear force is carried by an 

appropriate shear reinforcement, i.e. , ,Rd max Rd sV V  and that an additional longitudinal 

tensile reinforcement to resist Δ stF  is provided.  

From Figure 4.2-11 it can be seen that for equilibrium a tensile force 
tan

EdV

θ
 also 

acts on the section. Assuming that half of this force acts in the bottom chord, and 

additional tensile force present in the longitudinal reinforcement, Δ sdF , is given by 

(see Figure 4.2.11) the following expressions: 

 

   cos cot ;cwd cwd EdH F θ V θ                                  (4.2-15) 

 

   cos cot ;swd swd EdH F α V α                                  (4.2-16) 

 

    cot cot ;wd cwd swd EdH H H V θ α                          (4.2-17) 

 

   Δ cot cot .
2 2
wd Ed

sd

H V
F θ α                                (4.2-18) 

 

The presence of this additional longitudinal force is responsible for the shift rule, 

necessitating that longitudinal tension steel extend further in the span than required 

for bending alone. Also since the tensile force in the longitudinal steel due to bending 

is ,Ed sM

z
, the total force in the tensile reinforcement, sdF , in general case is given by: 
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 
 

     
 

,
cot cot ,

2

Ed s Ed
sd Ed

M V
F N θ α

z
                         (4.2-19) 

 

and force cdF  in compressed concrete: 

     
,

cot cot .
2

Ed s Ed
cd

M V
F θ α

z
                            (4.2-20) 

 

From the analysis of the truss model in Figure 4.2-11 it can be noticed that there 

are three equilibrium equations (1, 2, 3), but four unknowns: concrete stress cwdσ , 

additional tensile force in reinforcement Δ sdF , stress in the shear reinforcement swdσ  

and inclination angle of the compressive strut θ . 

4.2.2.1.2 General design requirements in accordance with EN 1992 [N3] 

In accordance with EN 1992 [N3] (clause 6.2.1 (1)P) for verification of the shear 

resistance the following symbols are defined: 

,Rd cV  is the design shear resistance of the member without shear reinforcement; 

,Rd sV  is the design value of the shear force which can be sustained by the yielding 

shear reinforcement; 

,Rd maxV  is the design value of the maximum shear force which can be sustained 

by the member, limited by crushing of the compressive struts. 

Based on the code EN 1992 [N3] the following requirement can be formulated: 

1) In region of the member where  ,Ed Rd cV V  no calculated shear 

reinforcement is necessary (where: EdV  is the design shear force is section considered); 

2) When, on the basis of the design shear calculation, no shear reinforcement 

is required, minimum shear reinforcement should nevertheless be provided according 

to EN 1992 [N3]. The minimum shear reinforcement ratio, swρ , is obtained from the 

following expression: 

 


 

 
, ,sw

sw sw min

w

A
ρ ρ

b s sin
                               (4.2-21) 

 

where: swA  is the area of shear reinforcement within length; 

            s is the spacing of the shear reinforcement. EN 1992 [N3] recommends that 

the maximum longitudinal spacing of the shear reinforcement ( maxs ) should be not 

exceed   0,75 (1 cot )d α . For vertical stirrups   osin 1,0 ( 90 )α α . 

                 


,

0,08
s

yd

w min

ckf

f
ρ  is the minimum area of shear reinforcement. 

The minimum shear reinforcement may be omitted in members such as slabs 

(solids, ribbed or hollow core slabs) where transverse redistribution of loads is 

possible. Minimum shear reinforcement may also be omitted in members of minor 
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importance (e.g. lintels with span ≤2 m) which do not contribute significantly to the 

overall resistance and stability of the structure. 

3) In region where  ,Ed Rd cV V , sufficient shear reinforcement should be 

provided in order that Ed RdV V ; 

4) The longitudinal tension reinforcement should be able to resist the 

additional tensile force Δ sdF  caused by shear; 

5) For members subjected to predominantly uniformly distributed loading 

the design shear force need not to be checked at distance less than d from face of the 

support. Any shear reinforcement required should continue to the support. In 

addition, it should be verified that the shear at the support does not exceed ,Rd maxV  in 

accordance with Equation (4.2-12). 

(1) Members not required design shear reinforcement 

The concrete sections that do not require shear reinforcement are mainly lightly 

loaded floor slabs and pad foundations. Beams are generally more heavily loaded and 

have a smaller cross-section so that they nearly always require shear reinforcement. 

Even lightly loaded beams are required to have a minimum amount of shear links. 

The only exceptions to this are very minor beams such as short span, lightly loaded 

lintels over windows and doors. 

Where shear forces are small the concrete section on its own may have sufficient 

shear capacity ( ,Rd cV ) to resist the ultimate shear force ( EdV ) resulting from the worth 

combination of actions on the structure, although in most cases a nominal or 

minimum amount of shear reinforcement will usually be provided. 

In those sections where  ,Ed Rd cV V  then no calculated shear reinforcement is 

required. 

Members without shear reinforcement are represented by two mechanical 

models which are arch and/or «sprengwerk» with a tension tie (see Figure 4.2-13). 

The shear mechanism are the shear strength of the arch or strut provided by the 

concrete and dowel reaction of the longitudinal bars. 

 

 
Figure 4.2-13 – Arch models for the beam without shear reinforcement 

 

The design value for the shear resistance ,Rd cV  is given by the following 

expression: 

 

      
 

   
1/3

, , 1100 ,Rd c Rd c l ck cp wV C k ρ f k σ b d                 (4.2-22) 

 

with a minimum of: 
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    , 1 ,Rd c min cp wV ν k σ b d                                (4.2-23) 

 

where: ckf  is in MPa; 

  
200

1 2,0k
d

 with d in mm; 

           


  0,02sl
l

w

A
ρ

b d
; 

                slA  is the area of tensile reinforcement, which extends  ( )bdl d  beyond the 

section considered (see Figure 4.2-14); 

wb  is the smallest width of the cross-section in the tensile area [mm] 

             / 0,2cp Ed c cdσ N A f  [MPa]; 

           EdN  is the axial force in the cross-section due to loading or prestressing [in N] 

(  0EdN for compression). The influence of imposed deformations on EdN  may be 

ignored; 

           cA  is the area of concrete cross-section [mm2]; 

                 ,Rd cV  is in [N]. 

Note: The values of ,Rd cC , minν  and 1k  for use in a Country may be found in its National Annex to               

EN 1992 [N3]. The recommended value for ,Rd cC  is 0,18/ cγ , 1 0,15k  that for minν  is given by following 

expression:   3/2 1/20,035min ckν k f . 

 

 
Figure 4.2-14 – Definition of slA  in Expression (4.2-22) (see Figure 6.3 from EN 1992 [N3]) 

 

Expression (4.2-22) is empirical. If  ,Ed Rd cV V  no shear reinforcement is required, 

except, possibly, in beams where it is normal to provide a minimum amount of shear 

links. 

However, if  ,Ed Rd cV V , shear failure may occur as a result of either compressive 

failure of the diagonal concrete strut or diagonal tension failure of the member. 

(2) Members required design shear reinforcement 

The design of members with shear reinforcement is based on a truss model (see 

Figure 4.2-15). The angle θ  should be limited. Limiting values for the angle Θ of the 

inclined struts in the web are given in EN 1992 [N3] (clause 6.2.3(2)). According to 

EN 1992 [N3], the strut angle (and hence the strut capacity) is not unique but can 

vary between cot 2,5θ  (i.e.   o21,8θ ) and cot 1,0θ  

(i.e.  o45θ ), depending on the value of the applied shear. 

In Figure 4.2-15 the following notations are shown:  
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α  is the angle between shear reinforcement and the beam axis perpendicular to the 

shear force (measured positive as shown in Figure 4.2-15); 

θ  is the angle between the concrete compression strut and the beam axis 

perpendicular to the shear force; 

tdF  is the design value of the tensile force in the longitudinal reinforcement; 

cdF  is the design value of the concrete compression force in the direction of the 

longitudinal member axis; 

wb  is the minimum width between tension and compression chords; 

z   is the inner lever arm, for a member with constant depth, corresponding to the 

bending moment in the element under consideration. In the shear analysis of 

reinforced concrete without axial force, the approximate value  0,9z d  may 

normally be used. 

 

 
Figure 4.2-15 – Truss model and notation for shear reinforced members                                 

(see Figure 6.5 from EN 1992 [N3]) 

 

In accordance with EN 1992 [N3] (clause 6.2.3), the design procedure for non-

prestressed members is based on the following equation, which was derived in 

clause 4.2.2.1.   

1. For members with vertical shear reinforcement, the shear resistance, RdV  is 

the smaller value of: 

 

  ,  cot ,sw
Rd s ywd

A
V z f θ

s
                                (4.2-25) 

 

and 

    , 1 / cot tan ,Rd max cw w cdV α b z ν f θ θ                     (4.2-26) 
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where: swA  is the cross-sectional area of the shear reinforcement; 

s is the spacing of the stirrups; 

          ywdf  is the design yield strength of the shear reinforcement; 

                1ν  is a strength reduction factor for concrete cracked in shear. If the design 

stress of the shear reinforcement is below ykf , value 1ν  may be taken as: 

 

for  60ckf  MPa, 1 0,6,ν                                                (4.2-27) 

 

for  60ckf  MPa,   1 0,9 0,5;
200
ckfν                       (4.2-28) 

 

cwα  is a coefficient taking account of the state of the stress in the compression 

chord, in case the non-prestressed structures 1,0cwα . 

It should be noted, that if Expression (4.2-27) is used, the value of ywdf  should 

be reduced to 0,8 ywdf  in Expression (4.2-28). 

The maximum effective cross-section area of the shear reinforcement, ,sw maxA , for 

cot 1,0θ  is given by: 

 


   



,

1

1

2
.

sw max ywd

cw cd

w

A f
α ν f

b s
                                (4.2-29) 

 

2. For members with inclined shear reinforcement, the shear resistance is the 

smaller value of: 

 

     , cot tan sinsw
Rd s ywd

A
V z f θ θ α.

s
                         (4.2-30) 

 

and: 

 

 

 
     




1

, 2

cot cot
.

1 cot

cw w cd

Rd max

b z ν f θ α
V

θ
                       (4.2-31) 

 

The maximum effective shear reinforcement, ,sw maxA , for cot 1,0θ  follows from: 

 

  
 



, 11
.

2 sin

sw max ywd cw cd

w

A f ν f

b s α
                               (4.2-32) 

 

In regions where there is no discontinuity of EdV  (e.g. for uniformly loading 

applied at the top) the shear reinforcement in any length increment  cotl z θ  may 

be calculated using the smallest value of EdV  in the increment. 



221 

 

The additional tensile force, Δ tdF , in the longitudinal reinforcement due to shear 

EdV  may be calculated from: 

 

  Δ 0,5 cot cot ,td EdF V θ α                               (4.2-33) 

 

and   / ΔEd tdM z F  should be taken not greater than , /Ed maxM z , where ,Ed maxM  is the 

maximum moment along the beam. 

For members with loads applied on the upper side within a distance 

   0,5 2,0vd a d  the contribution of this load to the shear force EdV  may be reduced 

by  /2vβ a d . 

The shear force EdV , calculated in this way, should satisfy the following 

condition: 

 

  sin ,Ed sw ywdV A f α                                     (4.2-34) 

 

where: sw ywdA f  is the resistance of the shear reinforcement crossing the inclined 

shear crack between the loaded areas (see Figure 4.2-16). Only the shear 

reinforcement within the central 0,75 va  should be taken into account. The 

reduction by β  should only be applied for calculating the shear reinforcement. It is 

only valid provided that the longitudinal reinforcement is fully anchored at the 

support. 

 

 

Figure 4.2-16 – Shear reinforcement in short shear spans with direct strut action  

(see Figure 6.6 from EN 1992 [N3]) 

 

For  0,5va d  the value  0,5va d  should be used. 

The value EdV  calculated without reduction by β , should however always be less 

than ,Rd maxV , see Expression (4.2-26). 

(3) Shear between web and flanges 

The shear strength of the flange may be calculated by considering the flange as 

a system of compressive struts combined with ties in the form of tensile 

reinforcement.  
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The longitudinal shear stress, 
EdV , at the junction between one side of a flange 

and the web is determined by the change of the normal (longitudinal) force in the part 

of the flange considered, according to: 

 




Δ
,

Δ
d

Ed

f

F
V

h x
                                            (4.2-35) 

 

where: fh  is the thickness of flange at the junctions; 

           Δx  is the length under consideration, see Figure (4.2-17); 

           Δ dF  is the change of the normal force in the flange over the length Δx . 

 

 

Figure 4.2-17 – Notations for the connection between flange and web                                    

(see Figure 6.7 from EN 1992 [N3]) 

 

The maximum value that may be assumed for Δx  is half the distance between 

the section where the moment is 0 and the section where the moment is maximum. 

Where point loads are applied, the length Δx  should not exceed the distance between 

point loads. 

The transverse reinforcement per unit length /sf fA s  may be determined as 

follows: 

 

 
 .
cot

sf yd Ed f

f f

A f V h

s θ
                                      (4.2-36) 
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To prevent crushing of the compression struts in the flange, the following 

condition should be satisfied: 

 

  ν sin cos .Ed cd f fV f θ θ                                (4.2-37) 

 

The recommended values in the absence of more rigorous calculation are: 

 1,0 cot 2,0fθ  for compression flanges (  o o45 26,5fθ );  1,0 cot 1,25fθ  for 

tension flanges (  o o45 38,6fθ ). 

In the case of combined shear between the flange and the web, and transverse 

bending, the area of steel should be the greater than that given by                     

Expression (4.2-36) or half that given by Expression (4.2-37) plus that required for 

transverse bending. 

If EdV  is less than or equal to 0,4 ctdf  no extra reinforcement above that for 

flexure is required. 

Longitudinal tension reinforcement in the flange should be anchored beyond the 

strut required to transmit the force back to the web at the section where this 

reinforcement is required (see section (A–A) in Figure 4.2-17). 

Design procedure can be summarized as follows: 

1. Calculate the design shear force, EdV ; 

2. Determinate the shear resistance of the member without shear 

reinforcement, ,Rd cV ; 

3. Check, if  ,Ed Rd cV V , shear reinforcement can be omitted except in beams 

where a minimum area of shear reinforcement must be provided; 

4. If  ,Ed Rd cV V  all the shear force must be resisted by the shear reinforcement. 

Provided  ,Ed Rd maxV V , the area of shear reinforcement can be determined using 

Expression (4.2-25). ,Rd maxV  is estimated from the Equation (4.2-26) assuming initially 

cot 2,5θ . However, if the result is  ,Ed Rd maxV V  a larger strut angle may be used. The 

maximum allowable angle θ  value is 45º (i.e. cot 1,0θ ). The minimum value of the 

strut angle for a given design shear force EdV , can be determined from                  

Equation (4.2-26) and used, in turn, to calculate the area of shear reinforcement from 

Equation (4.2-25). 

5. If the strut angle exceeds 45ºθ = , however, a deeper concrete section or 

higher concrete strength must be provided and steps (2) to (4) repeated. 

Examples to section 4.2.2 

Example 1. Design of shear reinforcement for a beam 

Design the shear reinforcement for the free supported beam shown in                       

Figure E 4.2-1. 

Concrete C25/30 (  225 N/mmckf ), steel S500 (  2500 N/mmykf ). 
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Figure E 4.2-1 – Input data for worked Example 1  

 

Ultimate design load. 

        1,35 1,5 1,35 12 1,5 8 28,2 kN/m.k kP g q  

Design shear force, EdV .  

This should be determined at distance d from fall of the support but for simplicity 

has been calculated at the centre of supports: 

       0,5 0,5 28,2 7 98,7 kNEdV P l . 

Shear resistance of concrete, Rd,cV . 

 225 /mmckf N ;    2

,

0,18 0,18
0,12 N/mm

1,5
Rd c

c

C
γ

; 

     
200 200

1 1 1,67 2,0
450

k
d

. 

Assuming all the tension reinforcement is taken onto supports and anchored: 

   


1260
0,0102 0,02

275 450
st

l

w

A
ρ

b d
;  0cpσ ; 

     3/2 1/2 3/2 1/2 20,035 0,035 1,67 25 0,378 N/mmmin ckν k f ; 

                  
 

 
 

1/1/3

, , 1

3
100 0,12 1,67 100 0,0102 25Rd c Rd c l ck cp wV C k ρ f k σ b d  

            1275 450 72994 N 0,378 275 450 46778 Nmin cp wk σ b d . 

Since ,Rd c EdV V , shear reinforcement must be provided. 

Compression capacity of compression strut, ,Rd maxV : 

Assuming, that  o21,8θ : 

         1 0,6 1 /250 0,6 1 25/250 0,54ckν f ; 


   20,85 25

14,2 N/mm
1,5

cc ck
cd

c

α f
f

γ
. 

Note:  1,0ccα  may be used. 

      , 1 / cot tanRd max cw w cdV α b z f θ θ  

                
31 275 0,9 450 0,54 14,2/ 2,5 0,4 10 294,5 kN 98,7 kNEdV . 

Diameter and spacing of links. 

(1) Where  ,Ed Rd cV V , provide minimum shear reinforcement, ,w minρ , according 

to: 
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 
 

    4

,

0,08 0,08 25
8 10

500

ck

w min

yk

f

f
; 

      
 

4

, 8 10 275 1 0,22 mm
sin

sw sw
w min

w

A A
ρ

s b α s
(assuming the use of vertical 

links). 

Maximum spacing of links, maxs , is: 

    0,75 0,75 450 338 mmmaxs d . 

Provide Ø8 S500 at 300 mm centers and  0,3/ 35 mmswA s .  

(2) Where 
,Ed Rd cV V , provide shear reinforcement according to: 

    , cot 98700 Nsw
Rd s ywd

A
V z f θ

s
,  

and: 
   

 
  

98700
0,224

0,9 450 500/1,15 2.5
swA mm
s

. 

Hence, provide Ø8 S500 at 300mm centers ( / 0,335sw sA ) throughout. 

Example 2. Design of shear reinforcement at beam support 

Design the shear reinforcement for the beam shown in Figure E 4.2-2, assuming 

it resist an ultimate design shear force at distance d from the face of support of 

 450EdF kN . 

Concrete C25/30 (  225 N/mmckf ), steel S500 (  2500 N/mmykf ). 

 

 
Figure E 4.2-2 – Input data for worked Example 2   

 

Shear resistance of concrete, Rd,cV . 

 225 /mmckf N ;    2

,

0,18 0,18
0,12 N/mm

1,5
Rd c

c

C
γ

;  

     
200 200

1 1 1,63 2,0
500

k
d

;    


1960
0,013 0,02

300 500
st

l

w

A
ρ

b d
; 

 0cpσ ;       3/2 1/2 3/2 1/2 20,035 0,035 1,63 25 0,364 N/mmmin ckν k f ; 

                   
 

 
 

1/3 1/3

, , 1100 0,12 1,63 100 0,013 25Rd c Rd c l ck cp wV C k f k b d  

              3 3

1300 500 10 93,6 kN 0,364 300 500 10 54 kNmin cp wk σ b d  

Since  , 450 kNRd c EdV V , shear reinforcement must be provided. 

Checking of the compression capacity of compression strut, Rd,maxV . 

Assuming, that  o21,8θ : 
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         1 0,6 1 /250 0,6 1 25/250 0,54ckν f ; 


   20,85 25

14,2 N/mm
1,5

cc ck
cd

c

α f
f

γ
. 

Note: 1,0ccα  may be used. 

     , 1 / cot tanRd max cw w cdV α b z ν f θ θ  

              
31 300 0,9 500 0,54 14,2/ 2,5 0,4 10 357 kN . 

Since ,Rd max EdV V , strut angle  o21,8θ .  

From Equation (4.2-13): 

   


 
     

                 

3
,1 1 o450 10 500

0,5 sin 0,5 sin 30,3
0,153 1 /250 0,153 25 1 25/2

/ /300

0
.

5

Rd max w

ck ck

V b d
θ

f f
 

 

Diameter and spacing of links. 

Provide shear reinforcement according to: 

    , cot 450 kNsw
Rd s ywd

A
V z f θ

s
, and so: 

   


 
  

3

o

450 10
1,344 mm

0,9 500 500/1,15 cot(30,3 )
swA

s
. 

Maximum spacing of links, maxs , is: 

    0,75 0,75 500 375maxs d mm . 

Therefore, Ø12 S500 at 150mm centers ( / 1,507sw sA ) would be suitable. 

Note: If longitudinal reinforcement is fully anchored at support and 
            3450 kN 0,5 0,5 300 500 0,54 14,2 10 575 kNEd w cdV b d ν f , shear force may be 

reduced to     2 450 2 k/ 25 Na d . In this case  o21,8θ  is good result and shear reinforcement is 

reduced by over 50 %. 

4.2.3 SHEAR IN ACCORDANCE WITH fib MODEL 

CODE 2010 (MC 2010) [N5]  

4.2.3.1 General 

As it was shown in [17], the fib Model Code 2010 [N5] comprises a mechanical 

based set of shear design process that is intended to offer for the engineer flexibility 

in selecting a balance between complexity and accuracy for new structural design 

and for evaluating or verification of existing structures as well. 

The equations of the proposed in fib MC 2010 [N5] design methods was derived 

from the Modified Compression Field Theory (MCFT) and assume that the member 

contains well-detailed reinforcement in at least the longitudinal direction [14].  

The Compression Field Theory (CFT) was firstly developed by Collins and 

Mitchell and co-workers, for the analyses of beam under combined torsion, shear, 
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flexure. The theory provided a conceptual model for the behaviour of cracked 

reinforced concrete under two-dimensional stress states, following essentially a 

smeared, rotating crack idealization. Formulations satisfying conditions of 

equilibrium and compatibility in continuum were based on average values of stress 

and strain in component materials. It was assumed that the direction of the principal 

stresses coincided with direction of the principal strains. Concrete in compression 

was modeled using the parabolic curve; concrete in tension was assumed to carry no 

stress after cracking.  

To develop more accurate constitutive relations for cracked concrete, a new 

testing facility was developed and utilized in an extensive experimental investigations.  

Based on the results of these initial tests, the Modified Compression Field 

Theory (MCFT) was developed [18]. The refinements introduced by the MCFT related 

to: 

1) strain softening concrete in compression, due to the action of transverse 

tensile strain; 

2) tension stiffening effects in cracked concrete in tension, due to continued 

presence of tensile stresses in concrete between cracks; 

3) the transfer of stresses across cracks (i.e. the need to consider local stress 

conditions at crack surfaces). These effects were embodied in the analytical model by 

a new set of constitutive relations. 

The new code provisions contains four «Levels of Approximations» (LOA). As 

shown in fib MC 2010 [N5], Level I provides the simplest calculation whereas this is 

the most conventional method among others. Level II is a balanced model in 

complexity and accuracy, while Level III is most accurate and general approximation 

but needs more complex computation than that of the other Levels. Level IV is a 

further option, which can be used in nonlinear finite element analysis or generalized 

stress-field approaches.  

4.2.3.2 Design shear force and shear resistance 

The design model for resistance to beam in shear is shown in Figure 4.2-18. 

The shear resistance of web or slab will be determined according to: 

 

  , ,Rd Rd c Rd s EdV V V V ,                                      (4.2-38) 

 

where: RdV  is the design shear resistance, which included both the design shear 

resistance attributed to the concrete ( ,Rd cV ), and the design shear resistance provided 

by the shear reinforcement ( ,Rd sV ); 

            EdV  is design value of shear force. 
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Figure 4.2-18 – Forces in the web of a beam 

 

In general, for determining the design shear force, a location at z from the face 

of support (see Figure 4.2-19), where  0,9z d , discontinuities of geometry or 

transverse applied force are used. Other control sections may be required, for 

example, near points of curtailment of reinforcement.     

Sections located closer to support or the applied force than the control section 

may be designed for the same shear force as that computed at the control section 

provided that the respective force introduce compression into member. 

In the design for shear in webs and slabs, the effects of axial tension due to 

creep, shrinkage and thermal effects in restrained members should be considered 

wherever applicable.   

 

 
Figure 4.2-19 – Definition of control section for sectional design                                          

(see Figure 7.3-5 from fib MC 2010 [N5]) 
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4.2.3.3 Levels of approximation 

In accordance with fib MC 2010 [N5] in determining the shear resistance of a 

member different levels of approximation may be regarded. The levels differ in the 

complexity of the applied methods and the accuracy of the results. 

Level I Approximation: In general, this level of approximation may be used for 

the conception or the design of a new structure; 

Level II Approximation: This level of approximation is appropriate for the 

design of a new structure as well as for a general or brief assessment of an existing 

structure; 

Level III Approximation (and higher): A level III (and higher) approximation 

may be used for the design of a member in a complex loading state or a more elaborate 

assessment of a structure. 

There can be different levels of approximation for each design case and location 

in a structure; they do not necessarily need to correspond to each other as different 

portions of a structure will justify different levels of precision and design effort.  

4.2.3.4 Design equations for region cracked in bending 

4.2.3.4.1 General 

The design shear resistance of web and slab should be determined as: 

 

  , , ,Rd Rd c Rd s Rd maxV V V V ,                              (4.2-39) 

and, value of RdV  cannot exceed the crushing capacity of concrete calculated as: 

 


   


, 2

cot cot
,

1 cot
ck

Rd max c w

c

f θ α
V k b z

γ θ
                              (4.2-40) 

 

where: θ  denotes the selected inclination of the compressive stresses resultant; 

                 α  is the inclination of the stirrups relative to the beam axis (see                     

Figure 4.2-20). 

According to fib MC 2010 [N5], for Level I and Level III Approximation, a value 

  o45minθ θ  should be inserted in Equation (4.2-40).  

In member that contain a percentage of shear reinforcement of, 

   , 0,08 /w wmin ck ykρ ρ f f , the design shear resistance provided by the stirrups 

may be calculated as follows: 

 

      , cot cot sin .sw
Rd s ywd

A
V z f θ α α

s
                         (4.2-41) 

 

The design shear resistance attributed to the concrete can be taken as: 
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  , ,ck

Rd c v w

c

f
V k b z

γ
                                     (4.2-42) 

 

where the value of ckf  should not be taken as greater than 8 MPa. 

 

 
Figure 4.2-20 – Geometry and definition in accordance with fib MC 2010 [N5] 

 

According to the proposed model the design shear resistance of concrete 

contribution ( ,Rd cV ) affected by the concrete compressive strength ( ckf ), the width of 

the web ( wb ) the effective depth of the section (d), the partial factor ( cγ ) according 

design situation, and the first parameter of the model vk , defined by the level of 

approximation and indicates the ability of the web to resist aggregate interlock 

stresses which provide the concrete contribution to shear strength. 

In Equation (4.2-42) the concrete strength reduction factor ck  is taking into 

consideration the effect of cracked concrete can be calculated according to the level 

of approximation. 

The design shear resistance provided by shear reinforcement ( ,Rd sV ) is generally 

defined by the amount of shear reinforcement ( /swA s ) and the strength properties of 

reinforcement used (  /ywd ywk sf f γ ). 

The longitudinal reinforcement at the section  of interest must be able to resist 

the additional force due to shear of: 

 

         ,Δ 0,5 cot cot 0,5 cot cot .td Ed Rd cF V θ α V θ α               (4.2-43) 

 

Note, that the total demand on longitudinal reinforcement need not exceed the 

demand at the maximum moment location due to moment alone. 

It must be noted, that in the proposed design model angle θ  defined by the different 

level of approximation – is the second parameter of the model and indicates the angle 

of principal compressive stress in web. 
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4.2.3.4.2 Level I Approximation 

As was shown, Level I Approximation is suitable for pre-design stage (conceptual 

design) or initial sizing of structural members, where a conservative calculation 

methods is acceptable. It may be used for the efficient design of most common 

members with or without shear reinforcement. 

These Level I Approximation for members with no significant axial loads, where 


2

N
70

mm
ckf , 

2

N
600

mm
ykf , cast with an aggregate size gd  of at least  

10 mm, design shear resistance of reinforced concrete cross section – with no shear 

reinforcement can be determined by the following equation: 

 

    , 0,9 .ck

Rd Rd c v w

c

f
V V k b d

γ
,                              (4.2-44) 

 

The design shear resistance of reinforced concrete cross section with shear 

reinforcement can be calculated as – neglecting the concrete contribution: 

 

 , , ).(Rd Rd s Rd max minV V V θ                                      (4.2-45) 

 

The following values of the coefficients ck  and vk  can be inserted in            

Equation (4.2-40) and Equation (4.2-44): 

 

 
 

   
 

1/3

30
0,5 0,5,  in MPa ;c ck

ck

k f
f

                          (4.2-46) 

 


    
 

200
0,15 0;

1000 1,3

0,15 0 .,08 /

w

v

w ck yk

if ρ
zk

if ρ f f

                         (4.2-47) 

 

As it was noted in fib MC 2010 [N5], if there is no (considerable) sufficient axial 

force the inclination of the fictional compressed strut (θ ) according to the proposal to 

be at least (30º). The crushing capacity of the concrete at that angle (  o30minθ ) of the 

principal compressive stress can be calculated by the use of  0,55εk . Results of this 

level of approximation can only be accepted if the longitudinal strain 

 
    

 
/2

0,9
Ed

x Ed s s

M
ε V E A

d
 calculated at the middle of the effective depth (~ /2d ) is 

not exceed of , 1‰x limε , i.e. in case of B500 steel quality the tensioned steel bars 

are in elastic state (    2 2 ‰ /s x yk sε ε f E ): 

 

         , ,0,9 cot cot sin )(sw
Rd Rd s ywd Rd max min

A
V V f d θ α α V θ

s
.         (4.2-48) 
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4.2.3.4.3 Level II Approximation  

Level II Approximation comes from variable angle stress field approach. The 

model is applicable to members with a minimum amount of stirrups (  ,w wminρ ρ ) 

reinforcement. It is based on an inclination of the compression stresses which can be 

chosen within the following limits: 

 

   o o20 10000 45xε θ ,                                  (4.2-49) 

 

where: xε  represents the longitudinal strain at the mid-depth of the member as shown 

in Figure 4.2-21 and may be chosen as 0,001 for preliminary design. If required, xε  

should be calculated with help of plane section analysis (ignoring tension stiffening), 

but should not be taken as less than – 0,0002. 

 

 
Figure 4.2-21 – Geometry and definition in accordance with fib MC 2010 [N5] 

 

In Level II Approximation the design shear resistance ( ,Rd cV ), attributed to the 

concrete should be neglected, i.e.:  0vk  and , 0Rd cV . 

The width of the beam or web should be checked for the selected inclination of 

the compression stresses with help of Equation (4.2-40), ck  should be taken as: 

 


 

    





1/3

30
0,55.c ε fc ε

ck

k k k
f

                          (4.2-50) 
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where:     11/ 1,2 55 0,6εk ε  and      -3 2

1 2 10 cotx xε ε ε θ  can be adopted for 

calculation of the ck . 

In addition of the validity of the material properties specified at the Level of 

Approximation I, with a more accurate determination of the axial strain ( xε ) defined 

at the middle of the effective depth, the design shear resistance of a reinforced 

concrete cross-section with no shear reinforcement can be written at the Level of 

Approximation II: 

 

       



 

,

0,36
0,9 ,

1000 0,9

ck ck

Rd Rd c v w w

c dg c

f f
V V k b d b d

γ k d γ
          (4.2-51) 

 

where: 1dgk , if  1,6 mmg maxd d ; 

               520/ 1000 0,9v dgk k d , if  0xε , and     95/ 1000 0,9v dgk k d , if  

 3 ‰xε . 

When shear reinforcement is applied, the shear resistance of a reinforced 

concrete can be calculated – neglecting also the concrete contribution as: 

 

         , ,0,9 cot cot sinsw
Rd Rd s ywd Rd max

A
V V f d θ α α V

s
,            (4.2-52) 

 

where the minimum angle of the principal compressive stress in the web can be 

calculated on a more precise way than in case of LOA I by the use of 

  o 420 10min xθ ε , while the maximum shear capacity defined by the failure of the 

compressive concrete strut: 

 

 


    


, 2

cot cot
0,9 ,

1 cot
ck min

Rd max min c w

c min

f θ α
V θ k b d

γ θ
                     (4.2-53) 

 

where: ck  – coefficient according to Equation (4.2-50). 

4.2.3.4.4 Level III Approximation  

Level III Approximation represents a general form of sectional shear equations 

applicable to beams as well slabs and any amount of shear reinforcement. 

The angle θ  may be assumed as follows: 

 

  o 420 10min xθ ε ,                                    (4.2-54) 

 

where the variable xε  represents the average longitudinal strain at the mid-depth of 

the member, and should be taken as: 

 

 
   




 

/ 0,5
.

2

Ed Ed Ed p po

x

s s p p

M z V N A f
ε

E A E A
                       (4.2-55) 
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At Level of Approximation III, fib Model Code 2010 [N5] provides opportunity to 

take into account shear force contributed by the concrete. 

When   ,Rd Rd max minV V θ , the design shear capacity of reinforced cross-section 

applying also shear reinforcement according to the Level III can be calculated as: 

 

   , , , ,Rd Rd c Rd s Rd max minV V V V θ                              (4.2-56) 

 

where: 

 

   

 
           

 


 

,

,

0,36
0,9 1

1 1500

ck ckEd
Rd c v w w

c x Rd max min c

f fV
V k b d b d

γ ε V θ γ
,     (4.2-57) 

 

       , 0,9 cot cot sinsw
Rd s ywd

A
V f d θ α α

s
,                         (4.2-58) 

 

 



    


, 2

cot cot
0,9

1 cot
ck min

Rd max min c w

c min

f θ α
V θ k b d

θ
,                      (4.2-59) 

 

Equation (4.2-57) and Equation (4.2-59) can be used with: 

 



 
    

 


1/3

30
;c fc ε

ck

k k η k
f

                                   (4.2-60) 

 

   

 


      

 
  
  

0,40 1300
0;

1 1500 1000 0,7

0,40
  0,08 / ,

1 1500

w

x dg

v

w ck yk

x

if ρ
ε k z

k

if ρ f f
ε

                (4.2-61) 

 

where:  


48
1,15

16
dg

g

k
d

, in which gd  is aggregate diameter. 

In using from Equation (4.2-57) to Equation (4.2-59), the following conditions 

apply: 

- EdV  and EdM  should be taken less than EdV z ; 

- In calculating sA  and pA  the area of bars or tendons which are terminated less 

than their development length from the section under consideration should be 

reduced in proportion to their lack of full development; 

- If the value of xε  calculated from Equation (4.2-55) is negative it should be 

taken as zero or the value should be recalculated with the denominator of the 

equation replaced by      2 s s p p c ctE A E A E A , however xε  should not be taken as 

less than -0,0002; 
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- For section closer than z to the face of the support, the value of xε  calculated 

at z from the face of the support may be used in evaluating shear resistance; 

- If the axial tension is large enough to crack the flexural compression face of the 

section, the resulting increase in xε  should be taken into account. In lieu of more 

accurate calculations, the value calculated from the Equation (4.2-55) should be 

doubled; 

- It is permissible to determine θ  and vk  using a value of xε  which is greater 

than that calculated from the Equation (4.2-55), however xε  should not be taken 

greater than 0,003; 

- For concrete strengths that exceed 70 MPa, the aggregate size should be taken 

as zero as aggregate particles tend to fracture at cracking and are less able to 

contribute to crack roughness. To avoid a discontinuity, as concrete strengths vary 

from 64 to 70 MPa, the effective aggregate size can be linearly reduced to zero. 

Example to Section 4.2.3 

Example 1. Calculation of the shear resistance of RC-beam according to      

fib MC 2010 

Concrete C30/37 (  225 N/mmckf ), 1,5cγ .  

Steel S500 (  2550 N/mmykf ), 1,15sγ , 120 mms . 

 

 
Figure E 4.2-1 – Input data for worked Example 1 

 

Firstly, to calculate the resistance of the RC member, it is necessary to check if 

it can to carry the forces without shear reinforcement. To verify if this is possible, 
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according to fib MC2010 it is necessary to check ,Rd cV , in this case in the Level III 

approximation:  

 

  , ,ck

Rd c v w

c

f
V k b z

γ
                                    (E 4.2-1) 

 

where: 
   

 
    

0,40 1300

1 1500 1000 0,7
v

x dg

k
ε k z

, taking into account that: 

    
       

  


 

41 1
6,16 10

2 2
Ed

x Ed Ed

s s

M e
ε V N

E A z z
;    



48 48
1,5 1,15

16 32
dg

g

k
d

and 
   

  
     4

0,40 1300
0,16

1000 0,7 1,15 8281 1500 6,6 10
vk .  

Thus, substituting in Equation (E 4.2-1): 

    ,

30
0,16 300 828 145,12 kN

1,5
Rd cV , and as:   , 145,12 kN 385 kNRd c EdV V , the 

RC-member needs to be calculated with shear reinforcement according to the same 

regulation. But, in this case, Level III of approximation is used and the below formula 

is necessary to be implemented:  

 

  , , , ( ),Rd Rd c Rd s Rd max minV V V V θ                               (E4.2-2) 

 

where: 

 

 


    , sin cos .ck
Rd max min c w min min

c

f
V θ k b z θ θ                    (E4.2-3) 

 

Taking in account, that:     300 mm; 0,55;w c fcb k k  where: 

   
     

  

1/3 1/3
30 30

1,0
30

fc

ck

η
f

;           11/ 1,2 55 1/ 1,2 55 0,0085 0,55 0,65εk ε ; 

0,000616xε ;       3 2

1 2 10 cot 0,0085x xε ε ε θ ;    o 4 o20 10 26,16min xθ ε . 

Substituting in Equation (E 4.2-3):   , 1074,16 kNRd max minV θ , and: 

 
        

2

,

2 5
cot 828 478,26 2,03 1051,7 kN

120
sw

Rd s ywd

w

A
V f z θ

s
. 

Thus: 

 

  , ,ck

Rd c v w

c

f
V k b z

γ
                               (E 4.2-4) 

 

where: 
   

 
        ,

0,40
1 0,13

1 1500
Ed

v

x Rd max min

V
k

ε V θ
.  
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And substituting according to Equation (E 4.2-4): 

    ,

30
0,13 300 828 120,98 kN

1,5
Rd cV , thus:   1051,7 120,98 1172,68 kNRdV . 

 

 , .Rd Rd maxV V                                          (E 4.2-5) 

 

   ,1172,68 kN 1074,16 kNRd Rd max minV V θ . 

It can be seen, that Inequality (E 4.2-5) is not satisfied. So, we must to change 

initial value of the θ  in the range   o45minθ θ  and repeat calculation again. 
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4.3 PUNCHING SHEAR 

4.3.1 GENERAL CONSIDERATION 

Punching shear is a local shear failure around a concentrated load on a slab. 

The most common situations where punching shear has to be considered is the region 

immediately surrounding a column in a flat slab or where a column is supported on 

a pad footing or foundation raft. 

Punching shear failure may be considered to be shear failures rotated around 

the loaded area so as to give a failure surface which has the form a truncated cone. 

This is illustrated in Figure 4.3-1. The «critical section» for shear failure in a beam 

is transformed into a «basic control perimeter» when punching shear is considered. 

This conversion of the problem from a basically two-dimensional one to a three-

dimensional problem does not change the basic phenomenon as described in      

Section 4.2, through there are a number of practical points which need further 

consideration. 

 

 
Figure 4.3-1 – Schematic illustration of a punching shear failure 

 

In flat slab, punching shear failures normally develop around supported areas 

(columns, capitals, walls). In other cases (e.g. foundation slabs, transfer slabs, deck 

slabs of bridges) punching failures can also develop around loaded areas. 

4.3.2 PUNCHING SHEAR FAILURE MODES              

IN FLAT SLABS  

As was shown in [8] design of slabs with punching shear reinforcement typically 

considers several potential failure modes, see Figure 4.3-2: 
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a) Crushing of compression struts (see Figure 4.3-2 a). This failure mode 

becomes governing for high amounts of bending and transverse reinforcement, where 

large compressive stresses develop in the concrete near the column region. Crushing 

of concrete struts limits thus the maximum strength that can be provided by a shear 

reinforcing system. This is instrumental for design as it determines the applicability 

of such systems with respect to the effective depth of the slab and size of support 

region. 

b) Punching within the shear-reinforced zone (see Figure 4.3-2 b). Such 

failure develops for moderate or low amounts of shear reinforcement, when a shear 

crack localizes the strains within the shear-reinforced zone. Shear strength is thus 

governed by the contribution of concrete and of the transverse reinforcement. For 

design, this failure mode is used to determine the amount of shear reinforcement to 

be arranged.  

c) Punching outside the shear-reinforced zone (see Figure 4.3-2 c). This 

failure mode may be governing when the shear-reinforced zone extends over a small 

region. Check of this failure mode is typically performed in design to determine the 

extent of the slab to be shear reinforced.  

d) Delamination of concrete core (see Figure 4.3-2 d). When the shear 

reinforcement is not enclosing the flexural reinforcement, delamination of the 

concrete core may occur. This leads to a rather ductile failure mode but with limited 

strength and with loss of development on the flexural reinforcement. Typical detailing 

provided in codes of practice avoids the use of shear reinforcement systems leading 

to such failure mode.  

e) Flexural yielding (see Figure 4.3-2 e). Slabs with low flexural reinforcement 

ratios and with sufficient transverse reinforcement can fail by development of a 

flexural plastic mechanism. Bending strength and not punching shear strength is 

thus governing for the strength of the slab.    
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a) – crushing of concrete struts; b) – punching within the shear-reinforced zone;            

c) – punching outside the shear-reinforced zone; d) – delamination;                             

e) – flexural yielding   

Figure 4.3-2 – Failure modes in flat slabs 

 

4.3.3 BASIC CONTROL PERIMETER 

The starting point for design for punching shear is the definition of the critical 

perimeter. This has greater importance than the selection of the critical section in a 

beam because, as perimeters closer to the loaded area are considered, the length of 

the perimeter rapidly gets shorter, and hence the shear force per unit length of the 

perimeter rapidly increases.  
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Observation of failures shows that the outer perimeter of punching failure takes 

the general form sketched in Figure 4.3-3. For this reason, EN 1992 [N3] proposed 

the idealized form shown in Figure 4.3-4.    

 

 
Figure 4.3-3 – Rationalization of failure perimeter [8] 

 

 
Figure 4.3-4 – Typical basic control perimeters around loaded areas                                      

(see Figure 6.13 from EN 1992 [N3]) 

 

Having chosen a basic form for the perimeter, it is next necessary to consider 

the distance from the loaded area at which it should be located. As it was shown in 

[8], in drafting EN 1992 [N3], it was decided that the shear strength should be given 

by the same formula for punching shear as is used for shear in beams. Having decided 

on this and on the shape of the perimeter, the distance of the perimeter from loaded 

area can be established from test data. This led to a value of 2·d. 

So, in accordance with EN 1992 [N3], the basic control perimeter 1u  may 

normally be taken to be at distance 2 d  from the loaded area and should be 

constructed so, as to minimize its length (see Figure 4.3-4). 

The effective depth of the slab is assumed constant and may normally be taken 

as: 

 

 
( )

,
2

y z

eff

d d
d       (4.3-1) 

 

where: yd  and zd  are the effective depths of the reinforcement in two orthogonal 

directions. 
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Control perimeters at a distance less than 2 d  should be considered where the 

concentrated force is opposed by a high pressure (e.g. soil pressure on a base), or by 

the effects of load or reaction within a distance 2 d  of the periphery of area of 

application of the force.  

For loaded areas situated near openings, if the shortest distance between the 

perimeter of the loaded area and the edge of the opening does not exceed 6 d , that 

part of the control perimeter contained between two tangents drawn to the outline of 

the opening from the centre of the loaded area considered to be ineffective (see     

Figure 4.3-5).  

 

 
Figure 4.3-5 – Control perimeters near an opening (see Figure 6.14 from EN 1992 [N3]) 

 

For a loaded area situated near an edge or a corner, the control perimeter should 

be taken as shown in Figure 4.3-6, if this gives a perimeter (excluding the 

unsupported edges) smaller than that obtained from Figure 4.3-4 and Figure 4.3-5 

above. 

 

 
Figure 4.3-6 – Basic control perimeters for loaded areas close to or at edge or corner    

(see Figure 6.15 from EN 1992 [N3]) 

  

The control section is that which follows the control perimeter and extends over 

the effective depth d . For slabs of constant depth, control section is perpendicular to 

the middle plane of the slab. For slabs or footings of variable depth other than step 

footings, the effective depth may be assumed to be the depth at the perimeter of the 

loaded area as shown in Figure 4.3-7. 
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Figure 4.3-7 – Depth of control section in a footing with variable depth                       

(see Figure 6.16 from EN 1992 [N3]) 

 

Further perimeters iu , inside and outside the basic control area should have the 

same shape as the basic control perimeter.  

For slabs with circular column heads for which   2H Hl h  (see Figure 4.3-8) a 

check of the punching shear stresses is only required on the control section outside 

the column head. The distance of this section from the centroid of the column contr  

may be taken as:  

 

    2 0,5 ,cont Hr d l c                                       (4.3-2) 

 

where: Hl  is the distance from the column face to the edge of the column head; 

     c  is the diameter of a circular column.    

 

 
Figure 4.3-8 – Slab with enlarged column head where < 2,0H Hl h                                          

(see Figure 6.17 from EN 1992 [N3]) 

 

For a rectangular column with a rectangular head with  2,0H Hl h  (see         

Figure 4.3-8) dimensions 1l and 2l  ( 1 1 1 2 2 2 1 2( 2 , 2 , )H Hl с l l с l l l       , the value contr  

may be taken as the lesser of: 

 

    1 22 0,56 ,contr d l l                                      (4.3-3) 

 

and: 

 

    12 0,69 .contr d l                                         (4.3-4) 
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For slabs with enlarged column heads where  2,0H Hl h  (see Figure 4.3-9) 

control sections both within the head and in the slab should be checked. 

For circular columns the distances from the centroid of the column to the control 

sections in Figure 4.3-9 may be taken as: 

 

    , 2 0,5 ;cont ext Hr l d c                                    (4.3-5) 

 

    ,int 2 ( ) 0,5 .cont Hr d h c                                   (4.3-6) 

 

 
Figure 4.3-9 – Slab with enlarged column head where 2H Hl h                                              

(see Figure 6.18 from EN 1992 [N3]) 

 

4.3.4 PUNCHING SHEAR CALCULATION 

4.3.4.1 General 

The design procedure for punching shear is based on checks at the face of 

column and at the basic control perimeter 1u . If shear reinforcement is required a 

further perimeter ,out efu  (see Figure 4.3-13) should be found where shear 

reinforcement is no longer required. The following design shear stresses (MPa) along 

the control sections, are defined: 

,Rd cV  is the design value of the punching shear resistance of slab without 

punching shear reinforcement along the control section considered. 

,Rd csV  is the design value of the punching shear resistance of slab with punching 

shear reinforcement along the control section considered. 

,maxRdV  - is the design value of the maximum punching shear resistance along 

the control section considered. 

The following checks should be carried out: 
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a) At the column perimeter, or the perimeter of the loaded area, the maximum 

punching shear stress should not be exceeded:  ,Ed Rd maxV V ; 

b) Punching shear reinforcement is not necessary if: ,Ed Rd cV V . 

c) Where EdV  exceeds the value ,Rd cV  for the control section considered, punching 

shear reinforcement should be provided according to EN 1992 [N3]. 

It is usual to assume in design that the distribution of shear force around critical 

perimeter is uniform. In fact, this is untrue, particularly in the case slab-column 

connection where there is a moment transfer between the slab and the column. In 

such cases, a rigorous analysis would show that the distribution of shear varied 

markedly around the perimeter and was accompanied by torsional moments. 

Extensive experimental work shows that punching shear strength can be significantly 

reduced where substantial moment transfer occurs. This implies that punching shear 

is not entirely plastic phenomenon, and the shear at the ultimate limit state cannot 

be fully redistributed around the perimeter. A way of dealing with this in design is to 

increase the design shear force by a factor which is a function of the geometry of 

critical perimeter and the moment transferred. The provisions in EN 1992 [N3] 
introduce: a multiplier, β , to increase the average shear stress around the perimeter 

such that: 

 

  


,Ed
Ed

i

V
V β

u d
                                                   (4.3-7) 

 

 where: d  is the mean effective depth of the slab, which may be taken as           

( )/2y zd d , where ,y zd d  are the effective depths in the y and z directions respectively 

of the control section;  

             iu  - is the length of the control perimeter being considered;    

             β  is the shear multiplier, taking account of moment transfer. 

The principle behind the definition of β  is that the effect of transferring a 

moment between the slab and a column can be modeled by considering a distribution 

of shear around the control perimeter considered such it provides a moment equal to 

the moment transferred. 

The distribution of shear assumed is sketched in Figure 4.3-10, which is 

redrawn after Figure 6.19 in EN 1992 [N3]. 

It will be seen that the magnitude of distributed shear force is a function of the 

moment transferred, the distance of the perimeter from the loaded area and the shape 

of the loaded area. It will be seen that:  

 


   ,Ed Ed

i i

β V V
ν

u u
                                       (4.3-8) 

 

hence: 

 
 

   
Δ

1 1 .
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i

Ed i Ed

ν uν
β

V u V
                               (4.3-9) 
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In principle, ν  can be calculated from simple static, since the moment 

transferred between the slab and the column, Δ EdM , must be equal to the moment 

produced by the shear   distributed around the perimeter, iu . 

This may be written as follows (see Figure 4.3-10): 

 

    
                   

    

 
               

 

1 1 1 1
2

2
21

1 2 2 1 1

2
Δ 4 Δ 2 2 2

2 4 2 2 2

Δ 4 16 2 Δ
2

Ed

c c c cπ
M ν c d d d

π

c
ν c c c d d π d c w ν.

 

Hence,  1Δ Δ /Edν M w . 

Substituting for Δν  into equation for β  gives: 

 


 

1

Δ
1 .Ed i

Ed

M u
β

w V
                                       (4.3-10) 

 
It is found that a further correction factor is required to adjust the value of   for 

the aspect ratio of the column section. The equation in the code is thus:  

 

   1 (Δ / ) ( / ).Ed Ed i iβ k M V u w  (4.3-11) 

 

It should be noticed that Δ /Ed EdM V  is actually the eccentricity of the 

concentrated load relative to the centroid of the loaded area. In some equations,         

EN 1992 [N3] uses «e» for this rather than Δ /Ed EdM V . It should also be noted that    

EN 1992 [N3] uses the term Δ EdM  for the moment transferred between the slab and 

the column. This seems a possible cause of confusion, since the moment transferred 

is not the moment in the slab but rather the difference in moment between one side 

of the column and the other. For this reason, Δ EdM  has been used here for the 

moment transferred.  

 
     Table 4.3-1 – Values of k for rectangular loaded areas 

1 2/c c  ≤ 0,5 1,0 2,0 ≥ 3,0 

k  0,45 0,60 0,70 0,80 
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Figure 4.3-10 – Shear distribution due to an unbalanced moment at a slab-internal 

column connection (see Figure 6.19 from EN 1992 [N3]) 

 

The derivation of the equation for β for rectangular internal column has been 

derived in order to show the basic logic of the system. There are many other possible 

configurations of column and appropriate values are given in Table 4.3-2.   

 

Table 4.3-2 – Values of the punching shear enhancement factor for various types of column (see Table 6.6 

from EN 1992 [N3]) 

Case Value for β  

Internal rectangular column, uniaxial 
bending. 

    11 (Δ / ) ( / );Ed Ed iβ k M V u W  

           2 2

1 1 1 2 2 1/2 4 16 2W с c c c d d π d c . 

Values of k from Table 4.3-1. 

Internal rectangular column, biaxial bending. 

 
      2 21 1,8 {[Δ /( 4 )] [Δ /( 4 )] },Edy z Edz yM c d M c d  

Δ EdyM  and Δ EdzM  are respectively the moments 

transferred in the y  and z  directions while yc and 

zc are respectively the section dimensions in the 

y  and z  directions.  

Rectangular edge column; axis of bending 

parallel to the slab edge, eccentricity is 

towards the interior. 

 *

1 1/β u u (i.e. shear is assumed uniformly 

distributed over perimeter *

1u  as defined in Figure 

6.20 a of EN 1992 [N3], see Figure 4.3-11 a). 

Rectangular edge column; bending about both 

axes. Eccentricity perpendicular to the slab 
edge is towards the exterior. 

    11 (Δ / ) ( / ).Ed Ed iβ k M V u W  

1W  calculated by taking moments about the 

centroid of the control perimeter, 1u . 

Values of k from Table 4.3-1. 
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Table 4.3-2 (end) 

Rectangular edge column; bending about both 

axes. Eccentricity perpendicular to the slab 
edge is towards the interior. 

   *

1 1 , 1 1/ (Δ / ) ( / );Ed par Edβ u u k M V u W  

          2 2

1 2 1 2 1 2/4 4 8W с c c c d d π d c . 

,Δ Ed parM  is the moment transfer about an axis 

perpendicular to the slab edge.  

Value of k  is determined from Table 4.3-1 with 

1 2/c c  put equal to 1 20,5 ( / )c c . 

1c  is the section dimension perpendicular to the 

slab edge. 

2c is the dimension parallel to the slab edge. 

Rectangular corner column, eccentricity is 

towards the interior. 
 *

1 1/β u u (i.e. punching force is considered 

uniformly distributed along perimeter *

1u  in 

Figure 6.20 b of EN 1992 [N3], see Figure 4.3-11 
b). 

Rectangular corner column, eccentricity is 

towards the exterior. 
    11 (Δ / ) ( / );Ed Ed iβ k M V u W  

            2 2

1 1 1 2 2 1/2 4 16 2 .W с c c c d d d c  

Values of k from Table 4.3-1. 

Interior circular column.      1 0,6 (Δ / )/( 4 ).Ed Edβ π M V D d  

D is the diameter of the column. 

Circular edge or corner columns. No information given. 

 

 
Figure 4.3-11 – Reduced basic control perimeter 1*u  (see Figure 6.20 from EN 1992 [N3]) 

 

For structures where the lateral stability does not depend on frame action 

between the slabs and the columns, and where the adjacent spans do not differ in 

length by more than 25 %, approximation values for β  may be used.  

Recommended values are given in Figure 4.3-12. 
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Figure 4.3-12 – Recommended values for β  (see Figure 4.21 from EN 1992 [N3])  

 

4.3.4.2 Punching shear resistance of slabs and columns bases 
without shear reinforcement 

The punching shear resistance of a slab should be assessed for the basic control 

perimeter according to Section 4.3.3. The design punching shear resistance [MPa] 

may be calculated as follows: 

 

         1/3

, , 1 min 1(100 ) ( ),Rd c Rd c l ck cp cpv C k ρ f k σ ν k σ              (4.3-12) 

 

where: ckf  is in MPa; 

      
200

1 2,0k
d

, (d in mm); 

       0,02l ly lzρ ρ ρ ; 

    ly lzρ ρ   relate to the bonded tension steel in y- and z- directions respectively.  

The values lyρ  and lzρ  should be calculated as mean values taking into account a 

slab width equal to the column width plus 3·d each side. 

 ( )/2cp cy czσ σ σ , where: ,cy czσ σ  are the normal concrete stresses in the 

critical section in y- and z- directions (MPa, positive if compression): 
,Ed y

cy

cy

N
σ

A
  and  


,

.
Ed z

cz

cz

N
σ

A
 , ,,Ed y Ed zN N   are the longitudinal forces across the full bay for internal 

columns and the longitudinal forces across the control section for edge columns. The 

force may be from a load or prestressing action, and cA  is the area of concrete 

according to the definition of EdN . 

Note: The values of , , Rd c minC ν  and 1k  for use in a Country may be found in its National Annex to 

EN 1992 [N3]. The recommended value for ,Rd cC  is 0,18/ cγ , 1 0,1k  for minν  is given by Expression 

4.2-27N from EN 1992 [N3]. 
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The punching resistance of column bases should be verified at control perimeters 

within 2 d  from the periphery of the column.  

For concentric loading the net applied force is equal to: 

 

 , Δ ,Ed red Ed EdV V V                                       (4.3-13) 

 

where: EdV     is the applied shear force; 

    Δ EdV   is  the  net  upward  force  within the  control perimeter considered, i.e.  

upward pressure from soil minus self weight of base.  

 

 , / ;Ed Ed redν V u d                                        (4.3-14) 

 

         1/3

, 1 min(100 ) 2 / 2 / ,Rd Rd c ckν C k ρ f d a ν d a               (4.3-15) 

 

where: a is the distance from the periphery of the column to the control perimeter 

considered. 

For eccentric loading: 

 

 
    

   

,

,

1 ,
Ed red Ed

Ed

Ed red

V M u
ν k

u d V W
                             (4.3-16) 

 

where: k  is defined in Section 4.3.4.1 (see Table 4.3-1) as appropriate, and W is 

similar to 1W , but for perimeter u . 

4.3.4.3 Punching shear resistance of slabs and columns bases 
with shear reinforcement 

Where shear reinforcement is required it should be calculated in accordance with 

following expression: 

 

        , , , 10,75 1,5 ( / ) (1/( )) sin ,Rd cs Rd c r sw ywd efν ν d s A f u d α            (4.3-17) 

 

where: swA  is the area of one perimeter of shear reinforcement around the column 

[mm2]; 

               rs  is the radial spacing of perimeters of shear reinforcement [mm]; 

               ,ywd eff    is the effective design strength of the punching shear reinforcement, 

according to , 250 0,25ywd ef ywdf d f     [MPa]; 

               d  is the mean of the effective depths in the orthogonal directions [mm]; 

               α  is the angle between the shear reinforcement and the plane of slab. 

If a single line of bent-down bars is provided, then the ratio / rd s  in         

Expression (4.3-17) may be given the value 0,67. 
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Detailing requirements for punching shear reinforcement are given in EN 1992 

[N3]. 

Adjacent to the column the punching shear resistance is limited to a maximum 

of: 

 


 


,

0

,Ed
Ed Rd max

β V
ν ν

u d
                                       (4.3-18) 

 

where: 0u  for an interior column is equal to the enclosing minimum periphery [mm]: 

for an edge column 0 2 2 13 2u с d c c      ; for a corner column 0 1 23u d c c    , 

where 1 2c c  are the column dimensions as it is shown in Figure 4.3-11. 

Note: The value of 
,Rd maxν  for use in a Country may be found in its National Annex to EN 1992 [N3]. 

The recommended value is  0,4 cdν f , where ν  is given in Expression (4.2-30). 

The control perimeter at which shear reinforcement is not required, outu , (or 

,out efu , see Figure 4.3-13) should be calculated from following expression: 

 

  , ,/( ).out ef Ed Rd cu β V ν d                                    (4.3-19) 

 

The outermost perimeter of shear reinforcement should be placed at a distance 

not greater than k d  within outu  (or ,out efu , see Figure 4.3-13). The recommended 

value is equal to 1,5.    

 

 
Figure 4.3-13 – Control perimeters at internal columns (see Figure 6.22 from EN 1992 [N3]) 

 

It will be noted that the approach to the design of shear reinforcement is in 

principle different to that used in beams where the concrete is assumed not to 

contribute to the shear strength of a section reinforced in shear. Here, a contribution 

from the concrete is assumed but, unlike the general international consensus, the 

concrete contribution is reduced from the full while cotθ  is effectively assumed to be 

1,5 rather than the more common 1,0 [8]. The formula has to be seen to be basically 

empirical, and one cannot been avoid an impression that all the parameters have 

been changed slightly from previous formulae just for the sake of being different. 
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It should be noted, that the concepts of a perimeter of shear reinforcement and 

the spacing of the perimeters are awkward, and will have to be interpreted for each 

particular case. A perimeter of reinforcement is presumably reinforcement provided 

on a perimeter parallel to the control perimeter 1u  but lying inside it. 

Having found that the shear reinforcement is required on the control perimeter 

at a distance of z d  from face of the loaded area (first control perimeter), the control 

perimeter beyond which shear reinforcement is no longer required is found from: 

 





,

,

.Ed
out eff

Rd c

β V
u

ν d
                                          (4.3-20) 

 

Having calculated ,out effu  the distance of this perimeter from the loaded area may 

easily be calculated. While failure will not take place on this perimeter, it can occur 

on any perimeter within this (even, in theory, 1 mm inside it!). 

The failure is predicted to occur over a distance, measured radially inwards from 

the perimeter, equal to 2 d . Shear reinforcement for this failure must, therefore, be 

within this zone between the perimeter and a parallel perimeter 2 d  inside it. 

Reinforcement close to either boundary of this zone is unlikely to be effective, and 

therefore a margin is needed on either edge. On the inner edge, reinforcement should 
not be closer than 0,3 d  to the loaded area, which constitutes the inner boundary of 

the failure zone for the first control perimeter. The maximum radial spacing of shear 
reinforcement is 0,75 d , and at least two sets of reinforcement are required. This 

would suggest, for the first control perimeter, that reinforcement could reasonably be 
provided at distance of 0,5 d  and 1,25 d  from the loaded area (column face), leaving 

a gap of 0,75 d  between the outermost reinforcement and the first control perimeter. 

It is suggested that this procedure is generalized into the following rules 

presented in [8]. 

Considering any possible perimeter, nu , lying between ,out effu  and the first control 

perimeter, shear reinforcement should be arranged so that a total area of shear 

reinforcement equal to ,sw totA  lies within a zone between a perimeter situated 0,3 d  

and a perimeter situated 1,7 d  inside nu . 

The radial spacing of the reinforcement should not exceed 0,75 d , and the 

circumferential spacing should not exceed 1,5 d  for the reinforcement for the first 

control perimeter or 2 d  for subsequent perimeters. ,sw totA  is given by the following 

expression: 

 

    , , ,( 0,75 )/ .sw tot n Ed Rd c ywd effA u d ν ν f                       (4.3-21) 

 

This procedure is illustrated in Figure 4.3-14. 
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Figure 4.3-14 – Arrangement of punching reinforcement (see Figure 6.15 from [8]) 

 

Examples to Section 4.3 

Example 1. Lightly loaded slab-column connection 

Check the punching shear strength of the slab around an internal column 

supporting a 225 mm thick flat slab having 6 m spans in both directions. The column 

is 300x400 mm, and the design shear force established from of the slab, which has 

6,5 m spans in both directions and supports a design ultimate load of 9 kN/m2 , is 

400 kN. Design of the slab for flexure gave an average value for the reinforcement 

ratio as 0,0077. The characteristic concrete strength is 30 N/mm2. Bending is about 

the major axis of the column only, and the moment transferred between the slab and 

the columns is 45 kN·m.  

Assuming 20 mm cover and 12 mm diameter bars give the average effective depth 

as: 225-20-12 193 mm . 

Table 4.8 of EN 1992 [N3] gives the basic design shear strength as 0,34 N/mm2 

for 30 N/mm2 concrete. The critical perimeter is equal to:
     2 (300 400) 193 4 3,1416 3825 mm .  

To find the design effective shear stress it is now necessary to calculate β . For 

an internal rectangular column, Table 4.3-2 gives: 

           2 2

1 1 1 2 2 1/2 4 16 2W c c c c d d π d c . 

For the slab and column dimensions considered, this gives:  

             2 2 3

1 400 /2 400 300 4 300 193 16 193 2 193 400 1512,6 10W π ;

1 2/ 400/300 1,333c c   . 

From Table 4.3-1,  0,63k . This gives: 

        61 0,63 45 10 3825/(400 1000 1512,6 1000) 1,17β . 

The effective design shear stress is following:  

    400 1000 1,17/(3825 193) 0,633Edν N/mm2. 

The depth factor, k , for a slab with an effective depth less than 200 mm is 2,0. 

Equation (4.3-12) gives:      1/3

, 0,18/1,5 2,0 (100 0,0077 30) 0,684Rd cν  N/mm2. 
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This exceeds 0,633 N/mm2, hence, no shear reinforcement is needed.  

Example 2. Heavily loaded slab-column connection required shear 

reinforcement 

The slab-column connection considered in Example E4.3-1 will now be designed 

for an increased design shear force of 600 kN. All other factor will be assumed to be 

as in Example 1. 

In calculating  1,Edν W  and 1 2/c c  will remain as in Example 1, but β  will change 

because the eccentricity of the load will reduce. Value of β  can now be calculated as 

follows:         61 0,63 45 10 3825/(600 1000 1512,6 1000) 1,12β . 

Value of Edν  is now given by the following expression:  

    600 1000 1,12/(3825 193) 0,91Edν  N/mm2. 

As before, , 0,684Rd cν , thus, punching shear reinforcement is required. 

It is convenient at this stage to calculate outeru to establish the extent of punching 

reinforcement: 1,12 600 1000/(0,684 193) 5090outeru       mm. 

This can easily be calculated to be a perimeter at a distance of 

  (5090 1400)/2 587π  mm or 3,04 d  from the column face.  

The area of reinforcement required across the failure zone can be calculated for 

the first control perimeter and for outeru . At any point in between these, the required 

area can be found by linear interpolation. For the first control perimeter, the total 

area of reinforcement that must be provided within the perimeter is given by: 

 , 3825 193 (0,91 0,75 0,684)/435 674s totA        mm2. 

At the outer perimeter, the total area is given by: 

, 5090 193 (0,91 0,75 0,684)/435 896s totA        mm2. 

Figure E 4.3-1.1 shows the required steel area for perimeters within this area. 

Assuming that the first perimeter of reinforcement is provided at 125 mm from 

the column face and then at 150 mm centres as far as necessary, the length of each 

perimeter can be calculated, and, hence, from the maximum spacing rules, the 

minimum number of bars which should be provided. For example, the length of a 

perimeter 125 mm from the column face is 2185 mm. The maximum permissible 
spacing around the perimeter is  1,5 290d mm. To meet this requirement, 

2185/290=8 bars are required. Trial and error suggests that 8 mm diameter bars, 

which are the smallest bars generally available, should be used on all perimeters. 

Table E 4.3-1 gives the steel areas supplied on each perimeter in this case. 

The areas in Table E 4.3-1 together with the assumption that reinforcement is 
only effective for a particular failure zone when it is at least 0,3 d  from the inner 

adge of the failure zone permits the total reinforcement provided for any outer 

perimeter of a failure zone to be calculated. This is plotted in Figure E 4.3-1. It will 

be seen that adequate reinforcement is provided at all perimeters and that all the 

detailing rules are obeyed. It will also be seen that the amount of reinforcement 

provided is actually defined by the minimum circumferential and radial bar spacing 

rules rather than the required strength. This seems likely to be generally the case. In 
particular, the radial maximum spacing of 0,75 d  ensures that, in many place, these 



255 

 

are, unavoidably, three perimeters of reinforcement within the failure zone in many 

situations.  

    
Table E 4.3-1 – Calculations for each perimeter of reinforcement in Example 2 [8] 

 Perimeter of reinforcement 

1 2 3 

Distance from column face (mm) 125 250 375 

(Distance from column face)/d 0,65·d 1,3·d 1,9 

Perimeter (mm) 2185 2970 3756 

Maximum spacing 290 290 290 

Number of bars 8 10 13 

Bar diameter 8 8 8 

Area on perimeter 402 603 553 

 

 
Figure E 4.3-1 – Provision of shear reinforcement in Example E 4.3-2                    

(Example 6.3 from [8]) 

 

4.3.5 PUNCHING SHEAR CALCULATION IN 
ACCORDANCE WITH fib MC 2010 [N5]  

4.3.5.1 General 

As was stated shown in fib MC 2010 [N5], punching shear is a failure mode that 

may potentially develop with limited deformation capacity. In such cases (brittle 

failure) the effects of imposed deformations (temperature, creep, shrinkage, 

sefflements, etc.) should be taken into account in the design. The influence of imposed 

deformations can, however, be neglected if sufficient deformation capacity is provided 
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in accordance with fib MC 2010 [N5]. Some suggested strategies for increasing the 

deformation capacity are: 

- choice of  a sufficient large support region and depth of slab in combination 

with fair ratios of bending reinforcement; 

- use of punching shear reinforcement. 

In flat slabs, safety against punching shear is particularly significant as 

punching of a slab around one column can propagate to adjacent columns leading to 

complete collapse of the structure. In order to avoid progressive collapses, one of the 

following strategies should be adopted: 

- increase of the deformation capacity at failure (see above) to allow internal 

forces redistribution, or 

- arrangement of appropriate integrity reinforcement for slabs with limited 

deformation capacity. 

4.3.5.2 Design shear force, shear-resisting effective depth and 
control perimeter 

Range of application.  

Punching shear can result from a concentrated load or reaction applied over a 

relatively small area. The rules for design presented here after apply to punching of 

flat slabs or foundation slabs.  

As described in fib MC 2010 [N5], different levels of approximation may be 

regarded. fib MC 2010 has four level of design of which Level 1 to Level 3 are intended 

for design and Level 4 for assessment of the existing structures.     

Design shear force. 

The design shear force with respect to punching ( EdV ) is calculated as the sum 

of design shear forces acting on a basic control perimeter ( 1b ). 

Basic control perimeter ( 1b ).  

It may normally be taken to be at a distance 0,5 Vd  from support region or 

loaded area (see Figure 4.3-15) and should be constructed so as to minimize its 

length. The length of the control perimeter is limited by slab edges (see Figure 4.3-15 

d).     

 

 
Figure 4.3-15 – Basic control perimeter around column                                                 

(see Figure 7.3-19 from fib MC 2010 [N5]) 
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The effective depth of the slab ( Vd ) shall account for the effective level of the 

support region, see Figure 4.3-16. 

 

 
Figure 4.3-16 – Effective depth of the slab accounting for support area penetration ( Vd )       

and effective depth for bending calculation (d) (see Figure 7.3-20 from fib MC 2010 [N5]) 

 

In the case of slabs of non-uniform thickness control section at a greater distance 

from the support area may be govern for punching shear resistance (see                   

Figure 4.3-17).     

 

 
Figure 4.3-17 – Choice of potentially governing control section                                              

(see Figure 7.3-21 from fib MC 2010 [N5]) 

 

For flat slabs and footing, the design shear force is equal to the value of the 

column reaction minus the sum of the actions applied inside the basic control 

perimeter (such as gravity loads, earth pressure of footings and deviation force of 

prestressing cables), as it was shown in case of application of the EN 1992 [N3] 

provisions. 
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For walls and long columns, the design shear force may be calculated using the 

wall reaction in a distance 1,5 Vd  from the edges (see Figure 4.3-18).   

 

 
Figure 4.3-18 – Basic control perimeter for walls and long columns 

 

Shear-resisting control perimeter ( 0b ). 

The shear-resisting control perimeter accounts for the non-uniform distribution 

of the shear along the basic control perimeter. 

The general procedure for calculation of 0b  is suggested when significant 

concentrated load ( 0,2 EdV ) are applied near support regions (closer then 3 d  of 

the border of the support region) or for highly asymmetrical slabs.  

For the calculation of the punching shear resistance, a shear-resisting control 

perimeter 0b  is used. For a general case, perimeter 0b  can be obtained on the basis of 

shear fields as: 

 

0

, ,

,Ed

perp d max

V
b

V
                                          (4.3-22) 

 

where: , ,perp d maxV  is the maximum value of the projection of the shear force 

perpendicular to the basic control perimeter. 

In accordance with fib MC 2010 [N5], a non-uniform distribution of the shear 

forces may result due to: 

1. Concentrations of the shear forces at the corner of large supported areas. This 

effect can approximately taken into account by reducing the basic control perimeter 

( 1,redb ) assuming that the length of its straight segments does not exceed 3 Vd  for 

each edge (Figure 4.3-19 a); 

2. Geometrical and statical discontinuities of the slab. In the presence of opening 

and insert, the basic control perimeter ( 1,redb ) is to be reduced according to the rules 

of Figures 4.3-19 b and Figure 4.3-20; 

3. Concentration of the shear force due to moment transfer between the slab and 

supported area. This effect can approximately be taken into account by multiplying 

the length of the reduced basic control perimeter ( 1,redb ) by the coefficient of 

eccentricity ( ek ): 0 1,e redb k b  . 

In presence of column to slab moments, concentrations on the shear field shall 

be accounted for by reducing the control perimeter by factor: 
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1
,

1 ( )
ek e

b




                                       (4.3-23) 

 

where: Ed

Ed

M
e

N
  is the load eccentricity; 

           b  is the diameter of the circle with the same surface as the support region. 

For structures where the lateral stability does not depend on frame action 

between the slabs and the columns and where the adjacent spans do not differ in 

length by more than 25 %, the following values may be adopted for coefficient ek : 

0,90 for inner columns; 0,70 for edge columns; 0,65 for corner columns.  

4. Presence of significant loads near the supported area. In cases where 

significant concentrated loads ( 0,2 EdV ) are applied near the supported area (close 

than 3 Vd  from edge of the supported area) the general procedure for calculating 0b  

should be used, refer to Equation (4.3-22).      

 

 
a) – long columns; b) – presence of openings 

Figure 4.3-19 – Reduction of control perimeter (see Figure 7.3-24 from fib MC 2010 [N5]) 

 

 

 
Figure 4.3-20 – Reduction of control perimeter in presence of pipes or inserts      

        (see Figure 7.3-23 from fib MC 2010 [N5]) 
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Cast-in pipes, pipe bundles or slabs inserts, where the distance from the 

supported area is less than 5 Vd   shall be placed perpendicular to the control 

perimeter (see Figure 4.3-19) and the length of the shear-resisting control perimeter 

shall be reduced accordingly.   

4.3.5.3 Punching shear resistance calculation 

4.3.5.3.1 Design equations 

The punching shear resistance is calculated as:  

 

  , , .Rd Rd c Rd s EdV V V V                                     (4.3-24) 

 

The design shear resistance attributed to the concrete may be taken as follows:  

 

  , 0 ,ck

Rd c ψ V

c

f
V k b d

γ
 with in [MPa].ckf                         (4.3-25) 

 

The parameter ψk  depends on the rotation of the slab around the support region 

and it is calculated as:  

 
   

1
0,6,

1,5 0,9
ψ

dg

k
ψ d k

                          (4.3-26) 

 

where: d  is the mean value (in [mm]) of the (flexural) effective depth in x and y 

directions. 

Provided that the size of the maximum aggregate particles, gd , is not less than 

16 mm, dgk  can be taken as 1,0dgk . This is evidence that the punching shear 

resistance is influenced by the maximum size of the aggregate ( gd ). If concrete with a 

maximum aggregate smaller than 16 mmgd  is used, the value of dgk  is assessed 

as: 
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                                      (4.3-27) 

 

where: gd is the maximum aggregate size. 

For aggregate sizes larger than 16 mm, Equation (4.3-27) may also be used. 

For high strength and light-weight concrete, the aggregate particles may be 

broken, and value gd  should be the assumed to be 0. 

The parameter ψ  refers to the rotation of the slab around the support region 

outside the critical shear crack (see Figure 4.3-21).  
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Figure 4.3-21 – Rotation (ψ ) of slab around the support region                                     

(see Figure 7.3-25 from fib MC 2010 [N5]) 

 

The design shear resistance provided by the stirrups (or other type of the 

transverse reinforcement) may be calculated as: 

 

   , sin ,Rd s sw e swV A k σ α                               (4.3-28) 

 

where: swA  is the sum of the cross-sectional area of all shear reinforcement 

suitably anchored, or developed, and intersected by the potential failure surface 

(conical surface with angle 45º) within the zone bounded by 0,35 Vd , and Vd  from 

the border of the support region (Figure 4.3-22). 

The angle α is taken with respect to the reference surface of the slab and swσ  is 

the stress that can be mobilized in the shear reinforcement and is taken as:  

 

 
    


(1 ) ,
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s bd
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E ψ f
σ f

f
                            (4.3-29) 

 

where: w  is the shear reinforcement diameter;  

 bdf  is the bond strength which is taken as 3,0 MPa in accordance with               

fib MC 2010 [N5]. 

In order to ensure sufficient deformation capacity at failure, the design of slabs 

with punching shear reinforcement requires a minimum amount of transverse 

reinforcement such that:  

 

    0,5 .sw e ywd EdA k f V                                  (4.3-30) 

 

The maximum punching shear resistance (for the case where transverse 

reinforcement is provide) is limited by crushing of concrete struts near the support 

region such that:  
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                    (4.3-31) 
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where the coefficient sysk  accounts for the performance of punching shear reinforcing 

system. In the absence of other data, for a reinforcement detailed a value 2,0sysk   

can be adopted. Other values may be used for coefficient sysk  provided that they are 

experimentally verified. In accordance with fib MC 2010 [N5] the coefficient sysk  is 

taken as 2,4 for stirrups and 2,8 for studs provided that radial spacing to the first 

perimeter of shear reinforcement from the column face is less or equal to 0,5 Vd  and 

spacing of successive perimeters of shear reinforcement is less than 0,6 Vd . 

The spacing of vertical legs of shear reinforcement around perimeter should not 

exceed 3 Vd  where the part of perimeter is assumed to contribute to the shear 

capacity.         

 

 
Figure 4.3-22 – Shear reinforcement activated at failure                                               

(see Figure 7.3-26 from fib MC 2010 [N5]) 

 

4.3.5.3.2 Calculation of rotation around the support region 

Level I of approximation. For regular flat slabs designed according to an elastic 

analysis and without significant redistribution of internal forces, a safe estimate of 

the rotation of a slab at failure is: 
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                                       (4.3-31) 

 

where: sr  indicates the position where the radial bending moment is zero with respect 

to the column axis. 

Level II of approximation. In cases where significant bending moment 

redistribution is considered in the design of the bending reinforcement, the slab 

rotation can be calculated as: 
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where: Edm  is the average bending moment per unit length in the support strip of the 

column, which is assumed to be of width 1,5 sr , where  0,226s xr L  or 0,226 yL  

(for the considered direction); 

           Rdm  is the design average flexural strength per unit length in the support   

strip (for the considered direction).   

It can be seen, that the same value for sr  as that for Level I of approximation can 

be adopted   ( 0,226 or 0,226 )s x yr L L . 

The width of the support strip for calculation of the design average flexural 

strength is: 

 

, , min1,5 ,s s x s yb r r L                                    (4.3-33) 

 

where close to slab edge, the width of the strip is limited to sb  according to              

Figure 4.3-23.   

      

 
Figure 4.3-23 – Support strip dimensions (see Figure 7.3-27 from fib MC 2010 [N5]) 

 

The average bending moment acting in the support strip ( Edm ) in general case 

can be approximated for each reinforcement direction and support type as:  

- for inner columns (top reinforcement in each direction):  
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- for edge columns: Edm  is equal to: 

a)  when calculations are made considering Rdm  calculated for the smallest of 

the upper and lower reinforcement perpendicular to the edge: 
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b) when calculations are made considering Rdm  calculated with the upper 

reinforcement parallel to the edge: 
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- for corner columns (tension reinforcement in each direction): 
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The rotation has to be calculated along the two main directions of the 

reinforcement.  

Level III of approximation. Level III of approximation is recommended for 

irregular slabs or for flat slabs where the ratio of the span length ( /x yL L ) is not 

between 0,5 and 2,0. The width of the support strip can be calculated as in Level II 

of approximation taken ,s xr  and ,s yr  as the maximum value in the direction being 

investigated. For edge or corner columns the following minimum value of sr  has to be 

considered:  0,67s srr b . 

The coefficient 1,5 in Equation (4.3-31) and Equation (4.3-32) can be replaced 

by 1,2 if:  

- sr  is calculated for the flat slab using linear elastic (uncracked) model; 

- Edm  is calculated from a linear elastic (uncracked) model as the average value 

of bending moment in the support strip. 
Level IV of approximation. The rotation angle ψ  can be calculated on the basis 

of a non-linear analysis of the structure and with full account of cracking, tension-

stiffening effects, yielding of the reinforcement and any other non-linear actions 

relevant to providing an accurate assessment of structure.  

Analytical or numerical techniques (for example, finite elements, finite 

differences, etc.) may be used for Level IV approximation. This level of approximation 

is in principle only suggested for the case of assessment of complex existing 

structures. 

Parameter Edm  has to be calculated consistently with the method used for 

determining the flexural reinforcement and is to be determined at the edge of the 

supported area maximizing Edm  (see Figure 4.3-24).  
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Figure 4.3-24 – Example of sections for integration of support strip moments                       

(see Figure 7.3-31 from fib MC 2010 [N5]) 

 

4.3.5.4 Integrity reinforcement 

The design shear for calculation of the integrity reinforcement can be calculated 

on the basic of an accidental design situation where progressive collapse has to be 

avoided. Slabs without shear reinforcement, or with insufficient deformation capacity, 

must be provided with integrity reinforcement (see Figure 4.3-25). 
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a) – straight bars; b) – bent-up; c) – slab plan 

Figure 4.3-25 – Integrity reinforcement (see Figure 7.3-34 from fib MC 2010 [N5]) 

 

The resistance provided after punching by the integrity reinforcement can be 

calculated as follows: 

 

  
       
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 
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0,5
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f γ
               (4.3-38) 

 

where: sA  refers to the sum of the cross-sections of all reinforcement suitably 

developed beyond the supported area on the compression side of the slab or to well-
anchored bent-up bars; 

           ydf  is the design yield strength of the integrity bars; the ratio ( / )t y kf f  and 

parameter ukε  are defined in accordance with EN 1992 [N3] and depends on the 

ductility class of the reinforcement (see Chapter 3); 
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           ultα  is the angle of the integrity bar with respect to the slab plan at failure 

(after development of plastic deformations in the post – punching regime), as it is 

shown in Table 4.3-3. 

α  is the angle of the integrity bars with respect to the slab plan (before 

punching occurs); 

resd  is the distance between centroid of the flexural reinforcement ratio and 

the centroid of the integrity reinforcement (see Figure 4.3-25 a and Figure 4.3-25 b); 

intb  is the control perimeter activated by the integrity reinforcement after 

punching. It can be calculated as: 

 

  ( ),
2

int int res

π
b s d                                      (4.3-39) 

 

where the summation refers to the groups of bars activated at the edge of the 

supported area and ints  is equal to the width of the group of bars (refer to                

Figure 4.3-25). 

 
Table 4.3-3 – Values of the angle of the integrity bar ultα    

ultα  Type of integrity reinforcement 

0º Straight bars, class of ductility A 

20º Straight bars, class of ductility B 

25º Straight bars, class of ductility C or D 

α≤40º Inclined or bent-up bars, class of ductility B, C or D 
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CHAPTER 5 

 

 
SERVICEABILITY LIMIT STATES (SLS) 

5.1 GENERAL PROVISIONS 

In general case, EN 1992 [N3] deal in some detail with three common 

serviceability limit states. There are: limitation of stresses; control of cracking; control 

of deflections.   

It was pointed in [3, 8], that other limit states (such as vibration) may be of 

importance in particular structures, but are not considered in EN 1992 [N3]. 

As it was show in [3, 8] design for any limit state requires the definition of four 

quantities. There are: 

1) definition of appropriate loading and methods of analysis so that the 

design load effects can be established; 

2) definition of the material properties to be assumed in the verification; 

3) definition of criteria defining the limit of satisfactory performance; 

4) definition of suitable methods by which performance may be predicted. 

It should be noted that in most cases it will not be necessary to carry out explicit 

calculations for the serviceability limit states, as simple, «deemed to satisfy» 

procedures are given in the code for dealing with all three of the limit states covered. 

This approach is acceptable because serviceability is intrinsically less critical than 

the ultimate limit states, and major calculation effort is not justified. 

For example, if the structure is wrongly designed and the strength is ever 1 % 

below the imposed loads, the structure collapse (theoretically!). By comparison, if the 

crack width turn out to be 0,33 mm instead of 0,3 mm, nothing more serious than 

some grumbling from the owner and a cosmetic repair is likely to result [8]. 
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5.1.1 ASSESSMENT OF DESIGN ACTION 
EFFECTS 

For serviceability limit states verification, EN 1990 [N1] defines three 

combinations of actions (action effects) which may need to be considered. These are: 

– characteristic combination:  
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– frequent combination:  
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– quasi-permanent combination:   

 

    2'' '' ;k, j ,i k ,i

j i

G ψ Q                                     (5.1-3) 

 

It will be understood from these formulae that the partial factor on the loads is 

always 1,0 for serviceability limit states. For buildings, the following simplifications 

which may be used for the characteristic or frequent combinations: 

–  where there is only one variable action: 

  

 '' '' ;k, j kG Q                                            (5.1-4) 

 

–  where there are two or more variable actions:  

 

 '' ''0 9 .k, j k,iG , Q                                     (5.1-5) 

 

Analysis may be elastic (without any redistribution). This analysis may be 

normally based on the stiffness of the uncracked section. However, if it is suspected 

that the cracking may have a significant unfavourable effect on the performance, then 

a more realistic analysis taking into account of the cracking should be used. This 

possibility may be ignored for normal building structures.  

5.1.2 MATERIAL PROPERTIES 

In accordance with EN 1990 [N1] the partial factors applied to material properties 

should generally be 1,0. The properties of materials which are normally significant in 
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serviceability calculations are reinforcement modulus of elasticity, modulus of 

elasticity, creep coefficient, shrinkage strain and tensile strength of concrete. 

5.1.3 MODULUS OF ELASTICITY 

For ordinary reinforcement modulus of elasticity may be taken as 200 kN/mm2. 

The elastic modulus of concrete varies with other factors than just the strength 

(e.g. aggregate type), and, if an accurate prediction of serviceability conditions is 

required, it will be necessary to establish the value of cmE  by test on the type of 

concrete actually being used (in accordance with specification requirements EN 206 

[N4]). In general case, values of the modulus of elasticity are given in Table 3.1-3.  

5.1.4 CREEP COEFFICIENT AND FREE 
SHRINKAGE STRAIN 

As it was shown in Chapter 3, the creep coefficient, which is defined as the ratio 

of the creep deformation to the instantaneous elastic deformation, depends upon 

many factors, the most significant of which are the age of loading, the time under 

load, the relative humidity, the section geometry, the concrete strength and the type 

of cement. As with the modulus of elasticity, the only way of determining the creep 

performance of concrete with any real reliability is to obtain data from creep tests on 

the concrete actually being used. Full equations for the prediction of the creep 

coefficient are given in EN 1992 [N3] (Annex A). 

    Free shrinkage strain depends upon the same basic variables as creep, and 

equations for its prediction are given in EN 1992 [N3] (Annex A). Simplified approach 

to assess time-dependent parameters for the concrete are given in Chapter 3. 

5.1.5 TENSILE STRENGTH OF CONCRETE 

Table 3.1-3 gives the mean tensile strength and the upper and lower 

characteristic tensile strengths as a function of the characteristic compressive 

strength of the concrete. 

 In calculation of stresses and deflections, cross-section should be assumed to 

be uncracked provided that the flexural tensile stress does not exceed ,ct efff . The value 

of ,ct efff  may be taken as ctmf  or ,ctm fef  provided that the calculation for minimum 

tension reinforcement is also based on the same value. For the purposes of calculating 

crack widths and tension stiffening ctmf  should be used. 
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5.2  CONTROL OF CRACKING 

5.2.1 GENERAL CONSIDERATIONS 

As it was shown in [8], members subjected to loading generally exhibit a series 

of distributed cracks. 

   Cracks is normal in reinforced concrete structures subject to bending, shear, 

torsion or tension resulting from either direct loading or restraint or imposed 

deformations. 

   Cracks can be usually observed on concrete structures in service. Cracks have 

significant influence on serviceability, durability, aesthetics and force transfer. 

Cracking of concrete (related to its limited tensile deformation capacity) is usually 

expected under tensile stresses. 

   The actual width of cracks in reinforced concrete structures will vary between 

wide limits and cannot be precisely estimated, thus the limiting requirements to be 

satisfied is that probability of the maximum width exceeding a satisfactory value is 

small. 

5.2.2 CAUSES OF CRACKING 

There are many possible causes of cracking and only a few of these lead to cracks 

that can be controlled by measures taken during the design. The following are the 

more common causes [8]: 

–  Plastic shrinkage or plastic settlement. These are phenomena which occur 

within the first few hours after casting while the concrete is still in a plastic state. The 

likelihood of cracks being caused by these phenomena depends upon the bleeding 

rate of the mix and the evaporation rate. The resulting cracks may be large: up to 

2mm is not common. 

–  Corrosion. Rust occupies a greater volume than the metal from which it is 

formed. Its formation therefore causes internal pressures to build up around the bar 

surface, which will lead to the formation of cracks running along the line of the 

corroding bars and eventually, spalling of the concrete. 

–  Expansive chemical reactions within the concrete. Expansive reactions 

occurring at the concrete surface tend to lead to scaling of the concrete rather than 

cracking; however, some reactions, such as the alkali-silica reaction, occur within the 

body of the concrete and can lead to large surface cracks. 

–  Restrained deformations, such as shrinkage or temperature movements. 

– Loading. 

Of this list, only the last two causes can be treated by the designer. They are 

probably the two least serious causes of cracking. 
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5.2.3 CRACK WIDTH LIMITS 

There are many reasons for wishing to limit the width of cracks to a relatively 

low value. Among the most commonly cited reasons are to avoid or limit: 

–  possible corrosion damage to the reinforcement due to deleterious substances 

penetrating to the reinforcement down the cracks; 

–  leakage through cracks, this is commonly a critical design consideration in 

water retaining structure; 

– an unsightly appearance. 

All of the above reasons have been researched to some degree, but no clear 

definition of permissible crack width has emerged from any of these studies.  

The following provides a very brief summary of the results from these studies as 

it was presented in [3, 8].   

Cracking and corrosion. This is the most extensively researched area. 

Summaries of the findings have been published by a number of authors. The 

development of corrosion is a two-phase process. In fresh concrete the reinforcement 

is protected from corrosion by the alkaline nature of the concrete. This protection can 

be destroyed by two mechanisms: carbonation of the concrete to the surface of the 

reinforcement or ingress of chlorides. Cracks will lead to a local acceleration of both 

processes by permitting more rapid ingress of either carbon dioxide or chlorides to 

the surface of the reinforcement. Once the protection provided by the concrete has 

been destroyed, corrosion can start if the environmental conditions are right. The 

period from construction up till the initiation of corrosion is usually referred to as the 

«initiation phase», while the period after the initiation of corrosion is usually referred 

to as ‘active phase’. The length of the initiation phase is likely to be influenced by 

crack width. However, this period is likely to be short at a crack, and some corrosion 

can usually be found on the bar surface where a crack reaches a bar after as little as 

2 years even with very small cracks. It is found, however, that this initial corrosion 

does not develop in cases where the cracks are small or where the bars intersect the 

cracks. Quite possibly the corrosion products block the cracks and inhibit further 

corrosion. A more serious situation exists where a crack runs along the line of a bar. 

There is limited evidence to suggest that, in this case, sustained corrosion may 

develop in salty environments where the crack width exceeds about 0,3 mm. 

Though less research has been done on the relation between cracking and 

corrosion in pre-stressed concrete members, it is generally believed that the risks 

posed by cracks are greater, and therefore more stringent criteria should be imposed. 

For this reason, EN 1992 [N3] does not permit cracks to penetrate to the pre-stressing 

tendons where the member is exposed to aggressive environments. 

Leakage. Only very limited research has been carried out so far into this 

problem, and this has not led to any agreed basis for crack width limits. Practical 

experience has suggested that cracks of less than 0,2 mm width which pass right 

through a section will leak somewhat initially but will quickly seal themselves. This 
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problem is not specifically considered in EN 1992 [N3] as liquid-retaining structures 

are covered in EN 1992 [N3]. 

Appearance. Limited studies suggest that noticeable cracks in structural 

members’ cause concern to the occupants of structures, and it is therefore advisable 

to keep cracks below a width that will not generally be noticed by a casual observer. 

On a smoothly finished concrete surface, it appears that cracks are unlikely to lead 

to complaint if the maximum width is kept below 0,4mm. Clearly, larger widths may 

be used on rougher forms of surface or where the cracking cannot be seen. This is 

mentioned in the note to Table 5.2-1.  

      In accordance with EN 1992 [N3] cracking shall be limited to an extent that 

will not impair the proper functioning or durability of the structure or cause its 

appearance to be unacceptable. A limiting value, maxw , for the calculated crack width, 

kw , taking into account the proposed function and nature of the structure and the 

costs of limiting cracking should be established.  

The recommended values for relevant exposure classes are given in            Table 

5.2-1. 

 
Table 5.2-1 – Recommended values of maxw  (mm) (Table 7.1 N from EN 1992 [N3]) 

Exposure class 

Reinforced members and 

prestressed members with 
unbonded tendons 

Prestressed members with bonded 

tendons 

 Quasi-permanent load combination Frequent load combination 

X0, XC1 0,4 0,2 

XC2, XC3, XC4, 

0,3 

0,2 

XD1, XD2, XD3, 

XS1, XS2, XS3 
Decompression 

Notes: 1. For X0, XC1 exposure classes, crack width has no influence on durability and this limit is 
set to give generally acceptable appearance. In the absence of appearance conditions this limit may 
be relaxed. 
          2. For these exposure classes, in addition, decompression should be checked under the quasi-
permanent combination of loads.  

 

As it is stated in EN 1992 [N3] in the absence of specific requirements (e.g. water-

tightness), it may be assumed that limiting the calculated crack widths to the values 

of maxw  are given in Table 5.2-1, under quasi-permanent combination of loads, will 

generally be satisfactory for reinforced concrete members in buildings with respect to 

appearance and durability.  

Flexural cracking is generally controlled by providing a minimum area of tension 

reinforcement and limiting bar spacings or limiting bar side. If calculations to 

estimate maximum crack widths are performed, they are based on the quasi-

permanent combination of loads (action effect) and an effective modulus of elasticity 

of the concrete should be used to allow for creep effects.  
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5.2.4 MECHANISM OF CRACKING 

Mechanism of flexural cracking can be illustrated by considering behaviour of a 

concrete member zones, subjected to a uniform moment.  

    A length of beam as shown in Figure 5.2-1 will initially behave elastically 

throughout, as an applied bending moment EkM  is increased. 

    When ultimate tensile strain for the concrete is reached, a crack will form and 

the adjacent tensile done will no longer be acted on by direct tension force. The 

formation of this crack lead to a local redistribution of stresses within section. At the 

crack, all tensile force will be transferred to the reinforcement and the stress in 

concrete immediately adjacent to the crack must clearly be zero (see Figure 5.2-1). 

The curvature of the beam, however, causes further direct tension stresses to develop 

at same distance from the original crack to maintain equilibrium. So, with increasing 

of the distance from the crack, force is transferred by bond from the reinforcement to 

concrete until, at some distance, 0s , from crack, the stress distribution within the 

section remains unchanged from what it was before the crack formed. This in turn 

causes further cracks to form and process continues until the distance, does not 

permit sufficient tensile stresses to develop and cause further cracking.    

 

 
Figure 5.2-1 – Mechanism of crack formation 

 

These initial cracks are called «primary cracks», and the average spacing in a 

region of constant moment are largely independent of reinforcement detailing. 

This local redistribution of forces in the region of the crack is accompanied by 

an extension of the member. This extension, plus a minor shortening of the concrete 

which has been relieved of the tensile crack it was surrounding, is accommodated in 

the crack. The crack then opens up to a finite width immediately on its formation.  

The formation of the crack and the resulting extension of the member also 

reduced the stiffness of the member. 
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As further load is applied, a second crack will form at the next weakest section, 

though it will not form within 0s  of the first crack since the stresses within the region 

will have been reduced by formation of the first crack. 

Tensile stresses in the concrete surrounding reinforcing bars are caused by bond 

as the strain in the reinforcement increases. These stresses increase with distance 

from the primary cracks and may eventually cause further cracks to form 

approximately mid-way between the primary cracks. 

This action may continue with increasing bending moment until the bond 

between concrete and steel is incapable of developing sufficient tension in the 

concrete to cause further cracking in the length between existing cracks. Since the 

development of the tensile stresses is caused directly by the presence of reinforcing 

bars, the spacing of cracks will be influenced by the spacing of the reinforcement. If 

bars are sufficiently close for their «zones of influence» to overlap, then secondary 

cracks will join up across the member while otherwise they will form only adjacent to 

individual bars.  

Further increases in loading will lead to the formation of further cracks until, 

eventually, there is no remaining area of the member surface which is not within 0s  

of previously formed crack.  

The formation of each crack will lead to a reduction in the member stiffness. 

After all the cracks have formed, further loading will result in a widening of the 

existing cracks but no new cracks formation. Stresses in the concrete will be relieved 

by limited bond-slip near the crack faces and by the formation of internal cracks. This 

process leads to further reduction of stiffness, but clearly, the stiffness cannot reduce 

to below that of the bare reinforcement. 

According to EN 1992 [N3] (clause 6.4.2) the average crack spacing in a flexural 

member depends in part on the efficiency of bond, the diameter of reinforcing bar 

used and quantity and location of the reinforcement in relation to the tensile face of 

the section. 

5.2.5 DERIVATION OF CRACK PREDICTION 
FORMULAE 

The development of formulae for the prediction of crack widths given in               

EN 1992 [N3] (clause 7.3.4) follows from the description of the cracking phenomenon 

given above. 

In general case, the crack width can be calculated from following expression 

based on «bond-slip» theory:  

 

     
0

2
tl

t s ctw l ε ( x ) ε ( x ) dx.     (5.2-1) 
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If it is assumed that all the extension occurring when a crack forms is 

accommodated in that crack, then, when all the cracks have formed, the crack width 

will be given by following relationship, which is simply a statement of compatibility:  

 

   ,rm mw s ε                                               (5.2-2) 

 

where: w is crack width; 

           rms  is the average crack spacing; 

           mε   is the average strain. 

The average strain can be more rigorously stated to be equal to the strain in the 

reinforcement, taking into account of tension stiffening, smε , less the average strain 

in concrete at the surface, cmε . 

Since, in design, it is a maximum width of crack which is required rather than 

the average, the final formulae given in EN 1992 [N3] is following:  

 

    k r ,max sm cmw s ε ε .   (5.2-3) 

 

Since no crack can form within tl  of an existing crack, this defines the minimum 

spacing of the cracks. The maximum spacing is 2 tl , since if a spacing existed wider 

than this, a further crack could form. It follows that the average crack spacing will lie 

between tl  and 2 tl . It is frequently assumed to be 1 5 t, l . 

The distance tl , and hence rms , depends on the rate at which stress can be 

transferred from the reinforcement, which is carrying all the force at crack, to the 

concrete. This transfer is effected by bond stresses on the bar surface. If the bond 

stress is assumed to be constant along the length tl  and that the stress will just reach 

the tensile strength of concrete at a distance tl  from crack, then:  

 

        , ,1 ;sm t ctm c eff p effτ π l f A ρ   (5.2-4) 

 

   
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Maximum spacing between cracks  2r ,max ts l :  
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ctm

sm p,eff p,eff

f A ρ f A ρ f ρ
s

τ π τ A τ ρ
f

, , k
τ ρ ρ

    (5.2-5) 

 

where: smτ  is the bond stress;  

c ,effA  is the effective area of concrete in tensile zone (effective tension area); 
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ctmf  is the averge tensile strength of concrete; 

  is the bar diameter. 

This is the oldest form of relationship for prediction of crack spacings. More 

recent studies have shown that the cover also a significant influence, and that a better 

agreement with test result rms  is obtained from an equation of the form:  

 

 


    10,25 ,rms k c k
ρ

    (5.2-6) 

 

where: c is the concrete cover. 

 

 
Figure 5.2-2 – Effective tension area (typical cases) (Figure 7.1 from EN 1992 [N3]) 

 

This formula has been derived for members subjected to pure tension. In order 

to be able to apply it to bending, it is necessary to introduce a further coefficient, 2k

, and to define an effective reinforcement ratio, effρ . These modifications take account 

of the different form of stress distribution within tension done and the fact that only 
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part of section is in tension. Coefficients 2k  and effρ  can be derived empirically from 

tests. The resulting formula is following: 

 

 


     1 22 0 5 ,rm

eff

s c , k k
ρ

  (5.2-7) 

 

where: 1k  is a coefficient taking into account of the bond propties of reinforcement. A 

value of 0,8 is taken for high bond bars and 1,6 for smooth bars. 

           2k  is a coefficient depending on the form of the stress distribution. A value 0,5 

is taken for bending and 1 – for pure tension. Intermediate values can be obtained 

from:  

 

 
 




1 2

2

1

,
2

ε ε
k

ε
  (5.2-8) 

 

where: 1ε  and 2ε  are, respectively, the greater and lesser tensile strains at the faces 

of the member; 

           effρ  is the effective reinforced ration, where As is the area of tension 

reinforcement contained within the effective are of concrete in tension c ,effA  (see 

Figure 5.2-2).  

In design, it is not the average crack width which is required but a value which 

is unlikely to be exceeded. EN 1992 [N3] uses the characteristic crack width, which 

is defined as a width with a 5 % probability of exceedance. It is found experimentally 

that a reasonable estimate of characteristic width is obtained if the maximum crack 

spacing is assumed to be 1,7 times the average value. In EN 1992 [N3], therefore, the 

maximum spacing are used. 

In situations where loaded reinforcement is fixed at reasonably close centres 

within the tension zone (spacing    5 2c ), the maximum final crack spacing 

may be calculated from following expression (see Figure 5.2-3): 

 

  


      3 1 2 3 4 ,r ,max

p,eff

s k c k k k k
ρ

 (5.2-9) 

 

where:   is the bar diameter. Where a mixture of bar diameters is used in a section, 

an equivalent diameter, eq , should be used. For section with 1n  bars   diameter 

1  and 2n  bars of diameter 2 , the following expression should be used: 

 

  
 

  

2 2

1 1 2 2

1 1 2 2

,eq

n n

n n
                                      (5.2-10) 

 

c is the cover to the longitudinal reinforcement 
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1k  is a coefficient which takes account of the bond properties of the bonded 

reinforcement: it is equal to 0,8 for high bond bars, and it is equal to 1,6 for bars with 

an effectively plain surface (e.g. prestressing tendons); 

2k  is a coefficient, which takes into account of the distribution of strain: it is 

equal to 0,5 for bending, and it is equal to 1,0 for pure tension. 

For cases of eccentric tension or for local area, intermediate values of 2k  should 

be used which may be calculated from the relation:   

 

      2 1 2 12 ,k ε ε ε   (5.2-11) 

 

where 1ε  is the greater and 2ε  is the lesser tensile strain at the boundaries of the 

section considered, assessed on the basis of a cracked section. 

The values of 3k  and 4k  may be found in National annex to EN 1992 [N3]. The 

recommended values: 3 3 4k , , and 4 0 425k , .     

 

 
Figure 5.2-3 – Crack width, w, at concrete surface relative to distance from bar               

(Figure 7.2 from EN 1992 [N3]) 

 

Where the spacing of the bonded reinforcement exceeds    5 2c  (see       

Figure 5.2-3), an upper bound to the crack width may be found by assuming a 

maximum crack spacing:  

 

    1 3r ,maxs , h x .   (5.2-12) 

 

The other parameter in the crack width equation is the average strain                        

( smε  – cmε ). This is obtained from following procedure. 

For the section at a distance tl  from crack the following equilibrium condition 

can be written (see Figure 5.2-4):  

 

           2 1 Δct cm c,eff s s sr sr s s sr ,maxε E A E A ε ε E A .   (5.2-13) 
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For any section along tl :   

 

        Δ sr s s ct cm cε x E A ε x E A .  (5.2-14) 

 

 
Figure 5.2-4 – For cracking width prediction 

 

Average tensile strain in reinforcement and tensile strain in concrete can be 

expressed as follows:  

 

     
0

1
;

tl

cm ct t ct

t

ε ε x dx k ε
l

  (5.2-15) 

 

           2

0 0

1 1
Δ

t tl l

sm s sr sr

t t

ε ε x dx ε ε x dx.
l l

  (5.2-16) 

 

Solving Equation (5.2-14) and Substituting in Equation (5.2-16): 

 

  


       
 2 2

0 0

1 1
Δ .

t tl l

c c
sm sr sr sr t ct

t t s s

E A
ε ε dx ε x dx ε k ε

l l E A
  (5.2-17) 

 

Substituting Equation (5.2-13) in Equation (5.2-17) given: 

 



281 

 

     2 2 1sm sr t sr srε ε k ε ε .   (5.2-18) 

 

Average strain ( smε  – cmε ) is obtained from the following equation: 
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f f
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f
k α ρ

E E

   (5.2-19) 

 

The final formulae given in EN 1992 [N3] is following:  

  

 
     

   
, , ,/ 1

0,6 ,
s t ct eff p eff e p eff s

sm cm

s s

σ k f ρ α ρ σ
ε ε

E E
           (5.2-20) 

 

where: sσ  is the stress in the tension reinforcement assumed a cracked section; 

eα  is the ratio /s cmE E ;  

, ,p eff s c effρ A A ; 

tk  is a factor dependent on the duration of the load: it is equal to 0,6 for short 

term loading, and it is equal to 0,4 for long term loading; 

,c effA  is the effective area of concrete in tension surrounding the reinforcement 

of the depth, ,c effh , where ,c effh  is the lesser of   2,5 h d ;   /3h x  and /2h  (see 

Figure 5.2-2). 

Example to Section 5.2 

Example 1. Calculation of flexural crack width 

Calculate the design flexural crack widths for the beam shown in Figure 5.2-1 

when subject to a quasi-permanent moment , 650E kM  kN∙m. The concrete is class 

C25/30, and the reinforcement is high bond with a total cross-section area  3770sA

mm2.   
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Figure E 5.2-1 – Crack width calculation example 

 

Calculate the main strain, smε . 

From Table 3.1-3:  31cmE  GPa for the concrete class C25/30. From              

Figure 3.1-7, assuming loading at 28 days with indoor exposure, the creep coefficient 

(because     2 / 2 1000 400/2800 285cA n ), and, hence, the effective modulus is 

given as follows:  
   

  
 

31
8 54 GPa

1 1 2 63
cm

c ,eff

E
E ,

φ ,
.  

Calculate the neutral axis depth of the cracked section, x. 

Taking moment about the neutral axis: 

       ;
2

e s

x
b x α A d x  

     
2 200

400 3770 930
2 8 54

x
x

,
, which has the solution  457x  mm. 

Calculate the stress in the tension steel, sσ . 

Taking moments about the level of the compressive force in the concrete: 

   


  
   

6

2

650 10 N
222

3 930 457 3 3770 mm

E,k

s

s

M
σ .

d x / A /
  

Calculate ( smε  – cmε ).  

            
   




     
 

3

3 3

1 222 0 4 2 6 0 0539 1 6 45 0 0539

200 10
222 19 97 222

0 001 0 6 0 6 0 00067,
200 10 200 10

s t ct ,eff p,eff e p,eff

sm cm

s

s

s

σ k f / ρ α ρ , , / , , ,
ε ε

E
σ,

, , , ,
E

  

where:  0 4tk , , assuming long-term loading;   2,6ct ,eff ctmf f  N/mm2 (from           

Table 3.1-3);   
200

6 45
31

s
e

cm

E
α ,

E
; 

 
  

  

3770
0 0539;

2 5 1000 930 400
s

p,eff

c ,eff

A
ρ ,

A ,
  

Calculate the maximum crack spacing, r,maxs . 

  
         , 1 2

0,425 0,8 0,5 40
3,4 0,425 3,4 50 296

0,0539
r max p,effs c k k ρ  mm.  
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where:    1 0 0 0 9 3 0 4 0 2 5 0 mm, cover to main bars; 1 0 8k ,  for ribbed bars; 

2 0 5k ,  for flexure;   40 mm  – bar diameter. 

The maximum crack spacing , 296r maxs  mm, that is less than 

   5 2 350 mmc . 

Calculate crack width, 
kw .  

  0 001 296 0,30 mmkw , , which just satisfied the recommended limit. 

5.2.6 CONTROL OF CRACKING WITHOUT 
DIRECT CALCULATION 

For reinforced slabs in buildings subjected to bending without significant axial 

tension, specific measures to control cracking are not necessary where the overall 

depth does not exceed 200 mm and the detailing provisions in accordance EN 1992 

[N3] (clause 9.3) have been applied.  

 
Table 5.2-2 – Maximum bar diameters s  for crack control (Table 7.2N from EN 1992  [N3]) 

Steel stress [MPa] 
Maximum bar size [mm] 

0,4 mmkw   0,3 mmkw   0,2 mmkw   

160 40 32 25 

200 32 25 16 

240 20 16 12 

280 16 12 8 

320 12 10 6 

360 10 8 5 

400 8 6 4 

450 6 5 - 

Notes: 1. The values in the table are based on the following assumptions: c 25 mm;  ct ,efff 2,9 MPa;  

 crh 0,5 h;     h d 0,1 h;  1k 0,8;  2k 0,5;  ck 0,4;  k 1,0;  tk 0,4;  4k 1,0.  

             2. Under the relevant combinations of actions. 

 

The rules given in EN 1992 [N3] (clause 7.7.3) may be presented in a tabular 

form by restricting the bar diameter or spacing as a simplification. 

Where the minimum reinforcement given by section ,s minA  is provided, crack 

widths are unlikely to be excessive if:  

–  for cracking caused dominantly by restraint, the bar sizes given in                 

Table 5.2-2 are not exceeded where the steel stress is the value obtained immediately 

after cracking; 

–  for cracks caused mainly by loading, either the provisions of Table 5.2-2 or the 

provisions of Table 5.2-3 are compiled with. The steel stress should be calculated on 

the basis of a cracked section under the relevant combination of actions. 
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Table 5.2-3 – Maximum bar spacing for crack control (Table 7.3N from EN 1992 [N3]) 

Steel stress [MPa] 
Maximum bar spacing [mm] 

0,4 mmkw   0,3 mmkw   0,2 mmkw   

160 300 300 200 

200 300 250 150 

240 250 200 100 

280 200 150 50 

320 150 100 - 

360 100 50 - 

For notes see Table 5.2-2. 

 

The maximum bar diameter should be modified as follows: 

–  bending (at least part of section in compression): 

  
 


    

 
2,9 ;

2

* c cr
s s ct ,eff

k h
f

h d
  (5.2-21) 

 

–  tension (uniform axial tension):  

 

           2 9 8*

s s ct ,eff crf , h h d .                          (5.2-22) 

 

where: s   is the adjusted maximum bar diameter; 

           *

s   is the maximum bar size given in the Table 5.2-2; 

            h     is the overall depth of the section; 

            hcr is the depth of the tensile zone immediately prior to cracking, considering 

the characteristic values of prestress and axial forces under the quasi-permanent 

combination of actions; 

            d is the effective depth to the centroid of the outer layer of reinforcement. 

Where all the section is under tension (h – d) is the minimum distance from the 

centroid of the layer of reinforcement to the face of the concrete (consider each face 

where the bar is not placed symmetrically). 

Beams with a total depth of 1000 mm or more, where the main reinforcement is 

concentrated in only a small portion of the depth should be provided with additional 

skin reinforcement to control cracking on the side faces of the beam. This 

reinforcement should be evenly distributed between the level of the tension steel and 

the neutral axis and should be located within the links. The area of the skin 

reinforcement should not be less than the amount obtained from the                    

Equation (5.2-23), taking k as 0,5 and sσ  as 
ykf . The spacing and size of suitable 

bars may be obtained from EN 1992 [N3] (clause 7.3.4) or a suitable simplification 

assuming pure tension and a steel stress of half the value assessed from the main 

tension reinforcement. 

It should be noted that there are particular risks of large cracks occurring in 

sections where there are sudden changes of stress, e.g.: at changes of section; near 

concentrated loads; positions, where bars are curtailed; area of high bond stress, 

particular at the ends of laps. 
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Care should be taken at such areas to minimise the stress changes wherever 

possible. However, the rules for crack control given above will normally ensure 

adequate control at these points provided that the rules for detailing reinforcement 

given in Sections 6. 

5.2.7 MINIMUM REINFORCEMENT AREAS 

In accordance with EN 1992 [N3] (clause p.7.3.2), if crack control is required, a 

minimum amount of bonded reinforcement is required to control cracking in areas 

where tension is expected. The amount may be estimated from equilibrium between 

the tensile forces in concrete just before cracking and the tensile force in 

reinforcement at yielding or at a lower stress if necessary to limit the crack width. 

Unless a more rigorous calculation shows lesser areas to be adequate, the 

required minimum areas of reinforcement may be calculated as follows. In profiled 

cross sections like T-beams and box girders, minimum reinforcement should be 

determined for the individual parts of the section (webs, flanges). 

 

      ,s,min s c ct ,eff ctA σ k k f A   (5.2-23) 

 

where: s,minA    is the minimum area of reinforcing steel within the tensile zone 

       ctA  is the area of concrete within tensile zone. The tensile zone is that part of 

the section which is calculated to be in tension just before formation of the first crack. 

                      sσ  is the absolute value of the maximum stress permitted in the reinforcement 

immediately after formation of the crack. This may be taken as the yield strength of 

the reinforcement, ykf . A lower value may, however, be needed to satisfy the crack 

width limits according to the maximum bar size or spacing (see clause 7.3.3 (2) from 

EN 1992 [N3]) 

       ct ,efff  is the mean value of the tensile strength of the concrete effective at the 

time when the cracks may first be expected to occur: ct ,eff ctmf f  or lower, (  ctmf t ), if 

cracking is expected earlier than 28 days. 

       k is the coefficient which allows for the effect of nonuniform selfequilibrating 

stresses, which lead to a reduction of restraint forces. It is equal to 1,0 for webs with 

h≤300mm or flanges with widths less than 300 mm, and it is equal to 0,65 for webs 

with h≥800mm or flanges with widths greater than 800mm intermediate values may 

be interpolated. 

       ck  is a coefficient which takes account of the stress distribution within the 

section immediately prior to cracking and of the change of the lever arm. It is equal 

to 1,0 for pure tension, and for bending or bending combined with axial forces: 

– for rectangular sections and webs of box sections and T-sections: 
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  (5.2-24) 

 

─ for flanges of box sections and T-sections: 

 

   


0 9 0 5;cr
c

ct ct ,eff

F
k , ,

A f
  (5.2-25) 

 

where: cσ  is the mean stress of the concrete acting on the part of the section under 

consideration, and it is equal to: 

 

 


Ed
c

N
σ

b h
  (5.2-26) 

EdN  is the axial force at the serviceability limit state acting on the part of the 

cross-section under consideration (compressive force positive). NEd  should be 

determined considering the characteristic values of prestress and axial forcer the 

relevant combination of actions 

              h* is equal to h for h<1,0 m, and equal to 1,0 m for h≥1,0 m. 

             1k  is a coefficient considering the effects of axial forces on the stress 

distribution. It is equal to 1,5 if EdN   is a compressive force, and it is equal to 

    2 3*h / h  if EdN   is a tensile force. 

             crF  is the absolute value of the tensile force within the flange immediately 

prior to cracking due to cracking moment calculated with ct ,efff . 
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5.3  DEFLECTION CONTROL 

5.3.1 GENERAL CONSIDERATIONS 

In accordance with EN 1992 [N3] (clause p.7.4.1), the deformation of a member 

or structure shall not be such that it adversely effects its proper functioning or 

appearance. 

Appropriate limiting values of deflection taking into account the nature of the 

structure, of the finishes, partitions and fixings and upon the function of the 

structure should be established. 

As was it shown in [8] deformations should not exceed those that can be 

accommodated by other connected elements such as partitions, glazing, cladding 

services or finishes. In some cases limitation may be required to ensure the proper 

functioning of machinery or apparatus supported by the structure, or to avoid 

ponding on flat roofs. 

The limiting deflections given in EN 1992 [N3] are derived from ISO 4356 [9] and 

should generally result in satisfactory performance of buildings public buildings such 

as dwellings, offices, public buildings or factories. Care should be taken to ensure 

that the limits are appropriate for the particular structure considered and that there 

are no special requirements. Further information on deflections and limiting values 

may be obtained from ISO 4356 [9]. 

The appearance and general utility of the structure could be impaired when the 

calculated sag of a beam, slab or cantilever subjected to quasi-permanent load 

exceeds span/250. The sag is assessed relative to the supports. Pre-camber may be 

used to compensate for some or all of the deflection but any upward deflection 

incorporated in the formwork should not generally exceed span/250.  

Deflections that could damage adjacent parts of the structure should be limited. 

For the deflection after construction, span/500 is normally an appropriate limit for 

quasi permanent loads. Other limits may be considered, depending on the sensitivity 

of adjacent parts. 

The limit state of deformation may be checked by either:  

─ by limiting the span/depth ratio, according to section,  or 

─ by comparing a calculated deflection, according to Section 5.3.2.3, with a limit 

value  

The actual deformations may differ from the estimated values, particularly if the 

values of applied moments are close to the cracking moment. The differences will 

depend on the dispersion of the material properties, on the environmental conditions, 

on the load history, on the restraints at the supports ground conditions, etc. 
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5.3.2 CALCULATION OF DEFLECTION 

The code EN 1992 [N3] suggests that deflection should be calculated under the 

action of quasi-permanent load combination in accordance with EN 1990 [N1], 

assuming this loading to be of long-term duration. Hence, the total loading to be taken 

in the calculation will be the permanent load plus a portion of the variable (imposed) 

load as in following expression: 

 

 


   2

1

,
n

k, j ,i k ,i

j i

G Q   (5.3-1) 

 

where: k, jG  is a permanent load; 

k ,iQ  is a variable (imposed) load. 

This is the reasonable assumption as deflection will be affected by long-term 

effects such as concrete creep, while not all of the variable load is likely to be long-

term and hence will not contribute to the creep effects.  

Lateral deflection must not be ignored, especially on tall slender structures, and 

limitation in these must be judged by the engineer. It is important to realise that there 

are many factors which may have significant effects on deflections, and are difficult 

to allow for. Thus any calculated values must be regarded as an estimate only. 

The most important of these factors are: 

1) support restraint must be estimated on the basis of simplified 

assumptions, will have varying degrees of accuracy (boarding conditions uncertainty); 

2) the precise loading cannot be predicted and errors in permanent loading 

may have a significant effect; 

3)  a cracked member will behave differently one that is uncracked this may 

be a problem in lightly reinforced members where the working load may be near to 

the cracking limit; 

4) the effects of floor screed, finishes and portions are very difficult to 

assess, frequently these are neglected despite their stiffening effect. 

The method adopted by EN 1992 [N3] is based on the calculation of curvature of 

sections subjected to the appropriate moments with allowance for creep and 

shrinkage effects where necessary. Deflections are then calculated from these 

curvatures. A rigorous approach to deflection is to calculate the curvature at the 

interval along the span and then use numerical integration techniques to estimate 

the critical deflections taking into account the fact that some sections along the span 

will be cracked under load and other, in region of lesser moment, will be un-cracked. 

Such an approach is rarely justified and the approach adopted below, based on EC2, 

assumes that acceptably accurate to calculate the curvature of the beam or slab 

based on both the cracked and un-cracked sections and then to use an average value 

in estimating the final deflection using standard deflection formulae or single 

numerical integration based on elastic theory.  
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5.3.2.1 Calculation of curvature 

Curvature under the action of the quasi-permanent load combination should be 

calculated based on both cracked and un-cracked sections. An estimate of an average 

value of curvature can then be obtained using the formulae: 

 

          1 1 11 ,
cr uc

ξ ξ
r r r

  (5.3-2) 

 

where: 1
r

  is an average curvature; 

      1 1
uc cr
,

r r
 are the values of curvature calculated for the uncracked case and 

cracked case respectively; 

   ξ  is a coefficient given by 
  
    
   

2

1 sr

s

σ
β

σ
 allowing for tension stiffening effect 

(TSE); 
  β  is the load duration factor (1 – for a single short-term load; 0,5 – for sustained 

load or  cyclic loading); 

  srσ  is the stress in the tension steel calculated on the basis of a cracked section 

under the loading that will just cause cracking at the section being considered; 

  sσ  is the stress in the tension steel for the cracked concrete section. 

In calculating ξ , the ratio ( sr sσ σ ) can more conveniently be replaced by                  

( cr EkM M ), where crM  is the moment that will just cause cracking of the section and 

EkM  is the design moment for the calculation of curvature and defection. 

In order to calculate the average curvature, separate calculations have to be 

carried out for both the cracked uncracked cases. 

5.3.2.1.1 Uncracked section 

The assume classic strain and stress distribution for an uncracked section is 

shown in Figure 5.3-1. 

For a given moment, EkM , and from elastic bending theory, the curvature of the 

section,  1
ucr

, is given by:  

 

   


1 ,Ek

uc
c ,eff uc

M
r E I

  (5.3-3) 

 

where: c ,effE  is effective elastic modulus of the concrete allowing for creep effects; 

    ucI  is the second moment of area of the uncracked section. 

 



290 

 

 
Figure 5.3-1 – Uncracked section: strain and stress distribution 

 

 
Figure 5.3-2 – Cracked section – strain and stress distribution 

 

5.3.2.1.2 Cracked section 

The assumed elastic strain and stress distribution for a cracked section is shown 

in Figure 5.3-2.    

Moments of area can be taken to establish the neutral-axis depth directly. The 

second moment of area of the cracked section can be than by taking second moment 

of area about the neutral axis: 

 

  


    
3

2
,

3
cr e s

b x
I α A d x   (5.3-4) 
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where: eα  is the modular ratio equal to the ratio of the elastic modulus of the 

reinforcement to that of the concrete;  e s cmα =E E . 

For a given moment, EkM , and from elastic beтding theory, the curvature of the 

cracked section,  1
crr

, is therefore given by the following expression: 

  

  1 Ek

cr
c ,eff cr

M
r E I




  (5.3-5) 

 

5.3.2.1.3 Creep and shrinkage effects 

Creep 

The effect of creep will be to increase deflections with time and thus should be 

allowed for in the calculations by using an effective modulus, c ,effE , using the 

equation:  

 

 
 


   0

,
1

cm
c ,eff

E
E

φ ,t
                                    (5.3-6) 

 

where:   0φ ,t  is a creep coefficient equal to ratio of creep strain to initial elastic 

strain (see Chapter 3). 

Shrinkage 

The effect of shrinkage of the concrete will be to increase the curvature and hence 

the deflection of the beam or slab. The curvature due to shrinkage can be calculated 

using the equation: 

 

      1 / ,cs e
cs

ε α s I
r

                                     (5.3-7) 

 

where:  1
csr

 is the shrinkage curvature; 

 csε  is free shrinkage strain (see Chapter 3); 

  I is the second moment of area of section (cracked or uncracked as 

appropriate); 

 eα  is effective modular ration s

c ,eff

E
E

 
 
 

. 

5.3.2.2 Caclulation of the defection from curvature 

The total curvature can be determined by adding the shrinkage curvature due to 

the quasi-permanent loads, having made allowance for creep effects. 

The deflection of the beam can be calculated from the total curvature using 

elastic bending theory which for the small deflections is based on the expression: 
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   
2

2
,x

d y
M E I

dx
  (5.3-8) 

 

where: xM  is the bending moment at a section distance x from the origin as shown 

in Figure 5.3-3. 

 

 
Figure 5.3-3 – Pin-ended beam subject to a constant moment M 

 

For small deflections the term 
2

2

d y

dx
 approximately equals the curvature which is 

the reciprocal of the radius of the curvature. Double integration of Equation (5.3-8) 

will yield an expression for deflection. This may be illustrated by considering the case 

of a pin-ended beam subjected to constant moment M throughout its length, so that 

xM M  (see Figure 5.3-3): 

 

   
2

2
,

d y
E I M

dx
  (5.3-9) 

 

therefore: 

      ,
dy

E I M x C
dx

  (5.3-10) 

 

but if the slope is zero at mid-span where  2x L / , then:  

 

 


  ,
2

M L
C   

  

  and:  

 

 


     ,
2

dy M L
E I M x

dx
  (5.3-11) 

 

Integrating again gives: 

 

 
  

   
2

,
2 2

y

M x M L x
E I D   (5.3-12) 
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but  at  support  A,  when x=0,  y=0.  Hence:  0D    and  
 

  
  

2

2 2

M x L x
y

E I
  at  any 

section. The maximum deflection in this case will occur at a mid-span, where 

 2x L / , in which case:  

 

 


 
 

2

,
8

max

M L
y

E I
  (5.3-13) 

 

but since at any cracked section 


1M

E I r
, the maximum deflection may be expressed 

as 
 

     
 

21 1

8
maxy L

r
.  

In general case, the bending moment distribution along a member will not be 

constant, but will be a function of x. The basic form of result will however be the 

same, and the deflection may be expressed as: 

 

 
 

   
 

21
,maxa K L

r
  (5.3-14) 

 

where: K is a constant, the value of which depends on the distribution of bending 

moments in the member; 

L is the effective span 

 
 
 

1

r
 is the mid-span curvature for beams, or the support curvature for 

cantilevers.  

Typical values of K are given in Table 5.3-1 for various common shapes of 

bending-moment diagrams. If the loading is complex, then a value of K must be 

estimated for the complete load since summing deflections of simpler components will 

yield incorrect result.      
 

Table 5.3-1 – Values of K for various bending moment diagrams 

Loading Bending moment diagram K 

  
0,125 

 
 

 

 
 

 

23 4 1 1
, if   

48 1 2 12

a
a K

a
 

 
 

0,0625 
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Table 5.3-1 (end) 

 
 


2

0 125
6

a
,  

  

0,104 

 
 

0,102 

  

 
    

 
0,104 1 ,

10

A B

C

M Mβ
K β

M
 

 
 

  




3
end deflection ,

6
load at end 0,333

a a

K

 

  

 
 

4
, if 1  0,25

12

a a
a K  

 

 

 

 

 

 

 

 

 

 
   

 
0,083 1 ,

4

A B

C

M Mβ
K β

M
 

 

 

 

 

 

 

 

 

 

  


 

2
2

2

5 41

80 3 4

a

a
 

 

Although the deviation has been on the basis of an uncracked sections, the final 

expression is in form that will deal with cracked section simply by the substitution of 

appropriate curvature. 

Since the expression involves the square of the span, it is important that the true 

effective span as defined at Chapter 2 is used particularly in the case of cantilevers. 

Deflections of cantilevers may also be increased by rotation of supporting member; 

and this must be taken into account when the supporting structure is fairly flexible. 
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Example to Section 5.3 

Example 1. Calculation of deflection  

Estimate the long-term deflection of the beam shown in Figure 5.3-1 it spans 9,5 

meters and is designed to carry uniformly distributed load giving rise to a quasi-

permanent moment of  200E,kM  kN∙m. It is constructed with class C25/30 concrete, 

is made of normal aggregates and the construction props are removed at 28 day. 

 

 
Figure E 5.3-1 – Deflection calculation example 

 

Calculate curvature due to uncracked section. 

From Equation (5.3-3): 

 

 
 


   

    
 

6
6

3 3

200 10 11 2,86 10 ,
mm8,15 10 300 700 12

E,k

uc
c ,eff uc

M

r E I /
 where from         

Table 3.1-3: 2
kN31

mmcmE  ; from Figure 3.1-7, assuming loading at 28 days with 

indoor exposure, the creep coefficient  2 8φ , , because 

       2 2 700 300 2000 210cA /u / , and, hence, the effective modulus is given by 

the following expression: 
   

  
  2

31 kN
8,15

1 1 2,8 mm
cm

c.eff

E
E

φ
.  

Note that in the above calculation ucI  has been calculated on the basic of the 

gross concrete sectional area ignoring the contribution of the reinforcement.  

To calculate the curvature of the cracked section the I  value of the transformed 

concrete section must be calculated. 

Calculate the neutral axis position. 

Taking area moments about the neutral axis: 

 


   
2

;
2

e s

b x
α A d x  

 


   
2300 200

2450 600 ,
2 8,15

x
x  which has the solution:  329x  mm.  
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Calculate the second moment of area of cracked section. 

   
 

          
3 3

2 2 6300 329 200
2450 600 329 7976 10

3 3 8,15
cr e s

b x
I α A d x  mm4.   

Calculate the curvature of the cracked section. 

  
   

   

6
6

3 6

200 10 11 3,08 10
8,15 10 7976 10 mm

E,k

cr
c ,eff cr

M

r E I
.  

Calculate crM . 

From Table 3.1-3, the cracking strength of concrete, ctmf , is given as 2
N2 6

mm
,

. Hence, form elastic bending theory and considering the uncracked concrete section, 

the moment that will just cause cracking of the section, crM , is given by: 

  
      

 

2 2300 700
2 6 63 7 kN m

6 6
cr ctm

b h
M f , , .  

Calculate ξ .  

 


               
   

2

63 71 1 1 0 5 0 95
200

sr cr

s Ek

M ,ξ β β , ,
M

.  

Calculate the average curvature  1
r

. 

                      6 6 6 11 1 11 0 95 3 08 10 1 0 95 2 86 10 3 07 10
mmcr uc

ξ ξ , , , , ,
r r r

.  

For simply supported span subjected to a uniformly distributed load, the 

maximum mid-span deflection is given by the following expression:  

         2 6 210,104 0,104 3,07 10 9500 3,03 mma L
r

.  

This value almost exactly matches the allowable value of 250 38 mmL /  and 

would be considered acceptable nothing the inherent uncertainty of some of the 

parameters used in the calculation.   

5.3.2.3 Cases, where deflection calculations may be omitted.              
Basis of span-effective depth ratios  

The calculation of deflection has been shown to be a tedious operation. However, 

for general use, rules based on limiting the span-effective depth ratio of a member are 

adequate to ensure that the deflections are not excessive.  

The relationship between the deflection and the span-effective depth ratio of a 

member can be derived from equation: 

 

    21
b

a K L .
r                                            

 (5.3-15) 

 

For small deflections it can be seen from Figure 5.3-4 that for unit length, s: 

 

   
 1 ,cm rm

b

ε ε
φ

r d                                        
 (5.3-16) 
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where: cm  is the maximum compressive strain in the concrete; 

rm  is a tensile strain in the reinforcement; 

K  is a factor, which depends on the pattern of loading. 

Therefore: 

 

 
 

      

1 1

c ,max rm

L a
.

d L K ε ε
                                        (5.3-17) 

 

 
Figure 5.3-4 – To calculation of the member curvature 

 

The strains in the concrete and tensile reinforcement depend on the areas of 

reinforcement provided and their stresses. Thus for a particular member section and 

a pattern of loading, it is possible to determine a span-effective depth ratio to satisfy 

a particular L /d  limitation. 

Provided that  reinforced concrete beams or slabs in buildings are dimensioned 

so that they comply with the limits of span to depth ratio given in this clause, their 

deflections may be considered as not exceeding the limits set out in EN 1992 [N3] 

(clause p. 7.4.1(4),(5)). The limiting span-to-depth ratio may be estimated using 

Expression (5.3-18) and Equation (5.3-19) and multiplying this by correction factors 

to allow for the type of reinforcement used and other variables. No allowance has been 

made for any precamber in the derivation of these expressions: 

 

 
  
           
   

3 2

0

0 0

11 1 5 3 2 1 if ;

/

ck ck

l ρ ρ
K , f , f ρ ρ

d ρ ρ
  (5.3-18) 

 

 
 

         
 

0

0

1
11 1 5 if .

12
ck ck

l ρ ρ'
K , f f ρ ρ

d ρ ρ' ρ
  (5.3-19) 

 

where: l d  is the limit of the span to depth ratio; 

      K    is the factor to take into account the different structural systems; 
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     0    is the reference reinforcement ratio 310 ckf
 ;  

        is the required tension reinforcement ratio at mid-span to resist the 

moment due to the design loads (at support for cantilevers); 
     '    is the required compression reinforcement ratio at mid-span to resist the 

moment due design loads (at support for cantilevers);   

    ckf    is in MPa unit of measurement. 

Expression (5.3-18) and Expression (5.3-19) have been derived on the 

assumption that the steel stress, under the appropriate design load at SLS at a 

cracked section at the mid-span of a beam or slab or at the support of the cantilever, 

is 310 MPa, (corresponding roughly to 500 MPaykf  ). 

  Where other stress levels are used, the values obtained using                   

Expression (5.3-18) and Expression (5.3-19) should be multiplied by 310 sσ . It will 

normally be conservative to assume that: 

 

   310 500 ,s yk s,red s,provσ f A / A   (5.3-20) 

 

where: sσ  is the tensile steel stress at mid-span (at support for cantilevers) under the 

design load at SLS; 

     s,provA  is the area of steel provided at this section; 

     s,redA    is the area of steel required at this section for ultimate limit state. 

For flanged sections where the ratio of the flange breadth to the rib breadth 

exceeds 3,the values of l d  given by Expression (5.3-18) and Expression (5.3-19) 

should be multiplied by 0,8. 

For beams and slabs, other than flat slabs, with spans exceeding 7 m, which 

support partitions liable to be damaged by excessive deflections, the values of l d  

given by Expression (5.3-18) and Expression (5.3-19) should be multiplied by 7 effl    

( effl  is in meters). 

For flat slabs, where the greater span exceeds 8,5 m, and which support 

partitions liable to be damaged excessive deflections, the values of l d  given by 

Expression (5.3-18) and Expression (5.3-19) should be multiplied by 8 5 eff, l  ( effl  in 

meters). 

Recommended values of K are given in Table 5.3-2. Values obtained using 

Expression (5.3-18) and Expression (5.3-19) for common cases (C30/37, 

 310 MPasσ , different structural systems and reinforcement ratios  0,5lρ  % and 

1,5lρ  %) are also given. 

The values given by Expression (5.3-18) and Expression (5.3-19) and                 

Table 5.3-2 have been derived from result a parametric study made for a series of 

beams or slabs simply supported with rectangular cross section, using approach 

given in Section 5.3.2.2 . Different values of concrete strength class and a 500 MPa 

characteristic yield strength for reinforcement were considered. For a given are of 

tension reinforcement the ultimate moment was calculated and the qusi-permanent 
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load combination was assumed as 50 % of corresponding total design load. The 

span/depth limit obtained satisfy the limiting deflection. 

  
Table 5.3-2 – Basic ratios of span/effective depth for reinforced concrete members without axial 
compression 

Structural System K 
Concrete highly 

stressed =1,5lρ  % 

Concrete lightly 

stressed = 0,5lρ  % 

Simply supported beam, one- or 

two-way spanning simply 

supported slab 

1,0 14 20 

End span of continuous beam or 

one-way continuous slab or two-way 

spanning slab continuous over 
one long side 

1,3 18 26 

Interior span of beam or one-way 

or two-way spanning slab 
1,5 20 30 

Slab supported on columns without 

beams (flat slab) (based on longer 

span) 

1,2 17 24 

Cantilever 0,4 6 8 

Notes: 1. The values given have been chosen to be generally conservative and calculation may 
frequently show that thinner members are possible. 
            2. For 2-way spanning slabs, the check should be carried out on the basis of the shorter span. 
For flat slabs the longer span should be taken. 
          3. The limits given for flat slabs correspond to a less severe limitation than a mid-span deflection 
of span/250 relative to the columns. Experience has shown this to be satisfactory. 
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CHAPTER 6 

 

 
DETAILING 

6.1 DISCUSSION                                             
OF THE GENERAL REQUIREMENTS 

In this section the main features of the detailing requirements are arranged in 

a practical order and discussed. 

6.1.1 COVER OF THE BAR REINFORCEMENT 

According in EN 1992 [N3] in order to active the required design working life of 

the structure, adequate measures shall be taken to protect each structure element 

against the relevant environmental actions. 

As it was defined in [8], the concrete cover is the distance between the surface 

of reinforcement closest to the nearest concrete surface (including links and  stirrups 

and surface reinforcement where relevant) and the nearest concrete surface. 

The nominal cover shell be specified on the drawings. It is defined as a minimum 

cover, minc , plus an allowance in design for deviation, Δ devc :   Δnom min devc c c .  

Minimum concrete cover, minc , shall be provided in order ensure: 

–  the safe transmission of bond forces; 

–  the protection of the steel against corrosion (durability requirements); 

–  an adequate fire resistance. 

In accordance with EN 1992 [N3], the greater value for minc , satisfying the 

requirements for both bond and environmental condition shall be used: 

 

   max{ ; Δ Δ Δ ;10 mm},min min,b min,dur dur ,γ dur ,st dur ,addc c c c c c  
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where: min,bc is a minimum concrete cover due to bond requirement; 

min,durc  is a minimum cover due to environmental conditions; 

,Δ dur γc  is an additive safety element; 

Δ dur ,stc  is a reduction of minimum concrete cover for use of stainless steel; 

Δ dur ,addc  is a reduction of minimum cover for use of additional protection. 

In order to transmit bond forces and ensure adequate compaction of the 

concrete, the minimum cover should not be less than min,bc  given in Table 6.1-1. 

 
Table 6.1-1 – Minimum cover, 

min,bc , requirements with regard bond (Table 4.2 from EN 1992 

[N3])  

Bond Requirement 

Arrangement of bars Minimum cover 
min,bc   

Separated Diameter of bar 

Bundled Equivalent diameter (n ) EN 1992 [N3] (clause 8.9.1) 

Note: If the nominal maximum aggregate size is greater than 32 mm, 
min,bc  should be increased by 5 

mm. 

 

The minimum cover values for reinforcement in normal weight concrete taking 

account of the exposure classes and structural classes is given by min,durc . 

It should be pointed, that in accordance with EN 1992 [N3] structural 

classification and values of min,durc  for use in a country may be found in its National 

Annex. The recommended structural class (design working life of 50 years) is S4 and 

the recommended modifications to the structural class is given in Table 6.1-2. The 

recommended minimum structural class is S1. The recommended values of min,durc  

are given in Table 6.1-3. 

 
Table 6.1-2 – Recommended structural classification (Table 4.3N from EN 1992 [N3]) 

Structural Class 

Criterion 

Exposure Class 

XO XC1 
XC2/  

XC3  
XC4 XD1 

XD2/  

XS1 

XD3/XS2/  

XS3 

Design 
working life of 

100 years 

increase 
class by 2 

increase 
class by 2 

increase 
class by 2 

increase 
class by 2 

increase 
class by 2 

increase 
class by 2 

increase class 
by 2 

Strength 

Class  

C30/37 

reduce 
class by 1 

C30/37 

reduce 
class by 1 

C35/45 

reduce 
class by 1 

C40/50 

reduce 
class by 1 

C40/50 

reduce 
class by 1 

C40/50 

reduce 
class by 1 

C45/55 

reduce class 
by 1 

Member with 

slab geometry 

(position of 
reinforcement 

not affected 

by 

construction 

process) 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce class 

by 1 
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Table 6.1-2 (end) 

Special 

quality control 

of the concrete 

production 

ensured 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce 

class by 1 

reduce class 

by 1 

Notes: 1. The strength class and w/c ratio are considered to be related values. A special composition 
(type of cement, w/c value, fine fillers) with the intent to produce low permeability may be considered. 

  2. The limit may be reduced by one strength class if air entrapment of more than 4 % is applied. 

 
Table 6.1-3 – Values of minimum cover, 

min,durc , requirements with regard to durability for 

reinforcement steel in accordance with EN 10080 [N8] (Table 4.4N from EN 1992 [N3])  

Environmental Requirement for 
min,durc  (mm) 

Structural 

Class 

Exposure Class 

X0 XC1 XC1/XC3 XC4 XD1/XS1 XD2/XS2 XD3/XS3 

S1 10 10 10 15 20 25 30 

S2 10 10 15 20 25 30 35 

S3 10 10 20 25 30 35 40 

S4 10 15 25 30 35 40 45 

S5 15 20 30 35 40 45 50 

S6 20 25 35 40 45 50 55 

 

6.1.2  SPACING OF BARS 

The basic principle is that reinforcement bars in a member should be arranged 

in such a way that concrete can be placed and compacted satisfactorily so that 

adequate bond will develop between the bars and concrete.    

Figure 6.1-1 defines the spacing mins  between bars in a layer and that between 

layers of reinforcement. The clear distance (horizontal or vertical) between individual 

parallel bars should be not less than:      

– the maximum bar diameter (max ); or  

– ( gd  + 5 mm) or 20mm, where gd  is the maximum size of aggregate. 

Where bars a positioned in separate horizontal layers, the bars in each layer 

should be located vertically above each other. These should be sufficient space 

between the resulting columns of bars to allow access for vibrators and good 

compaction of the concrete. 
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Figure 6.1-1 – Spacing of reinforcement bars 

 

6.1.3  Mandrel diameters for bent bars 

The minimum diameter to which a bar is bent shall be such as to avoid bending 

cracks in the bar, and to avoid failure of the concrete inside the bent of the bar. 

In order to avoid damage to the reinforcement the diameter to which the bar is 

bent (Mandrel diameter) should not be less than m,min  (see Table 6.1-4). 

 
Table 6.1-4 – Minimum mandrel diameter to avoid damage to reinforcement (Table 8.1 from       

EN 1992 [N3])   

a) for bars and wire 

Bar diameter 
Minimum mandrel diameter for bents, 

hooks and loops [see Figure 6.1-2] 

 16mm 4  

 16mm 7  

b) for welded bent reinforcement and mesh bent after welding 

Minimum mandrel diameter 

 

 

5  

  3 ; 5 ;d   

 3d , or welding within the curved zone: 20 .  

Note: The mandrel size for welding within the curved zone may be reduced to 5 , where the welding 

is carried out in accordance with EN ISO 17660. 

 

The mandrel diameter need not be checked to avoid concrete failure if the 

following conditions exist: 

–  the anchorage of the bar does not require a length more than 5  past the end 

of the bend or he bar is not positioned at the edge (plane of bend close to concrete 

face) and there is a cross bar with a diameter    inside the bend. 

–  the mandrel diameter is at least equal to the recommended values given in 

Table 6.4N from EN 1992 [N3]. 
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Otherwise, the mandrel diameter,  ,m min , should be increased in accordance with 

the following expression: 

 

     ((1 ) 1 (2 )) ,m,min bt b cdF /a / / f   (6.1-1) 

 

where: btF  is the tensile force from ultimate loads in a bar or group of bars in contact 

at the start of a bend; 

      ba  for a given bar (or group of bars in contact) is half of the centre-to-centre 

distance between bars (or groups of bars) perpendicular to the plane of the bend. For 

a bar or group of bars adjacent to the face of the member, ba   should be taken as the 

cover plus  2/ .   
           cdf  is the concrete design compressive strength, the value of which should not 

be taken greater than that for concrete class C55/67.      
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6.2 ANCHORAGE                                           
OF LONGITUDINAL REINFORCEMENT 

6.2.1 GENERAL 

When reinforcement is designed to carry stress, it needs to be anchored into 

adjacent parts such that 1) the required stress will be able to develop and 2) the force 

in the bar safely transmitted to the surrounding concrete without causing 

longitudinal cracks or spalling. Reinforcing bars, wires or welded mesh fabrics shall 

be so anchored that the bond forces are safely transmitted to the concrete avoiding 

longitudinal cracking or spalling. Transverse reinforcement shall be provided if 

necessary. 

Methods of anchorage are shown in Figure 6.2-1. 

 

  

a) Basic tension anchorage length, bl ,  

for any shape measured along the centerline  

b) Equivalent anchorage length for 

standard bend 

  
 

c) Equivalent anchorage length 

for standard hook 

d) Equivalent anchorage 

length for standard loop 

e) Equivalent anchorage length 

for welded transverse bar 

Figure 6.2-1 – Methods of anchorage other than by a straight bar                                           

(see Figure 8.1 from EN 1992 [N3]) 

 

Bents and hooks do not contribute to compression anchorages. 

6.2.2 ULTIMATE BOND STRESS  

The ultimate bond strength shall be sufficient to prevent bond failure and 

basically depends upon the tensile strength of concrete and the location of the bars 
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within the concrete, that is referred as «bond conditions». EN 1992 [N3] defines 

«good» and «poor» bond conditions (see Figure 6.2-1). There is also test evidence to 

show that the ultimate bond stress has some dependence on the size of the bar. EN 

1992 [N3] de-rates the bond stress for earge-diameter bars (it is defined as bars larger 

than 40mm). 

  In accordance with EN1992 [N3] the design value of the ultimate bond stress,

bdf , for ribbed bars may be taken as follows: 

 

    1 22,25 ,bd ctdf η η f   (6.2-1) 

 

where: ctdf   is the design value of concrete tensile strength. Due to the increasing 

brittleness of higher strength concrete, ,0 05ctk .f  should be limited here to the value for 

C60/75, unless it can be verified that the average bond strength increases above this 

limit; 

      1η    is a coefficient related to the quality of the bond condition and the position 

of the bar during concreting (see Figure 6.2-2). It is equal to 1,0, when «good» 

conditions are obtained, and it is equal to 0,7 for all the other cases and for bars in 

structural elements built with slip-forms, unless it can be shown that ‘good’ bond 

conditions exist; 

    2η   is related to the bar diameter. It is equal to 1,0 for   32mm , and it is 

equal to (132 ) 100/  for   32mm.    

 

  
a) 5 9º º4 0α   c) 250h   mm 

  

b) 250h   mm d) 600h   mm 

 

Figure 6.2-2 – Description of bond conditions (Figure 8.2 from EN 1992 [N3]) 
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6.2.3 BASIC ANCHORAGE LENGTH 

The calculation of the required anchorage length shall take into consideration 

the type of steel and bond properties of the bars. 

The basic required anchorage length, ,b rqdl , for anchoring the force s sdA σ  in a 

straight bar assuming constant bond stress equal to bdf   follows from: 

 

   ( 4) ( )b,rqd sd bdl / σ / f .   (6.2-2) 

 

Where sdσ  is the design stress of the bar at the position from where the 

anchorage is measured from. 

 For bent bars the basic anchorage length, b,rqdl , and the design length, bdl , 

should be measured along the centre-line of the bar (see Figure 6.1-2 a). 

Where pairs of wires/bars form welded fabrics the diameter,  , in          

Expression (6.2-2) should be replaced by the equivalent diameter    2n . 

6.2.4 DESIGN ANCHORAGE LENGTH 

The basic anchorage length can be modified to allow for such effects as the shape 

of the bars, the size of the concrete cover, confinement offered by transverse 

reinforcement or transverse pressure. In EN 1992 [N3], the design anchorage length 

is obtained by multiplying the basic anchorage length by a number of factors: 

–           1 2 3 4 5 , ,0 3 ;10 ;100 mmbd b reqd b reqdl α α α α α l max , l  – for anchorage in 

tension;  

–           1 2 3 4 5 , ,0 6 ;10 ;100 mmbd b reqd b reqdl α α α α α l max , l  – for anchorage in 

compression;  

The product  2 3 5α α α  should be ≥0,7. Values of the different multipliers 

together with the conditions that should be met are given in the code and are not 

reproduced here. However, the applicability of these in practice are discussed below. 

The following applies to bars in tension: 

–  1α  allows for the shape of the bars. For straight bars, 1 1,0α . For curved bars, 

1α  may be taken as 0,7, provided that the lesser of the side cover to the bars or half 

the clear spacing between bars is >3 . It will be difficult to meet this condition in all 

but a few practical cases; 

–  2α  allows for the effect of the size of concrete cover. For straight bars in tension, 

some reduction will be possible when the parameter dc  is between    and 3 , where 

dc  is the least of the side or bottom cover or half the clear spacing between the bars. 

In the case of curved bars this benefit does not accrue until dc  is larger than 3 . 
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Again, advantage can be taken of this reduction only in a limited number of practical 

cases; 

–  3α  allows for the effect of confinement offered by transverse reinforcement, 

which is not welded to main bars. The transverse reinforcement should be placed 

between the concrete surface and the bar that is being anchored. The reduction will 

be enhanced if the transverse reinforcement is in the form of links. Even so, the 

reduction that can be achieved in beams will only be 0,925 when   1,0st sA A . 

–  4 0,7α  can be used in all cases where the transverse reinforcement is welded 

to the main bars, provided the diameter of the transverse bar is at least 0,6 , and it 

is located at least 5  inside ,b reqdl  from the free end of the bar. 

–  5α  accounts for the effect of any pressure p (in MPa) transverse to the potential 

plane of splitting, and is taken as (1 – 0,04·p). 

In summary, the conditions that need to be satisfied to take advantage of the 

reduction factors are such that they will only apply in a limited number of practical 

cases in building structures. 

The values of coefficients 1 2 3 4 5, , , ,α α α α α  are given in Table 6.2-1. 

 
Table 6.2-1 – Values of 1 2 3 4 5, , , andα α α α α  coefficients (Table 8.2 from EN 1992 [N3]) 

Influencing factor 
Type of 

anchorage 

Reinforcement bar 

in tension  in compression 

Shape of bars 

Straight 1 1,0α  1 1,0α  

Other than straight 
(see Figure 6.2-1 b, 

c and d) 

  


1

1

0,7 if 3
otherwise 1,0

dα c
α

 1 1,0α  

Concrete cover 

Straight 
     




2 1 0,15
0,7
1,0

dα c /
 2 1,0α  

Other than straight 

(see Figure 6.2-1 b, 
c and d) 

      



2 1 0,15 3
0,7
1,0

dα c /
 2 1,0α  

Confinement by 

transverse 

reinforcement not 
welded to main 

reinforcement 

All types 
  



3 1
0,7
1,0

α K λ
 3 1,0α  

Confinement by 

welded transverse 

reinforcement(2)  

All types, position 

and size as 

specified in   

Figure 6.2-1 e 

4 0,7α  4 0,7α  

Confinement by 
transverse pressure 

All types 
  



5 1 0,04
0,7
1,0

α p
 – 

Notes: 1.    st st ,min sλ A A /A ,  where  stA  is a cross-sectional area of the transverse 

reinforcement along the design anchorage length bdl ;  st ,minA  is a cross-sectional area of the minimum 

transverse reinforcement, that is equal to  s0,25 A  for beams and 0 for slabs; sA  is an area of a single 

anchored bar with maximum bar diameter; K is a coefficient, the values of which one are shown in 

Figure 6.2-3; p is a transverse pressure (in MPa) at ultimate limit stage along bdl ; 

          2. For direct supports bdl  may be taken less than b,minl  provided that there is at least one 

transverse wire welded within the support. This should be at least 15 mm from the face of the support.   
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Figure 6.2-3 – Values of K for beams and slabs (Figure 8.4 from EN 1992 [N3]) 

6.2.5 ANCHORAGE OF LINKS AND SHEAR 
REINFORCEMENT 

The anchorage of links and shear reinforcement should normally be effected by 

means of bends and hooks, or by welded transverse reinforcement. A bar should be 

provided inside a hook or bend. 

The anchorage should comply with Figure 6.2-4. Welding should be carried out 

in accordance with EN ISO 17660 [N10] and have a welding capacity in accordance 

with EN 1992 [N3] (clause 8.6 (2)). 

 

 
Figure 6.2-4 – Anchorage of links (Figure 8.5 from EN 1992 [N3]) 
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6.3  DETAILING REQUIREMENTS                   
FOR PARTICULAR MEMBER TYPES 

6.3.1 BEAMS  

6.3.1.1 Longitudinal reinforcement 

Minimum area st ,minA  :    

–    0,26st ,min ctm t ykA f b d / f , but not less than  0,0013 tb d , where ykf  is the 

characteristic yield stress of reinforcement and tb  denotes the mean width of the 

tension zone (for a T-beams with the flange in compression, only the width of the web 

is taken into account in calculating of the tb  value);  

– at supports in monolithic construction where simple supports are assumed in 

the design, reinforcement st ,supA  required to cope with partial fixity is at least 0,15 stA  

span (see Figure 6.3-1). 

 

 
Figure 6.3-1 – Longitudinal reinforcement at supports in monolithic construction 

 

Maximum area st ,maxA  оr sc ,maxA  is equal to 0,04 cA , where cA  is the cross-section 

area of concrete. 

At intermediate supports of continuous beams, the total area of tension 

reinforcement stA  of a flanged cross-section should be spread over the effective width 

of flange (see Chapter 2). Part of it may be concentrated over the web width (see   

Figure 6.3-2). 

 



311 

 

 
Figure 6.3-2 – Placing of tension reinforcement in flanged cross-section 

 

Longitudinal compression reinforcement (diameter  ) should be contained by 

link reinforcement, the maximum spacing of which should not exceed 15 . 

6.3.1.2 Shear reinforcement 

General requirements: 

–  shear reinforcement should form an angle of 90º–45º with the mid-plane of the 

beam; 

─  shear reinforcement may consist of a combination of: links enclosing the 

longitudinal tensile reinforcement and the compression zone; bent-up bars; shear 

assemblies of cages, ladders, etc. which do not enclose the longitudinal 

reinforcement, but which are properly anchored in the compression and tension 

zones (see Figure 6.3-3); 

–  for combinations of links and shear assemblies, all shear reinforcement should 

be effectively anchored. Lap joints on the leg near the surface of the web are only 

permitted for high-bond bars. At least 50 % of the necessary shear reinforcement 

should be in the form of links. 

 

 
a) – stirrup cage as a shear assembly; b) – ladders as a shear assembly 

Figure 6.3-3 – Combination of links and shear assemblies  

 

Minimum area swA  should be calculated from the following expression:

      0 5sin 0,08 ,

w,min sw w сk ykρ A /s b α f f , where w,minρ  is the minimum shear 
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reinforcement ratio; swA  is the area of shear reinforcement with a longitudinal spacing 

s; α  is the angle between the shear reinforcement and the longitudinal steel.  

Maximum spacing of shear reinforcement maxs : maximum longitudinal spacing 

of links is equal to   0,75 (1 cot )d α ; maximum longitudinal spacing of bent-up bars 

is equal to   0,6 (1 cot )d α . 

The transverse spacing of a series of shear links should not exceed 0,75 d  nor 

600 mm. 

6.3.1.3 Curtailment of longitudinal tension reinforcement 

Any curtailed reinforcement should be provided with an anchorage length b,netl , 

but not less than d from the point where it is no longer needed. This should be 

determined taking into account the tension caused by the bending moment and that 

implied in the truss analogy used for shear design. This can be done by shifting the 

point of the theoretical cut-off based on the bending moment by 1α  (see below for 

definition) in the direction of decreasing moment. This procedure is also referred to 

as the «shift rule»:   1 (cot cot ) 2α z θ α , where θ  is the angle of the concrete struts 

to the longitudinal axis and a is the angle of the shear reinforcement to the 

longitudinal axis; z normally can be taken as 0,75 d .   

For members with shear reinforcement, the additional force Δ tdF  should be 

calculated in accordance with Section 4.2. The additional tensile force is illustrated 

in Figure 6.3-4. 
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Figure 6.3-4 – Illustration of the curtailment of longitudinal reinforcement,                    

taking into account the effect of inclined cracks and the resistance of reinforcement       

within anchorage length 

 

For reinforcement in the flange, placed outside the web, 1α   should be increased 

by the distance of the bar from the web. 

6.3.1.4 Anchorage at supports 

End support. When there is little or no fixity at an end support, at least one-

quarter of the span reinforcement should be carried through to the support. The code 

recommends that the bottom reinforcement should be anchored to resist force of 

  1Δ td Ed EdF V α d N , where EdV  is the shear force at the end, 1α  is as defined above 

for the shift rule, and EdN  is the axial force, if any, in the member. 

As simply supported ends, the bars should be anchored beyond the line of 

contact the member and its support (face of support) by: 

– direct support for beams: 0,8 times of the value given in Table 6.3-1; 

– all indirect supports: 1 time of value given in Table 6.3-1. 
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Table 6.3-1 – Typical values of anchorage and lap lengths for beams 

 Bond 

conditions 

Length in bar diameters 

C25/30 C30/37 C35/40 

Full tension and compression anchorage length 

,b rqdl  

good 36 32 31 

poor 48 43 41 

Full tension and compression lap length 0l  
good 42 37 35 

poor 56 49 47 

 Note: The following is assumed:   – bar size is not greater than 32 mm. If >32 mm, then the anchorage 
and lap lengths should be divided by a factor (132-bar size)/100; 

– normal cover exists; 
– no confinement by transverse pressure; 
– confinement by links-factor =0,9; 
– no more than 33 % of the bars are lapped at one place.    

 

A «direct» support is one, where the reaction provides compression across the 

bar being anchored. All the other supports are considered as «indirect» (see Figure 

6.3-5).     

 

 
Figure 6.3-5 – Anchorage at end supports (Figure 5.34 from EN 1992 [N3]) 

 

Intermediate supports (general requirements): 

–  at intermediate supports, >25 % of the midspan bottom reinforcement 

should be carried to the support; 

–  the minimum anchorage of bottom reinforcement beyond the face of the 

support is 10  for straight bars; or the diameter of the mandrel for bars of 16 mm 

diameter or more and with hooks or bends; or twice the diameter of the mandrel in 

other cases;  

–  however, this does not mean that the support must be greater than 20   wide, 

as the bars from each side of the support can be lapped. It is, however, recommended 

that continuous reinforcement is provided to resist accidental forces (see               

Figure 6.3-6). 
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Figure 6.3-6 – Continuous reinforcement 

 

The clear distance (spacing) between lapped bars should be in accordance with    

Figure 6.3-7. 

 

 
Figure 6.3-7 – Adjacent laps (Figure 5.29 from EN 1992 [N3]) 

 

It should be noted that, where the distance between lapped bars is greater than 

50 mm or 4Ø, the lap length should be increased by the amount, by which the clear 

space exceeding 50 mm or 4Ø.         

6.3.1.5 Skin reinforcement 

Skin reinforcement to control cracking should normally be provided in beams 

over 1,0 m in depth where the reinforcement is concentrated in a small portion of the 

depth. This reinforcement should be evenly distributed between the level of the 

tension steel and the neutral axis and be located within the links.    
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6.3.1.6 Surface reinforcement 

Surface reinforcement may be required to resist spalling of the cover, e.g. arising 

from fire or where bundled bars or bars greater than 32 mm are used. This 

reinforcement should consist of small-diameter, high-bond bars or wire mesh placed 

in the tension zone outside the links. 

The area of surface reinforcement parallel to the beam tension reinforcement 

should not be less than 0,01 ct ,extA , where ct ,extA  is the area of concrete in tension 

external to the links. 

The longitudinal bars of the surface reinforcement may be taken into account as 

longitudinal bending reinforcement, and the transverse bars as shear reinforcement, 

provided that they meet the arrangement and anchorage requirements of these types 

of reinforcement (see Figure 6.3-8).  

 

 
Figure 6.3-8 – Arrangement and anchorage requirements 

 

6.3.2 SLABS  

6.3.2.1 Longitudinal reinforcement 

Minimum area st ,minA : is equal to   0,26 ctm t ykf b d f , but have to be not less 

than  0,0013 tb d , where ykf  is the characteristic yield stress of reinforcement. 

Maximum area st ,maxA : is at least 0,04 cA , where Ac is the cross-section area of 

concrete. 

Maximum bar spacing maxs : 

–  generally,   3 400maxs h  mm for main reinforcement and  3,5 450h  mm 

for secondary reinforcement; 

–  local to concentrated loads,   2 250maxs h  mm for main reinforcement and 

 3 400h  mm for secondary reinforcement. 
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Reinforcement near supports: 

– in simply supported slabs a minimum of 50 % of the reinforcement in the 

span should be anchored at supports (see Figure 6.3-9); 

–  where partial fixity is likely to exist despite the assumption of simple support 

in design, 25 % of the reinforcement required to resist the maximum span moment 

should be provided at the top of end supports; 

–  at the end supports, the reinforcement should extend from the face of the 

support, at least 0,2 times the adjacent span (see Figure 6.3-10). 

– at intermediate supports, the reinforcement should be continuous across 

the support. 

 

 
Figure 6.3-9 – Span reinforcement 

 

 
Figure 6.3-10 – End supports with partial fixity 

 

6.3.2.2 Transverse reinforcement 

The minimum area of the transverse reinforcement ,s tA  is 20 % of the 

longitudinal reinforcement.      

6.3.2.3 Corner and edge reinforcement 

Suitable reinforcement is required where slab corners are restrained against 

lifting. Normally, U bars extending 0,2·l into the span should be provided at all edges 

(see Figure 6.3-9). 
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Figure 6.3-11 – Reinforcement at free edges 

 

6.3.2.4 Shear reinforcement 

Minimum slab depth  200 mmminh , where shear reinforcement is to be 

provided. 

The requirements are given in clause 10.9.1 of the EN 1992 [N3] for beams apply 

generally to slabs, with the following modifications: form of shear reinforcement – 

shear reinforcement may consist entirely of bent-up bars or shear assemblies, where 

  ,0,33Ed Rd maxV V ; maximum longitudinal spacing maxs  is equal to   0,75 (1 cot )d α  

for links and 1,0 d  for bent up bars; maximum transverse spacing of shear 

reinforcement is equal to 1,5 d .   

6.3.2.5 Anchorage and lap length 

 Anchorage and lap lengths should be obtained from the Table 6.3-2 for bars 

and welded mesh fabric. 

 

Table 6.3-2 – Typical values of anchorage and lap lengths for slabs 

 Bond 

conditions 

Length in bar diameters 

C25/30 C30/37 C35/40 

Full tension and compression anchorage length 

bdl  
good 40 36 34 

poor 58 51 49 

Full tension and compression lap length 0l  
good 46 42 39 

poor 66 59 56 

 Note: 1. The following is assumed:   – bar size is not greater than 32 mm. If >32 mm, then the 
anchorage and lap lengths should be divided by a factor (132-bar size)/100; 

– normal cover exists; 
– no confinement by transverse pressure; 
– no confinement by transverse reinforcement; 
– no more than 33 % of the bars are lapped at one place. 

2. Lap lengths provided (for nominal bars, etc.) should not be less than 15 times the bar size 
or 200 mm, whichever is greater.    

  

The clear spacing between two lapped bars should be in accordance with      

Figure 6.3-7.   
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6.3.3 Columns 

6.3.3.1 Longitudinal reinforcement 

Minimum diameter of the longitudinal reinforcement is 12 mm. 

Minimum area s,minA  is equal to 0,1 Ed ydN f , or 0,002 cA , whichever is greater, 

where EdN  is the design axial force, ydf  is the yield strength of reinforcement and cA  

is the area of concrete. 

Maximum area s,maxA  is equal to 0,04 cA  outside laps, and to 0,08 cA  at laps. 

Minimum number of bars is shown in Figure 6.3-12. 

 

 
Figure 6.3-12 – Minimum number of bars 

 

6.3.3.2 Transverse reinforcement 

General requirements: 

–  all transverse reinforcement must be adequately anchored; 

–  every longitudinal bar (or group of bars) placed in a corner should be held by 

transverse reinforcement; 

–  no longitudinal bar in a compression zone should be further from a restrained 

bar than 150 mm. 

Minimum diameter of the transverse bar should not be less than 6 mm or 0,25 

times the diameter of the largest bar being restrained. 

Spacing of the transverse reinforcement: 

–  generally, the maximum spacing maxs  should be the least of the following: 20 

times the diameter of the longitudinal bar; or the lesser dimension of the column; or 

400 mm; 
– for a distance equal to the larger dimension of the column, above and below 

slabs or beams the spacing noted above should be reduced by a factor of 0,6; 
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– the above reduced spacing is also required at laps of longitudinal bars of 

diameter greater than 14 mm. A minimum of three transverse bars should be evenly 

positioned over the lap length. 

6.3.4 WALLS 

6.3.4.1 Vertical reinforcement 

Minimum area of the vertical reinforcement:  0,002sv,min cA A .  

Maximum area of the vertical reinforcement:  0,04sv,max cA A . 

The code EN 1992 [N3] permits this to be doubled if the designer can show that 

the integrity of concrete is not affected and the full strength can be achieved at the 

ultimate limit state. 

Maximum bar spacing maxs : the distance between adjacent bars should not 

exceed three times the thickness of the wall or 400 mm, whichever is less. 

When minimum reinforcement controls the design, 50 % of the minimum 

reinforcement should be placed on each face. 

6.3.4.2 Horizontal reinforcement 

Horizontal reinforcement should be placed between the vertical reinforcement 

and the face of the wall. 

Minimum area of the horizontal reinforcement:  0,25sh,min svA A , but not less 

than 0,001 cA .  

Maximum spacing maxs  is equal to 400 mm. 

Minimum diameter: the code does not specify a value, but it will be prudent to 

use a minimum of 0,25 times the diameter of the vertical reinforcement. 

6.3.4.3 Transverse reinforcement 

Where the area of vertical reinforcement exceeds 0,02 cA  transverse 

reinforcement in the form of links should be provided in accordance with the 

requirements for columns. 
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6.3.5 CORBELS 

General: where  0ca z , a simple strut-and-tie model may be used (see          

Figure 6.3-13 a).     

 

 
a) – strut-and-tie model; b) – reinforcement for 0,5c ca h  ;                                               

c) – reinforcement for 0,5c ca h      

Figure 6.3-13 – Corbels 

 

Anchorage of the primary tie reinforcement: unless a length bnetl  is available, 

the primary horizontal tie sA  should be anchored on both sides beyond the bearing 

area using U bars or a welded cross bar. 
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Provisions of links: when  0,5c ca h , closed horizontal or inclined links should 

be provided (see Figure 6.3-13 b). The area of the link should be at least 0,25 times 

the area of the primary tie reinforcement. When  0,5c ca h , and the load applied on 

the corbel exceeds ,Rd cV , vertical closed links should be provided in addition to the 

horizontal links (see Figure 6.3-13 c). The area of the vertical link should be at least 

0,5 Wd ydF f , where WdF  is the force in the main tie reinforcement. 

6.3.6 REINFORCEMENT IN FLAT SLABS 

Concentration of reinforcement over the columns will generally be required to 

meet the serviceability requirements. In the absence of rigorous calculations, top 

reinforcement with an area of 0,5 tA  should be placed in a width equal to the sum of 

0,125 times the panel width on either side of the column. tA  represents the area of 

reinforcement required to resist the full negative moments in a panel. 

At least two bars forming the bottom reinforcement in the slab should pass 

through the internal columns in each orthogonal direction. 

Reinforcement required to transfer bending moments from slab to columns, at 

right angles to an edge, should be placed within an effective width as shown in      

Figure 6.3-14. 

 

 

 
a) – edge column; b) – corner column 

Figure 6.3-14 – Effective width, eb , of a flat slab 

 

EN 1992 [N3] recognizes the use of both proprietary shear reinforcement and 

conventional link reinforcement. In the case of the former, the design and detailing 

should comply with the relevant European technical approval. 

Where punching shear reinforcement is required, it should be provided between 

the loaded area and 1,5·d within the control perimeter at which shear reinforcement 

is no longer required. Such reinforcement should be provided in at least two 

perimeters of spacing not exceeding 0,75·d. The spacing of the perimeters in which 
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links are provided should not exceed 0,75·d. The spacing of the legs of links around 

a perimeter should not exceed 1,5·d (see Figure 6.3-15). 

 

 
a) – spacing of links; b) – spacing of bent-up bars 

Figure 6.3-15 – Punching shear reinforcement 

 

Where shear reinforcement is required, the area of one leg of link reinforcement 

should comply with      0,5(1,5 sin +cos ) 0,08sw,min r t ck ykA α α s s f f , where a is the 

angle between the shear reinforcement and the longitudinal steel, and rs  and ts  are 

the spacings of the shear reinforcement in the radial and tangential directions, 

respectively.       

 

Bent-up bars passing through the loaded area and within 0,25·d. on either side 

of it may be used as punching shear reinforcement. 
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CHAPTER 7 

 

 
SLABS 

7.1 GENERAL 

In general case a slab is a flat two-dimensional planar structural element having 

thickness small compared to its other two dimensions. As it was stated in           

EN1992 [N3] a slab is a member for which the minimum panel dimension is not less 

than 5 times the overall slab thickness. 

It provides a working flat surface or covering shelter in buildings. It primary 

transfer the load by bending in one or two directions. The floor system of a structure 

can take many forms such as in situ solid slabs, ribbed slabs (beam-and-girder floor 

with one-way and two-spanning slabs), flat plate and flat slabs; joist floor (waffle slab). 

In accordance with [17], the choice of type of slab for particular floor depends on 

many factors. Economy of construction is obviously an important consideration, but 

this is a qualitative argument until specific cases are discussed, and is a geographical 

variable. The design loads, required spans, serviceability requirements are all 

important. 
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7.2 CLASSIFICATION OF THE CONCRETE 
FLOOR SYSTEMS WITH ONE-WAY AND       

TWO-WAY SLABS 

7.2.1 ONE-WAY AND TWO-WAY SLABS 

In general case slabs are classified based on following main aspects:  

Shape: square, rectangular , circular and polygonal; 

Type of support: slab supported on stiff beams (beam-supported floor); slab 

supported on walls; slab supported on columns (beamless floor: Flat plate and Flat 

slabs); 

Boundary (support) conditions: simply supported; cantilever slab; overhanding 

slab; fixed or continuous (continues) slabs; 

Use: roof slabs; floor slabs; 

Cross-section or sectional configuration: ribbed slab/beam-and-girder floor; 

filled slab; folded plate; 

Spanning directions: one-way slab – spanning in one direction; two-way slab– 

spanning in two direction. 

In general, rectangular one-way and two-way slabs are very common. 

Additionally to proposed classification, concrete floor systems can be classified 

as: (a) beam-supported floor and, (b) beamless floors. They are further divided into 

several types, as shown in Figure 7.2-1. 

 

 

Figure 7.2-1 – Types of reinforced concrete slabs [18]. 

 

7.2.1.1 One-way solids slabs 

When a slab is supported only on two parallel apposite edges, it spans only in 

direction perpendicular to two supporting edges (see Figure 7.2-2 a). Also, if the ratio 

of the long dimension (span) to the short dimension (span) of a four-side-supported 

slab panel is greater than or equal to 2,0, most of the load on the slab is transferred 
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to the long pair of beams, that is, the load path is along the long dimension (span) of 

the slab is negligible (see Figure 7.2-2). Such a slab are also designed as one-way 

slab, because the load is effectively transferred along one direction. The reinforcement 

in a one-way slab is placed along the short direction, reffered as the «primary 

reinforcement» to distinguish it from the nominal reinforcement placed along the 

perpendicular direction, called the «secondary reinforcement». The main purpose 

of secondary reinforcement is to resist stressed caused by concrete shrinkage, 

thermal expansion and contraction of the slab.    

 

 

a) – simply supported edge;                                                                                                       

b) – most of the load from the slab is carried in short direction (this support) 

Figure 7.2-2 – One-way solid slabs 

 

7.2.1.2 Two-way solid slabs 

If the ratio of the long to short span of a four-side-supported slab panel is less 

than 2,0, the slab is considered to behave as a two-way slab. However, real two-way 

slab behavior occurs when the ratio of the two spans is as close to 1,0 as possible 

(between 1,0 and 1,25). In a two-way slab, both directions participate in carrying the 

load. Reinforcement is, therefore, provided in both one-way and two-way slabs may 

occur in the same floor, Figure 7.2-3. 
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Figure 7.2-3 – Combination of the one-way (A) and two-way (B) solid slabs 

 

Since, the slab  rest freely on all sides, due to transverse load the corners tend 

to curl up and lift up. The slab looses the contact over some region. This is known as 

lifting of corner. These slab are called two-way simply supported slabs. At corner, the 

rotation occurs in both the direction and causes the corners to lift. If the corners of 

slab are restrained from lifting, downward reaction results at corner and the end 

strips gets restrained against rotation. However, when the end are restrained and 

rotation of central strip still occurs and causing rotation at corner (slab is acting as 

unit) the end strip is subjected to torsion. 

7.2.2 BEAM-SUPPORTED FLOORS 

7.2.2.1 Beam-and-girder floors 

One-way and two-way solid slab become increasingly thick and hence 

uneconomical as their span increases. Generally, the use of a slab thicker than 200 

mm is discouraged because it creates a large self-weight (dead load) on the floor. For 

one-way slab, an 200 mm slab thickness is reached with a span of approximately 5,0 

m for a square two-way slab, a span of approximately 7,0 m requires 200 mm – thick 

slab. Because spans are relatively small for column spacing, one-way and two-way 

slabs are generally used in a beam-and-girder floor (Figure 7.2-4) or in a two-way 

beam-and-girder floor, Figure 7.2-5. 
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Figure 7.2-4 – Beam-and-girder floor with one-way slabs 
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Figure 7.2-5 – Beam-and-girder floor with two-way spanning slabs 

 

7.2.2.2 Band-beam floors 

A reinforced concrete floor that cannot be constructed with a flat form deck 

becomes uneconomical. Therefore, the floor system shown in Figure 7.2-6 are 

relatively uncommon because of the complexity of the formwork resulting from deep 

beams around slab panels. 
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Figure 7.2-6 – Plan and section through a typical banded slab 

 

A one-way slab floor with wide and shallow, continuous beams, referred to as 

band beams (in contrast with the conventional narrow beams), gives more economical 

formwork than the beam-and-girder systems in Figure 7.2-5. Because the beams are 

wide, the slab span is reduced, reducing the slab thickness. Additionally, because the 

beams are shallow, the floor-to-floor height is smaller, reducing the height of 

columns, interior partitions, and exterior cladding. A smaller floor-to-floor height also 

reduces the overall height of the building, which reduces the magnitude of lateral 

loads on the building. 

7.2.2.3 One-way joist floors 

A concrete floor that results from extremely economical formwork consists of 

closely spaced, narrow ribs in one direction supported on beams in the other 

direction, as it is shown in Figure 7.2-7. Because the ribs are narrow and closely 

spaced, the floor resembles a wood joist floor. It is, therefore, called a joist floor or a 

ribbed floor, but it is more commonly known as a one-way joist floor to distinguish it 

from the two-way joist floor described later. 
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A one-way joist floor is constructed with U-shaped pans as formwork placed over 

a flat-form deck. The gap between the pans represents the width of the joists, which 

can be adjusted by placing the pans closer together or farther apart, see                  

Figure 7.2-8. The pans are generally made of steel or glass fiber-reinforced plastic 

(GFRP) and can be used repeatedly. 

 

 

Figure 7.2-7 – A one-way joist floor 

 

 

Figure 7.2-8 – Formwork for a one-way joist floor showing U-shaped pans 
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The vertical section through a pan tapers downward for easy stripping and has 

supporting lips at both ends. Pan widths and heights have been standardized to give 

two categories of one-way joist floors: 

- standard-module one-way joist floor; 

- wide-module one-way joist floor. 

7.2.2.4 Two-way joist floors (waffle slabs) 

A two-way joist floor, also called a waffle slab, consists of joists in both directions, 

Figure 7.2-9. For the same depth of joists, a waffle slab yields a stiffer floor than a 

one-way joist floor. It is, therefore, used where the column-to-column spacing lies 

between 10,5 and 15,0 m. A waffle slab is best suited for square or almost square 

column-to-column bays. When left exposed to the floor below, the waffle slab provides 

a highly articulated ceiling. 

 

 

a) 

Figure 7.2-9 – Two-way joist floor (waffle slab) supported on beams on all sides 
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b) 

a) – isometric from below; b) – plan (looking-up) and section through the slab 

Figure 7.2-9 (end) – Two-way joist floor (waffle slab) supported on beams on all sides 

 

7.2.3 BEAMLESS CONCRETE FLOORS 

7.2.3.1 Waffle slabs 

A waffle slab is more commonly constructed as a beamless slab, as it is shown 

in Figure 7.2-10. In a beamless waffle slab, a few domes on all sides of a column are 

omitted so that the thickness of the slab at the columns is the same as the depth of 

the joists. The thickening of the slab at the columns provides shear resistance 

(against the slab punching through the columns). 
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a) 

 

b) 

a) – general view; b) – plan and section 1-1 

Figure 7.2-10 – A beamless waffle slab 
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7.2.3.2 Flat plates 

A flat plate consists of a solid slab supported directly on columns, as it is shown 

in Figure 7.2-11. A flat plate is similar to a two-way banded slab, except that the 

beam bands in both directions are concealed within the thickness of the slab. 

Therefore, the spans that can be achieved economically with a flat-plate floor are 

smaller than those obtained from one-way or two-way joist floors. 

Flat-plate slabs are suitable for occupancies with relatively light variable 

imposed (live) loads, such as hotels, apartments, and hospitals, where small column-

to-column spacing does not pose a major design constraint. Additionally, a drop 

ceiling is not required in these occupancies and HVAC ducts can be run within the 

corridors, where a lower ceiling height is acceptable. 

 

 

Figure 7.2-11 – A flat-plate slab in an office building (under construction) 

 

A flat-plate slab results in a low floor-to-floor height, and its formwork is 

economical. Because the beams are concealed within the slab thickness, columns 

need not be arranged on a regular grid – a major architectural advantage. However, 

a flat plate is a two-way system; hence, the column spacing in both directions should 

be approximately the same. A slab thickness of approximately 150 mm is generally 

needed for 4,5×4,5 m column bays and approximately 200 mm for 6,0×6,0 m bays 

with residential loads. 

7.2.3.3 Flat slabs 

A flat slab is similar to a flat plate, but it has column heads, referred to as drop 

panels (see Figure 7.2-12 a). The primary purpose of drop panels is to provide greater 

shear resistance at the columns, where the shear maximizes. 

 



336 
 

 

a) – a typical flat slab; b) – minimum drop panel dimensions;                                              

c) – drop depth of panel based on dimension lumber 

Figure 7.2-12 – Typical details of a flat slab and minimum code requirements                         

for drop panel dimensions 

 

Structurally, the drop panel must extend a minimum of one-sixth of the slab 

span in each direction, and its drop below the slab must at least be 25% of the slab 

thickness (see Figure 7.2-12 b). For formwork economy, the drop depth is also based 

on lumber dimensions (see Figure 7.2-12 c). With round columns, however, 

manufacturers supply column forms that have built-in drop panels and column 

capitals. 

A flat slab is generally used where the live loads are relatively high, such as in 

parking garages or storage or industrial facilities. 
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7.3 CHOICE OF TYPE OF SLAB FLOOR 

As it was shown above, for beamless slabs, the choice between a flat slab and a 

flate plate is usually a matter of loading and span. 

Flat plate resistance is often governed by punching shear resistance at the 

columns, and for service live (imposed) loads greater than perhaps (4,8 
2kN/m ) and 

spans greater than about to 8 m the flat slab is often the better choice. If architectural 

and other requirements rule out capitals or drop panels, the shear can be improved 

by using metal shear heads or some other form of shear reinforcement, but the cost 

may be high. 

Serviceability requirements must be considered, and deflections are sometimes 

difficult to control in reinforced concrete beamless slabs. 

Large live (imposed) loads and small limits on permissible deflections may force 

the use of large column capitals. Negative-moment cracking around columns is 

sometimes a problem with flat plates, and again a column capital may be useful in 

its control. 

Deflections and shear stresses may also be controlled by adding beams instead 

of column capitals. If severe deflection limits are imposed, the two-way slab will be 

most suitable, as the introduction of even moderately stiff beams will reduce 

deflections more than the largest reasonable column capital is able to. Beams are also 

easily reinforced for shear forces. 

The choice between two-way and beamless slabs for more normal situation is 

complex. 

In terms of economy of material, especially of steel, the two-way slab is often best 

because of the large effective depths of the beams. However, in terms of labor in 

building the floor, the flat plate is much cheaper because of the very simple formwork 

and less complex arrangement of steel. The flat slab is somewhat more expensive in 

labor than is the flat plate, but the forms for the column capitals are often available 

as prefabricated units, which can help limit costs. 

The real cost parameter is the ratio of costs of labor relative to material. Few two-

way slabs are built in areas of high labor costs unless there are definite structural 

reasons, and many are built where steel is the most costly item. Hollow-tile slabs are 

still built in some places, but only where the cost of both steel and cement is very 

high relative to labor. 
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7.4 DESIGN OF THE CONCRETE                 
FLOOR SYSTEMS WITH ONE-WAY AND        

TWO-WAY SLABS 

7.4.1 GENERAL 

In accordance with [18, 19] the general design procedure for slabs to be adopted 

as follows: 

1) Check that the cross section and cover comply with requirements for the fire 

resistance; 

2) Check that cover and concrete grade (class) comply with requirements for 

durability; 

3) Calculate bending moment and shear forces; 

4) Calculate reinforcement; 

5) Make final check on span/depth ratios; 

6) For flat slabs check shear around columns (punching shear) and calculate 

shear reinforcement as necessary. 

The effective span of simply supported slab should normally be taken as the 

clear distance between the faces of supports plus the slab thickness. However, where 

a bearing pad is provided between the slab and the support, the effective span should 

be taken as the distance between the centers of the bearing pads. 

The effective span of a slab of a slab continuous over its supports should 

normally be taken as the distance between the centers of the supports (see Chapter 

2). 

The effective length of cantilever slab where this forms the end of a 

continuous slab is the length of cantilever from the center of the support. 

7.4.2 FIRE RESISTANCE AND DURABILITY 
REQUIREMENTS 

7.4.2.1 Fire resistance 

The member size and reinforcement cover required to provide fire resistance are 

given in Table 7.4-1. (Table 5.1 [18]). The cover in the Table 7.4-1 may need to be 

increased for durability (see section 7.4.2.2). 
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Table 7.4-1 – Minimum dimensions and axis distances for reinforced concrete slabs (excluding flat slabs) 

Standard       

fire resistance 

Minimum dimensions (mm) 

One-waya,b 

spanning slab 

One-waya,b spanning slab Ribs in a two-way spanning 

ribbed slabe / 1,5y xl l f  1,5 / 2y xl l f 

REI 60 sh  80 80 80 minb  100 120 ≥200 

 a  20 10g 15g a  25 15g 10g 

REI 90 sh  100 100 100 minb  120 160 ≥250 

 a  30 15g 20 a  35 25 15g 

REI 120 sh  120 120 120 minb  160 190 ≥300 

 a  40 20 25 a  45 40 30 

REI 240 sh  175 175 175 minb  450 700 - 

 a  65 40 50 a  70 60 - 

Notes: 

(1) This table is taken from EN 1992-1-2, Tables 

from 5.8 to 5.11. For flat slabs refer to 

Chapter 7. 

(2) The table is valid only if the detailing 
requirements (see note 3) are observed and in 

normal temperature design redistribution of 

bending moments does not exceed 15%. 

(3) For fire resistance of R90 and above, for a 

distance of 0,3 effl  from the centre line of 

each intermediate support, the area of top 

reinforcement should not be less than the 

following: 
 

 , ,( ) (0)(1 2,5( / ))s req s req effA x A x l  

 

where: 

x  is the distance of the section begin 

considered from the centre line of the support; 

, (0)s reqA  is the area of reinforcement required 

for normal temperature design; 

, ( )s reqA x  is the minimum area of reinforcement 

required at the section being considered but 
not less than that required for normal 

temperature design; 

effl  is the greater of the effective lengths of the 

two adjacent spans. 

(4) There are three standard fire exposure 

conditions that need to be satisfied: 

R Mechanical resistance for load bearing 

E Integrity of separation 
I Insulation 

(5) The ribs in a one-way spanning ribbed slab 

can be treated as beams and reference can be 

made to Chapter 4. The topping can be treated 

as a two-way slab, where  1,5 / 2y xl l . 

Key: 

a The slab thickness sh  is the sum of the slab 

thickness and the thickness of any non-

combustible flooring. 

b For continuous solid slabs a minimum 

negative reinforcement  0,005s cA A  should 

be provided over intermediate supports if 
1) cold worked reinforcement is used; or 

2) there is no fixity over the end supports in a 

two span slab; or 

3) where transverse redistribution of load 

effects cannot be achieved. 

c In two way slabs the axis refers to the lower 
layer of reinforcement. 

d The term two way slabs relates to slabs 

supported at all four edges. If this is not the 

case, they should be treated as one-way 

spanning slabs. 
e For two-way ribbed slabs the following notes 

apply: 

- The axis distance measured to the lateral 
surface of the rib should be at least (a+10). 

- The values apply where there is 

predominantly uniformly distributed loading. 
- There should be at least one restrained edge. 

- The top reinforcement should be placed in 

the upper half of the flange. 

f xl  and yl  are the spans of a two-way slab (two 

directions at right angles) where yl  is the 

longer span. 

g Normally the requirements of EN 1992-1-1 

will determine the cover. 
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7.4.2.2 Durability 

The requirements for achieving durability given environment are the following: 

- an upper limit to the water-to-cement ratio (in accordance EN206 [N4]); 

- a lower limit to the cement content (in accordance EN206 [N4]); 

- a lower limit to the nominal cover to the reinforcement (in accordance EN1992 

[N3]); 

- good compaction; 

- adequate curing; 

- good detailing (in accordance with EN1992 [N3]). 

For a given value of nominal cover (expressed as minimum cover + an allowance 

for deviation,  durс ) Table B.2 (50 years) and Table B.2 (100 years) of Appendix B [N3] 

give values of concrete class, an upper limit to the water cement ratio and cement 

content which, in combination, will be adequate to ensure durability for various 

environments (see Chapter 3). 

Where it is specified that only a contractor with a recognised quality system shall 

do the work   5 mmdurс , otherwise  10 mmdurc . 

7.4.3 STRUCTURE ACTIONS 

7.4.3.1 Distributed loads 

Slabs should be designed to withstand the most unfavorable arrangements of 

design loads. For continuous slabs, subjected to predominantly uniformly distributed 

loads if will be sufficient to consider only the following arrangements of loads for 

ultimate state verification: 

- alternate spans carrying the design permanent (dead) and imposed load           

(i.e. 1,35 1,5k kG Q   ), other spans carrying the design permanent (dead) load (i.e. 

1,35 kG ); 

- all spans carrying the design permanent (dead) and imposed load (i.e. 

1,35 1,5k kG Q   ). The moments obtained from elastic analysis may be redistributed 

up to a maximum of 30% except for plain or intended fabric for which the limit is 

15%. 

If should be noted that [18]: 

- the resulting distribution of moments should remain in equilibrium with the 

applied load; 

- the design redistributed moment at any section should not be less than 70% of 

the elastic design moment; 

- there are limitation in the depth of the neutral axis of the section depending on 

the percentage of redistribution (see clause 4.5.2.4.1 from EN1992 [N3] and Chapter 

2). 
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7.4.3.2 Concentrated loads 

The bending moment arising from concentrated load may be distributed over a 

width of slab equal to the width of the load plus the lesser of the actual width or 

1,2 (1 / )x l x    on each side of the load (see Figure 7.4-1), where x  is the distance to 

the nearer support from the section under consideration, and l  is the span. 

 

 

Figure 7.4-1 – Effective width of solid slab carrying a concentrated load near unsupported edge 

(Figure 5.1 from [18]) 

 

7.4.4 METHODS OF ANALYSIS 

The analysis of slabs is extremely complicated because of the influence of 

number of factors stated above. Thus the exact (close form) solutions are not easily 

available. The main basic methods are: 

(a) Classical methods – Levy and Naviers solution (Plate analysis); 

(b) Yield line analysis – used for Ultimate limit state analysis; 

(c) Semi-empirical method – prescribed by codes for practical design which 

uses Coefficient methods; 

(d) Numerical techniques – Finite element ant Finite difference methods. 
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7.4.5 ANALYSIS OF THE ONE-WAY AND TWO-WAY 
SLABS BY SEMI-EMPIRICAL COEFFICIENT 
METHODS 

7.4.5.1 General 

One-way slabs transfer the imposed loads in one direction only. They may be 

supported on two opposite sides only (see Figure 7.4-2 a), in which the structural 

action is essentially one-way, the loads being carried in direction perpendicular to the 

supporting beams or walls. 

 

 
a) – one-way slab; b) – two-way slab 

Figure 7.4-2 – Load transfer in slabs 

 

But rectangular slabs often have such proportions and supports (e.g. relatively 

deep, stiff monolithic concrete beams) that result in two-way action (see                  

Figure 7.4-2 b). 

At any points, such slabs are curved in both directions resulting in biaxial 

moments. It is convenient to think of such slabs as consisting of two sets of parallel 

strips, in each direction and intersecting each other. So part of the load is carried by 

one set and remainder by the other. 

Figure 7.4-2 b shows two center strips of a rectangular plate with spans lx and 
ly. For uniformly distributed loads of q  (kN/m2, kPa), each strips act approximately 

like a simple beam uniformly loaded by its share of q , i.e. 
xq  and 

yq . Since they are 

part of the same slab, their midspan deflections must be the same (elastic stage): 

 

  
    

   

444 55
.

384 384

y y yx x x

cm cm y x

q l lq l q

E I E I q l
 (7.4-1) 

 

Therefore, large share of the load is carried in the shorter direction, the ratio of 

the two portion of the load being inversely proportional to the fourth power of the 
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ration of spans. For example, if / 2y xl l , / 16y xq q , i.e., about 94 % of the load is 

carried in the shorter direction and only near 6 % in the longer direction. 

7.4.5.2 One-way slabs 

As it was shown above a slab subjected to dominantly uniformly distributed 

loads may be considered to be one-way spanning if either: 

- it possesses two free (unsupported) and sensibly parallel edges (see                 

Figure 7.4-3 a) or 

- it is the central part of a sensibly rectangular slab supported on four edges with 

a ratio of the longer to shorter span greater than 2 (see Figure 7.4-3 b). 

 

 

a) – supported on two sides; b) – supported on beams on all four sides 

Figure 7.4-3 – One-way slab  
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However, this proportions also depends on the support conditions in each 

direction, because the maximum midspan deflection is (      4 / 192 cmq l E I ) for 

hinger-fixed ends (simply supported) and (      4 / 384 cmq l E I ) for fixed-fixed ends 

(F). 
Therefore, if / 2y xl l  and span 

xl  is simply supported, about 14 % of q  is 

carried by hinger-fixed span 
xl  and 24 % by fixed-fixed span 

yl . On the other hand, 

if 
yl  is simply supported, if carries only 2,4 % of q  if 

xl  is hinged-fixed (simply 

supported) and 1,2 % of q  if 
xl  is fixed-fixed. 

For simply supported square slab, 

 

/ 1y xl l ,   /2x yq q q ; (7.4-2) 

 

So if only bending was present, the maximum bending moment in each slab 

would be equal: 

 

  
   

2

2

max

/2
0,0625

8

q l
M q l  (7.4-3) 

 

However, the actual behavior of a slab is more complex than that of two 

intersecting strip. As shown in Figure 7.4-4, slab can be modeled as a grid, some strip 

of which (particularly the outer strips) are not only bent but also twisted. 

Consequently, the total load on the slab is carried out only by bending moments in 

two directions, but also twisting moments. For this reason, bending moments in 

elastic slabs would be smaller than that would be computed for sets in unconnected 

strips loaded by 
xq  and 

yq . 

 

 
Figure 7.4-4 – Grid model of two-way slab 

 

This subsection gives the requirement to fire resistance and durability, and 

bending and shear forces coefficient for one-way and two-way spanning slabs on linier 

supports, and flat slabs using solid, ribbed and coffered waffled constructions. The 
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coefficients apply to slabs complying with certain limitations which are stated for each 

type. 

For those cases where no coefficient are provided the bending moments and 

shear forces for one-way spanning slabs may be obtained by elastic analysis [20]. As 

it was pointed in [20], these moments may then be redistributed, maintaining 

equilibrium with applied loads, up to a maximum 30 %, although normally 15 % is 

considered as reasonable limit. 

The treatment of shear around columns for flat slabs (punching shear) and the 

check of deflections for all types of slab are given, together with some notes on the 

use of precast slabs. 

In heavily-loaded slabs, the thickness is often governed by shear of flexure, white 

in lightly-loaded slabs, the thickness is generally chosen based on deflection 

limitations. 

Both lightly and heavily loaded slabs are typically dimensioned so that no shear 

reinforcement is required, as placing stirrups in slabs is perceived to be difficult and 

costly. 

One-way spanning slabs are designed for flexure and shear on per meter width 

basis, assuming that they act as a series of independent strips. Thus one-way shear 

is slabs is often referred to as beam shear, and design for flexure and shear is carried 

out using a beam analogy. It is convenient to think of it as consisting of two sets of 

parallel strips, in each of the two directions, intersecting each other (mostly 

perpendicular to each other). 

Evidently, part of the load is carried by one set and transmitted to one pair of 

edge support, and the remainder by the other. 

In the example shown in Figure 7.4-3 b in which the slab is supported of stiff 

beams on all four sides, and where the aspect ratio in plan is not much greater than 

2:1, some redistribution may be possible due to two-way action. However, in one-way 

slabs with an aspect ratio considerably greater than 2:1, redistribution due to two-

way action may be negligible. Furthermore, in one-way slabs a supported on stiff 

supports along only two sides (Figure 7.4-3 a) no redistribution will be possible, and 

the full width of the slab may be called upon to resist the full shear. 

To obtain internal forces in each way is necessary to compute load for 

corresponding direction. Because the imaginary strips actually are part of the same 

monolithic slab, their deflections at the intersection point must be the same. The line 

load can be obtain by means of split factor xc  based on assumptions of the identical 

center deflection of the short and long strip ( x yq q ). 

For continuous slabs with a) substantially uniform loading b) permanent (dead) 

load greater than or equal to imposed load and c) at least three spans that do not 

differ by more than 15 %, the bending moments and shear forces may be calculated 

using the coefficient given in Table 7.4-2. 
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Table 7.4-2 – Bending moments and shear forces for one-way slabs (Table 5.2 from [8]) 

 

Simple Continuous 
Penultimate 

support 

Interior 

spans 

Interior 

supports 
End 

support 

End 

span 

End 

support 

End 

span 

Moment 0 0,86·F·l -0,04·F·l 0,075·F·l -0,086·F·l 0,063·F·l -0,063·F·l 

Shear 0,4·F - -0,046·F - 0,6·F - 0,5·F 

Notes: F  is the total design ultimate load (  k k1,35 G +1,5 Q ) for each span; 

            l  is the span. 

 

Allowance has been made in the coefficients in Table 7.4-2 for 20 % 

redistribution of moments. 

7.4.5.3 Two-way spanning slabs on linear supports. Analysis with 
coefficient method 

Two-way slabs on linear supports are surface members aching in a both 

directions. They are supported on all four sides. For this type of slabs, the ratio of 

length to width of the one slab should less than 2 otherwise one-way action is 

obtained, even though supports are provided on all side. In many cases the slabs are 

of such proportions and are supported in such way that two-way actions results. 

In accordance with [18], the slab preliminary thickness design depends on boundary 

conditions (support) (see Figure 7.4-5): 

– for simple supported at all sides (S), appropriate: 

 

1,1
75

x y

s

l l
h

 
  

 
 (7.4-4) 

 

– for fixed support at all sides (F), appropriate: 

 

1,2
105

x y

s

l l
h

 
  

 
 (7.4-5) 

 

For other boundary conditions is reasonable to keep thickness in range between 

all fixed (F) and supported (S) edges, but minimum depth is 80 mm. 

It should be noted, that the thickness of two-way slabs and plates is typically 

governed by deflection limitations. 

 



347 
 

 
a) b) 

a) – simply supported edges; b) – fixed support at all sides 

Figure 7.4-5 – Two-way spanning slabs (boundary conditions) 

 

The determination of exact moments in two-way slabs with various support 

conditions is mathematically formidable and not suited to design practice. Various 

simplified methods are therefore adopted for determining moments, shear and 

reactions in such slabs. Quite popular and widely used among these methods is one 

using «moment coefficient method», for the special of two-way slabs supported on 

four sides by relatively stiff beams. The method used Tables of moment coefficients 

for a variety of support conditions. These coefficients are based on elastic analysis 

but also accounts for inelastic redistribution. 

This method provides the values of ,maxxM  and ,maxyM  along the central strip of 

the slab, as demonstrated in Figure 7.4-7 for a slab simply supported on all sides. As 

shown in Figure 7.4-6, the maximum moments are less elsewhere. Therefore, other 

design values can be reduced according to the variation show. These variations in 

maximum moment across the width and length of a rectangular slab are accounted 

for approximately by designing the outer quarters of the slab span in each direction 

for a reduced moment. 

 

 

Figure 7.4-6 – Variation of moments in a uniformly loaded slab simply supported on all sides 
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Figure 7.4-7 – Plan of typical slab 

 

Bending moment in two-way slabs may be calculated by any valid method 

provided the ratio between support and span moments are similar to those obtained 

by the use of elastic theory with appropriate redistribution. In slabs where the corners 

are prevented from lifting, the coefficients in Table 7.4-3, may be used to obtain 

bending moments per unit with ( Exm  and Eym ) in the two directions for various edge 

conditions, i. e.: 

 
        2;Ex Ex d xm β q l  (7.4-6) 

 

        2,Ey Ey d xm β q l  (7.4-7) 

 

where: Ex  and 
Ey  are the coefficient from Table 7.4-3; 

    
dq  is the total design ultimate load per unit area (   1,35 1,5k kG Q ); 

    xl  is the shorten span. 

The distribution of the reactions of two-way slabs on to their supports can be 

derived from Figure 7.2-20. 

Class A reinforcement in accordance with EN 1992 [N3] is assumed to have 

sufficient ductility for use with this simplified design method or yield line analysis of 

two way slabs. 
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Table 7.4-3 Bending moment coefficients for two-way spanning rectangular slabs 

Type of panel and 

moments considered 

Short-span coefficients Exβ  values of 
y xl / l  

Long-span 

coefficients Eyβ  

for all values of 

y xl / l  
1,00 1,25 1,50 1,75 2,00 

1. Interior panels:       

- negative moment at 
continuous edge 

0,031 0,044 0,053 0,059 0,063 0,032 

- positive moment at 

midspan 
0,024 0,034 0,040 0,044 0,048 0,024 

2. One short edge 

discontinuous: 
      

- negative moment at 
continuous edge 

0,039 0,050 0,058 0,063 0,067 0,037 

- positive moment at 

midspan 
0,029 0,038 0,043 0,047 0,050 0,028 

3. One long edge 

discontinuous: 
      

- negative moment at 
continuous edge 

0,039 0,059 0,073 0,082 0,089 0,037 

- positive moment at 

midspan 
0,030 0,045 0,055 0,052 0,067 0,028 

4. Two adjacent edges 

discontinuous: 
      

- negative moment at 

continuous edge 
0,047 0,066 0,078 0,087 0,093 0,045 

- positive moment at 

midspan 
0,036 0,049 0,059 0,065 0,070 0,034 

 

 
Notes: 1. The reactions shown apply when all edges are continuous (or discontinuous). 

2. When one edges is discontinuous, the reactions on all continuous edges should be 
increased by 10 % and the reaction on the discontinuous edge may be reduced by 20 %. 

3. When adjacent edges are discontinuous, the reaction should be adjusted for elastic shear 
considering each span separately. 

Figure 7.4-8 – Distribution of reactions from two-way slabs onto supports                             

(see Figure 5.2 from [18]) 
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Compared to idealized «simply supported» slab, Figure 7.4-8 shows a more 

«realistic» scenario where a system of beams supports a two-way slab. For this slab, 

panel A has two discontinuous exterior edges and two continuous interior edges, 

panel B has one discontinuous and three continuous edges, while the interior panel 

C has all edges continuous. The design bending moments are zero at discontinuous 

ends, negative at continuous ends and positive at midspans. 

7.4.5.4 Flat slabs 

Concrete slabs are often carried directly by columns without the use of beams 

or girders. 

Such slabs are described as Flat Plates (see Figure 7.2-11) and are commonly 

used where spans are not large and not particularly heavy. 

A very similar construction Flat Slab (see Figure 7.2-12) is also beamless but 

incorporates a thickened slab region in the vicinity of columns (called Drop Panels) 

and often employs flared up column tops (Column Capitals). Both are devices to 

reduce stresses due to shear and negative bending around the columns. 

In accordance with EN1992 [N3] (Annex I), flat slab should be analysed using a 

proven method of analysis, such as grillage (in which the plate is idealized as a set of 

interconnected discrete members), finite element, yield line or equivalent frame. 

Appropriate geometric and material properties should be employed. 

In flat slab analysis, the full load is assumed to be carried by the slab in each 

direction. This is in apparent contrast to the analysis of two-way beam-supported 

slabs, in which the load is divided. In two-way slabs, as in flat slabs, equilibrium 

conditions require that the entire load is carried in each of two principal directions. 

Through the structural analysis of flat slab can be carried out using computer 

based structural modeling, the two widely used methods for this purpose are the 

semi-empirical Direct Design Method and equivalent Frame Method. 

7.4.5.4.1  Direct design method 

If a flat slab has at least three spans or bays in each direction and the ratio of 

the longest span to the shortest does not exceed 1,2, the maximum values of the 

bending moments and shear forces in each direction may be obtained from              

Table 7.4-4. This assumes 20 % redistribution of bending moments. 
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Table 7.4-4 – Bending moment and shear force coefficients for flat slab panels of three or more equal 

span (Table 5.4 from [8]) 

 
Outer 

support(2) 

Near 

middle of 

the end 
span(3) 

At first 

interior 
support 

At middle 

of interior 
span 

At 

internal 
support 

Moment -0,040·F·l 0,086·F·l -0,086·F·l 0,063·F·l -0,063·F·l 

Shear 0,460·F(1) - 0,600F - 0,500·F 

Total column moments(4) 0,040·F·l - 0,022·F·l - 0,022·F·l 

Notes:  (1) – F  is the total design ultimate load (   1,35 1,5k kG Q ); (2) – these moments may have  to 

be reduced to be consistent with the capacity to transfer moments to the columns; (3) – the midspan 
moments must then be increased correspondingly; the total column moment should be distributed 
equally between the columns above and below; (4) – moment at supports may be reduced by 

 0,15 cF h , where ch  is the effective diameter of the column or column head. 

 

7.4.5.4.2  Equivalent frame analysis 

Where the conditions above do not apply, bending moment in flat slab should be 

obtained by frame analysis. 

The structure should be divided longitudinally and transversely into frames 

consisting of columns and sections of slabs contained between the centre lines of 

adjacent panels (area bounded by four adjacent supports). The stiffness of members 

may be calculated from their gross cross-sections. For vertical loading 40 % of this 

value should be used to reflect the increased flexibility of the column/slab joints in 

flat slab structures compared to that of column/beam joints. Total load on the panel 

should be used for the analysis in each direction. 

The total bending moments obtained from analysis should be distributed across 

the width of the slab. In elastic analysis negative moments tend to concentrate 

towards the center lines of the columns. 

The panels should be assumed to be divided into column and middle strips        

(see Figure 7.4-9) and the bending moments should be apportioned as given in      

Table 7.4-5. 

 

Table 7.4-5 – Simplified apportionment of bending moment for a flat slab in accordance with EN 1992 [N3] 

 Negative moment Positive moment 

Column strip (60–80) % (50–70) % 

Middle strip (40–20) % (50–30) % 

Note: Total negative and positive moments to be resisted by the column and middle strips together 

should always add up to 100 %. 
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Note: When drops of width higher than ( /3yl ) are used the column strips may be taken to be the 

width of drops. The width of middle strips should then be adjusted accordingly. 

Figure 7.4-9 – Division of panels in flat slabs (Figure I.1 from EN 1992 [N3]) 

 

In the assessment of the width of the column and middle strips, drops should 

be ignored if their smaller dimension is less than one-third of the smaller dimension 

of the panel.  

Where the width of the column strip is different from 0,5 xl  as shown in              

Figure 7.4-9 and made equal to width of drop the width of middle strip should be 

adjusted accordingly. 

The design moments obtained from analysis of the frames or from Table 7.4-5 

should be divided between the column and middle strips in the proportions given in 

Tables 7.4-6. 

 

Table 7.4-6 Recommended distribution of design moments of flat slab (Table 5.5 from EN 1992 [N3]) 

Design moment Column strip, % Middle strip, % 

Negative 75 25 

Positive  55 45 

Note:  For the case where the width of column strip is taken as equal to that of the drop and the 
middle strip is there by increased in width, the design moments to be resisted by the middle strip 
should be increased in proportion to its increased width. The design moments to be resisted by the 

column strip may be decreased by an amount such that the total positive and the total negative design 
moments resisted by the column strip and middle strip together are unchanged. 

 

In general, moments will be able to be transferred only between a slab and edge 

or corner column by a column strip considerably harrower than that appropriate for 

an internal panel. The breadth of this strip, eb , for various typical cases is shown in 

Figure 7.4-10, and be should not be taken as greater than the column strip width 

appropriate for an interior panel. 
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Figure 7.4-10 – Definition of width of effective moment transfer strip, be, on plan 

 

The maximum design moment that can be transferred to a column by this strip 

is given by the following expression: 

 
max 20,17   Ed ck eM f b d , (7.4-8) 

 

where: d is effective depth for the top reinforcement in the column strip, and 

 35 MPackf . 

Where the transfer moment at an edge column obtained from Table 7.4-5, is 

greater than 
max

EdM  a further moment redistribution 10 %  may be carried out. 

Where the elastic transfer moment at an edge column obtained from frame 

analysis is greater than 
max

EdM moment redistribution  50 %  may be carried out. 
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Where the slab is supported by the wall, or an edge beam with a depth greater 

than 1,5 times the thickness of the slab then: 

- the total design load to be carried by the beam or wall should include those 

loads directly on the wall or beam plus a uniformly distributed load equal to one-

quarter of the total design load on the panel; 

- the design moments of half-column strip adjacent to the beam or wall should 

be one-quarter of the design moment obtained from analysis. 

7.4.5.4.3   Effective shear forces in flat slabs 

Generally the critical consideration for shear in flat slab structures in that of 

punching shear around the columns. This should be checked in accordance with 

Section      except that the shear forces should be increased to allow for the effects of 

moment transfer as indicated below. 

The design effective shear forces should be increased to allow for the column 

should be taken in accordance with EN1992 [N3] as follows:  1,15Eff EdV V  – for 

internal column with approximately equal spans;  1,4Eff EdV V  – for edge columns;

 1,5Eff EdV V  for corner columns (where EdV  is the design shear transferred to the 

column and is calculated on the assumption that the maximum design load is applied 

to all panels adjacent column considered). 

Where the adjacent spans differ by more than 25 % or the lateral stability 

depends on frame action EffV  should be calculated in accordance with EN1992 (clause 

6.4.3) [N3]. 

 

7.4.5.4.4 Irregular column layout 

 

Where, due to the irregular layout of columns, a flat slab can not be sensibly 

analyzed using the equivalent frame method, a grillage or other elastic method may 

be used. In such a case the following simplified approach will normally be sufficient: 

(1) analyze the slab with the full load,   G k Q kγ G γ Q , on all bays; 

(2) the midspan and column moments should then be increased to allow for 

the effects of pattern loads. This may be achieved by loading a critical bay (or bays) 

with   G k Q kγ G γ Q  and the rest of the slab with G kγ G . Where there may be 

significant variation in the permanent load between bays, Gγ  should be taken as 1,0 

for the unloaded bays; 

(3) the effects of this particular loading may then be applied to other critical 

bays and supports in a similar way. 
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7.4.6 YIELD LINE DESIGN 

7.4.6.1 General  

Yield Line Design is a well-founded method of designing reinforced concrete 

slabs, and similar types of elements. It uses Yield Line Design Theory to investigate 

failure mechanisms at ultimate limit state [19]. 

As it was shown above the most concrete slabs are designed for moments found 

by the methods, that are based on essentially elastic theory. On the other hand, 

reinforcement for slabs is calculated by non-liner resistance models for RC-elements 

that account for the actual inelastic behavior of members under load. As was stated 

in [19] limit analysis not only eliminates the inconsistency of combining elastic 

analysis with inelastic (non-liner) design but also accounts for the reserve strength 

characteristic of the most reinforced concrete structures and permits, within limits, 

an arbitrary readjustment of moments found by elastic analysis to arrive at design 

moments that permit more practical reinforcing arrangements. 

The plastic hinge is defined as a location along a member in a continuous beam 

or frame at which, upon overloading, there would be large inelastic rotation at 

essentially a constant resisting moment. For slabs, the corresponding mechanism is 

the yield line. 

In accordance with [19] a yield line is a crack in a reinforced concrete slab 

across which the reinforcing bars have yielded and along which plastic rotation 

occurs. 

As it was Yield Line Theory is an ultimate load analysis. It establishes either the 

moments in an element (e.g. loaded slab) at the point of failure or the load at which 

an elements will fall. It may be applied to many types of slab, both with and without 

beams. 

For the overloaded slab, the resisting moment per unit length measured along a 

yield line is constant as inelastic rotation occurs; the yield line serves as an axis of 

rotation for the slab segment. 

7.4.6.2 Upper and lower bound theorems 

Plastic analysis methods such as the Yield Line Theory derive from the general 

theory of structural plasticity, which states that the collapse load of a structure lies 

between two limits, an upper bound and a lower bound of the true collapse load. 

These limits can be found by well-establishes methods. A full solution by the theory 

of plasticity would attempt to make the lower and upper bounds converge to a single 

correct solution.  

At was stated in [19] the lower bound theorem and the upper bound theorem, 

when applied to slabs, can be stated as follows: 
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Lower bound theorem: if, for a given external load, it is possible to find a 

distribution of moments that satisfies equilibrium requirements, with the moment 

not exceeding the yield moment at any location, and if the boundary conditions are 

satisfied, then the given load is a lower bound of the true carrying capacity. 

Upper bound theorem: if, for a small increment of displacement, the internal 

work done by the slab, assuming that the moment at every plastic hinge is equal to 

the yield moment and that boundary conditions are satisfied, is equal to the external 

work done by the given load for that same small increment of displacement, than that 

load is an upper bound of the true carrying capacity. 

If the lower bound conditions are satisfied, the slab can certainly carry the given 

load, although a higher load may be carried if internal redistributions of moment 

occur. If the upper bound conditions are satisfied, a load greater than the given load 

will certainly cause failure, although a lower load may produce collapse if the selected 

failure mechanism is incorrect in any sense. 

The yield line method of analysis for slabs is an upper bound method, and 

consequently, the failure load calculated for a slab with known flexural resistances 

may be higher than the true value. 

7.4.6.3 Rules for yield line 

When a slab is on the verge of collapse because of the existence of a sufficient 

number of real or plastic hinges to form a mechanism, axes of rotation will be located 

along the lines of support or over point supports such as columns. The slab segments 

can be considered to rotate as rigid bodies in space about these axes of rotation. The 

yield line between any two adjacent slab segments is a straight line, being the 

intersection of two essentially plane surfaces. Because the yield line (as a line of 

intersection of two planes) contains all points common to these two planes, it must 

contain the point of intersection (if any) of the two axes of rotation, which is also 

common to the two planes. That is, the yield line (or yield line extended) must pass 

through the point of intersection of the axes of rotation of the two adjacent slab 

segments. The terms positive yield line and negative yield line are used to 

distinguish between those associated with tension at the bottom and tension at the 

top of the slab, respectively. 

Guidelines for establishing axes of rotation and yield lines are summarized as 

follows: 

1. Yield lines are straight lines because they represent the intersection of two 

planes. 

2. Yield lines represent axes of rotation. 

3. The supported edges of the slab will also establish axes of rotation. If the edge 

is fixed, a negative yield line may form, providing constant resistance to rotation. If 

the edge is simply supported, the axis of rotation provides zero restraint. 

4. An axis of rotation will pass over any column support. Its orientation depends 

on other considerations. 
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5. Yield lines form under concentrated loads, radiating outward from the point 

of application. 

6. A yield line between two slab segments must pass through the point of 

intersection of the axes of rotation of the adjacent slab segments. 

Illustrations are given in Figure 7.4-11 of the application of the guidelines to the 

establishment of yield line locations and failure mechanisms for a number of slabs 

with various support conditions. 

 

 
Figure 7.4-11 Typical yield line pattern [19] 
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Once yield line pattern has been postulated it is only necessary to specify the 

deflection at one point (usually the point maximum deflection) from which all other 

rotations can be found. These rules are illustrated in Figure 7.4-12. 

 

 
Figure 7.4-12 – Valid patterns for a two-way slab [19] 

 

Figure 7.4-12 from [19] shows a slab with one continuous edge (along 3-4) and 

simply supported on the other three sides. The figure shows three variations of a valid 

yield line pattern. Successive applications of the virtual work method would establish 

which of the three would produce the most unfavorable result. 

In this pattern, line 5-6 would be given unit deflection and this would then define 

the rotation of all the regions. 

On the basis that a continuous support repels and a simple support attracts 

yield lines, layout III is most likely to be closest to the correct solution. As region C 

has a continuous support (whereas region B has not), line 5-6, must be closer to 

support 1-2 than support to 3-4. 

It is always important to ensure that Rule 4 and Rule 6 (Yield lines between 

adjacent rigid regions must pass through the point of intersection of the axes of rotation 

of those regions) are observed in establishing a valid pattern. For the case under 

consideration, line 1-5, for instance, passes through the intersection of the axes of 

rotation of the adjacent regions A and B. Similarly line 2-6 passes through the 

intersection of the axes of rotation of adjacent regions B and D. Likewise line 5-6 in 

Figure 7.2-25 this line intersects the axes of rotation of  adjoining regions B and C at 

infinity, i.e. line 5–6 is parallel to the axes of rotation.  

Figures 7.4-13 shows the correct and incorrect application of Rule 4 and Rule 6 

to a slab supported on two adjacent edges and a column. 
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a) – valid patterns for slab; b) – an invalid pattern 

Figure 7.4-13. Slab supported on two adjacent edges and column [19] 

 

7.4.6.4 Design methods 

Once the general pattern of yielding and rotation has been established by 

applying the guidelines just stated, the specific location and orientation of the axes 

of rotation and the failure load for the slab can be established by either of two 

methods.  

The first will be referred to as the method of segment equilibrium and will be 

presented as follows. It requires consideration of the equilibrium of the individual 

slab segments forming the collapse mechanism and leads to a set of simultaneous 

equations permitting solution for the unknown geometric parameters and for the 

relation between load capacity and resisting moments.  

The second, the method of virtual work is based on equating the internal work 

done at the plastic hinges with the external work done by the loads as the predefined 

failure mechanism is given a small virtual displacement. 

It should be emphasized that either method of yield line analysis is an upper 

bound approach in the sense that the true collapse load will never be higher, but  may 

be lower, than the load predicted. For either method, the solution has two essential 

parts: 

(1) establishing the correct failure pattern, and  

(2) finding the geometric parameters that define the exact location and 

orientation of the yield lines and solving for the relation between applied load to the 

correct solution for the mechanism chosen for study, but the true failure load will be 

found only if the correct mechanism has been selected. 
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It is necessary to investigate all possible mechanisms for any slab to confirm that 

the correct solution, giving the lowest failure load, has been found. 

7.4.6.4.1  Analysis by virtual work method 

Since the moments and loads are in equilibrium when the yield line pattern has 

formed, an infinitesimal increase in load will cause the structure to deflect further. 

The external work done by the loads to cause a small arbitrary virtual deflection must 

equal the internal work done as the slab rotates at the yield lines to accommodate 

this deflection. The slab is therefore given a virtual displacement, and the 

corresponding rotations at the various yield lines can be calculated. By equating 

internal and external work, the relation between the applied loads and the resisting 

moments of the slab is obtained. Elastic rotations and deflections are not considered 

when writing the work equations, as they are very small compared with the plastic 

deformations. 

7.4.6.4.2  External work done by loads 

An external load acting on a slab segment, as a small virtual displacement is 

imposed, does work equal to the product of its constant magnitude and the distance 

through which the point of application of the load moves, if the load is distributed 

over a length or an area, rather than concentrated, the work can be calculated as the 

product of the total load and the displacement of the point of application of its 

resultant. 

In other words, the external energy expanded ( eW ) is calculated by taking, in 

turn, the resultant of each load type (i.e. uniformly distributed load, line load or point 

load) acting on a region and multiplying it by its vertical displacement measured as a 

proportion of the maximum deflection implicit in the proposed yield line pattern. 

For simplicity, the maximum deflection is taken as unity, and the vertical 

displacement of each load is usually expressed as a fraction of unity. The total energy 

expended for the whole slab is the sum of the expended energies for all the regions: 

 

   for all regions
,eW N δ  (7.4-9) 

 

where N is the load(s) acting within a particular region (in kN); 

  δ  is the vertical displacement of the load(s) N on each region expressed as a 

fraction of unity (in m). 

7.4.6.4.3  Internal work done by resisting moments 

The internal work done during the assigned virtual displacement is found by 

summing the products of yield moment m per unit length of hinge times the plastic 

rotation θ  at the respective yield lines, consistent with the virtual displacement. If 

the resisting moment Rm  is constant along a yield line of length l, and if a rotation θ  

is experienced, the internal work is: 

 

   .i RW m l θ  (7.4-10) 
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If the resisting moment varies, as would be the case if bar size or spacing were 

not constant along the yield line, the yield line is divided into n segments, within each 

one of which the moment is constant. The internal work iW  is then: 

 

        ,1 1 ,2 2 , ,i R R R n nW m l m l m l θ  (7.4-11) 

 

or:  

 

   ,i R i i

i

W θ m l  (7.4-12) 

 

where: Rm  is the moment or moment of resistance of the slab per meter run 

represented by the reinforcement crossing the yield line ( in kN·m/m); 

        θ  is the rotation of the about its axis of rotation (in m/m); 

        l  is the length of the yield line. 

In the other words, the internal energy dissipated ( iW ), is calculated by taking 

the projected length of each yield line around a region onto the axis of rotation of that 

region, multiplying it by the moment acting on it and by the angle of rotation 

attributable to that region. The total energy dissipated for the whole slab is the sum 

of the dissipated energies of all the regions. (see Equation (7.4-10)). 

Diagonal yield lines are assumed to be made up of small steps with sides parallel 

to the axes of rotation of the two regions it divides. The «length» of a diagonal or 

inclined yield line is taken as the summation of the projected lengths of these 

individual steps onto the relevant axes of rotation. 

The angle of rotation of a region is assumed to be small and is expressed as being 

maxδ /length. The length is measured perpendicular to the axis of rotation to the point 

of maximum deflection of that region. 

For the entire system, the total internal work done is the sum of the 

contributions from all yield lines. In all cases, the internal work contributed is 

positive, regardless of the sign of Rm , because the rotation is in the same direction as 

the moment. External work, on the other hand, may be either positive or negative, 

depending on the direction of the displacement of the point of application of the force 

resultant. 

A fundamental principle of physics is that energy cannot be created or destroyed. 

So in the yield line mechanism, e iW W . By equating these two energies the value of 

the unknown i.e. either the moment, Rm , or the load, Q , can then be established. 

If deemed necessary, several iterations may be required to find the maximum 

value of moment m  (or the minimum value of load capacity) for each chosen failure 

pattern. 
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7.4.6.4.4  The principles 

For illustrate the principles, two straightforward examples from [19] are 

presented. 

Consider a one-way slab simply supported on two opposite sides (span L  and 

width b ), supporting a uniformly distributed load of dq  in kN/m2                                    

(see Figure 7.4.-14). 

 

 
Figure 7.4-14 – A simply supported one-way slab 

 

 ,e iW W  or 

 

        .RN δ m l θ  

 

For simply supported one-way slab (see Figure 7.4-14): 

 

       2 2
2 2

max
d R

δL
q b m b θ.  (7.4-13) 

 

Taking into account, that 
 


/2

maxδ
θ

L
, the following equation is obtained: 

 

                                         
   

    
2 2

2 .
2 2

d max max
R

q L b δ δ
m b

L
                      (7.4-13 a)  

 

Canceling gives: 
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  


2 4
.

4
d Rq L m

L
 (7.4-14) 

 

Rearranging gives: 

 

  
 

2 22
.

16 8
d d

R

q L q L
m  (7.4-15) 

 

The same principles apply to two-way spanning slabs. Consider a square slab 

simply supported on four sides. Increasing load will firstly induce hairline cracking 

on the soffit, then large cracks will form culminating in the yield lines shown in     

Figure 7.4-15. 

 

 
Figure 7.4-15 – Simply supported slab yield line pattern 

 

Diagonal cracks are treated as stepped cracks, with the yield lines projected onto 

parallel axes of rotations. Assuming the slab measures L L  and carries a load of      
q  kN/m2: 

 

        
1

4 4 .
2 2 3 /2

max max
d R

δ δL
L q m L

L
 (7.4-16) 

 

In this case the length of the projected yield line, l , for each region measured 

parallel to the axis of rotation is equal L . 

 

 
 

24
8 ,

12
d

R

L q
m  (7.4-17) 

 

or 
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


2

.
24
d

R

q L
m  (7.4-18) 

 

7.4.6.5 Orthotropic reinforcement and skewed yield lines 

Generally, slab reinforcement is placed orthogonally, that is, in two 

perpendicular directions. The same reinforcement is often provided in each direction, 

but the effective depths will be different. In many practical cases, economical designs 

are obtained using reinforcement having different bar areas or different spacings in 

each direction. In such cases, the slab will have different moment capacities in the 

two orthogonal directions and is said to be orthogonally anisotropic, or simply 

orthotropic. 

Often yield lines will form at an angle with the directions established by the 

reinforcement. For yield line analysis, it is necessary to calculate the resisting 

moment, per unit length, along such skewed yield lines. This requires calculation of 

the contribution to resistance from each of the two sets of bars. 

Figure 7.4-16 shows an orthogonal grid of reinforcement, with angle α between 

the yield line and the X  direction bars. Bars in the X  direction are at spacing yS  and 

have moment resistance ,R ym  per unit length about the Y  axis, while bars in the Y  

direction are at spacing u  and have moment resistance ,R xm  per unit length about 

the X  axis. The resisting moment per unit length for the bars in the Y  and X  

directions will be determined separately, with reference to Figure 7.4-16 b and c, 

respectively. 

For the Y  direction bars, the resisting moment per unit length along the α axis 

provided by the Y  direction bars is therefore. 

 

 
  

, 2

, ,

cos
cos

/cos

R x x

R αy R x

x

m S α
m m α

S α
 (7.4-19) 
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a) – orthogonal grid and yield line; b) – Y direction bars; c) – X direction bars 

Figure 7.4-16 – Yield line skewed with orthotropic reinforcement 

 

For the bars in the X  direction, the resisting moment per bar about the Y  axis 

is ,R y ym S , and the component of that resistance about the   axis is   , sinR y ym S . 

Thus, the resisting moment per unit length along the   axis provided by the X  

direction bars is 

 



 
  

, 2

, ,

sin
sin

/sin

R y y

R y R y

y

m S α
m m α.

S α
 (7.4-20) 

 

Thus, for the combined sets of bars, the resisting moment per unit length 

measured along the α  axis is given by the sum of the resistances from                 

Equation (7.4-17) and Equation (7.4-18): 

 

    2 2

, , ,cos sinR R x R ym m α m α.  (7.4-21) 

 

For the special case where  , ,R x R y Rm m m , with the same reinforcement 

provided in each direction: 

 

   2 2

, (cos sin ) .R α Rm m α α m  (7.4-22) 

 

The slab is said to be isotropically reinforced, with the same resistance per unit 

length regardless of the orientation of the yield line. 

The analysis just presented neglects any consideration of strain compatibility 

along the yield line and assumes that the displacements at the level of the steel during 
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yielding, which are essentially perpendicular to the yield line, are sufficient to produce 

yielding in both sets of bars. 

7.4.6.6 Fan patterns at concentrated loads 

If a concentrated load acts on a reinforced concrete slab at an interior location, 

away from any edge or corner, a negative yield line will form in a more or less circular 

pat- tern, as in Figure 7.4-17, with positive yield lines radiating outward from the 

load point. If the positive resisting moment per unit length is Rm  and the negative 

resisting moment 
Rm , the moments per unit length acting along the edges of a single 

element of the fan, having a central angle β , the arc along the negative yield line can 

be represented as a straight line of length β r . 

Figure 7.4-17 shows the moment resultant obtained by vector addition of the 

positive moments Rm  acting along the radial edges of the fan segment. The vector 

sum is equal to Rm β , acting along the length β r , and the resultant positive 

moment, per unit length, is therefore m . This acts in the same direction as the 

negative moment 
Rm , as shown in Figure 7.4-17 d. Figure 7.4-17 d also shows the 

fractional part of the total load P  that acts on the fan segment. 

Taking moments about the axis a − a gives: 

 

       


0,
2

R R

β P r
m m r β

π
 (7.4-23) 

 

from which: 

 

    2 .R RP π m m  (7.4-24) 

 

The collapse load P  is seen to be independent of the fan radius r . Thus, with 

only a concentrated load acting, a complete fan of any radius could form with no 

change in collapse load. 
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Figure 7.4-17 – Yield fan geometry at concentrated load [19] 

 

7.4.6.7 Standard formulae for slabs design  

Standard formulae that may be used for yield line solutions for common types 

of slab are presented in [19]. It may be regarded as a quick reference for common 

solutions. 

The failure patterns produced by the yield lines in slabs depend on the nature of 

both the loading and support conditions. 

7.4.7 ANALYSIS OF SLABS BY FINITE ELEMENT 
(FE) METHOD 

7.4.7.1 General 

As it was stated in [17, 20] before any analysis is carry out using computer 

software it is always good practice to carry out some simple hand calculations that 

can be used to verify that the results are reasonable. 

It is particularly important to do this when using FE analysis, and not treat the 

computer as «a black box». Simple calculations can be carried out to determine the 

«free bending moment», i.e. calculate  2 /8q l  for a span and then check that the FE 

results give the same value between the peak hogging and sagging moments. A 

discrepancy of 20 % is acceptable; outside of this limit further investigation should 
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be carried out to determine the reason. Calculate the total load on the slab and 

compare these against the sum of the reactions from the model. 

A recommended in accordance with [20] process of design using FE-analysis is 

given in Figure 7.4-18. 

 

 
Figure 7.4-18 Design process using FE analysis (Figure 1 from [20]) 

 

The finite element method is commonly used to design the reinforcement in 

concrete slabs. 

In order to simplify the analysis and to be able to use the superposition principle 

for evaluating the effect of load combinations, linear analysis is generally adopted 

even though concrete slabs normally have a pronounced non-linear response in 
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ultimate limit states this can be justified since concrete slabs normally have good 

plastic deformability. 

Theoretically, the design is based on the lower bound theorem of plasticity. 

Consequently, since the design is based on a moment (and force) distribution that 

fulfils equilibrium, the load carrying capacity will be sufficient provided that the 

structure has sufficient plastic deformation capacity. In Serviceability Limit States, 

the use of linear analysis is based on the assumption that the redistribution of 

moments (and forces) due to concrete cracking is limited. 

For the slabs a linear analysis is normally performed in order to determine the 

load effects that will further be used for the detailed design of the structure. However 

in order to obtain a relevant basis for design a proper modelling and subsequently a 

proper interpretation and use of the FEM analysis results is required. 

At support for instance, the sectional forces and moments are needed in the 

sections where a failure mechanism may occur. 

For concrete slabs monolithically cast together with a supporting wall, the 

relevant moments in the slab are those at the face of the supporting wall. This 

consideration will influence the way in which the actual support is represented in the 

FE-model, the mesh density around the support point and the choice of relevant 

remits points. 

Punching shear and deflection control are usually the governing criteria for flat 

slabs. Punching shear should be checked using code rules (see Chapter 4). 

At is was shown in Chapter 5, deflection concrete structures is a complex 

phenomenon, which is dependent on the final tensile and compression strength, 

elastic modulus, shrinkage, time and duration of loading, and cracking of the 

member. Deflection prediction is based on assumptions and is therefore an estimate 

– even when using the most sophisticated computer software. 

It should be noted, that deflection in a reinforced concrete slab is dependent on 

the age at first loading and the duration of the load because it will influence the time 

point at which the slab has checked (if at all) and is used to calculate the creep factor. 

A typical loading sequence in according with [20] is shown in Figure 7.4-19, which 

shows that in the early stages relatively high loads are imposed immediately after 

casting the slab above. Once a slab has cracked, it will remain cracked and the 

stiffness is permanently reduced. 

In addition, in linear models, unrealistic concentrations of moments and shear 

forces will occur due to necessary simplifications in the model. In order to obtain an 

economical design these concentrations need to be distributed over a certain width, 

denoted as distribution or strip width [20]. Thus, three aspects of particular 

importance should be analyzed (reviewed) taking into consideration: 

- modelling of support conditions; 

- choice of result sections; 

- choice of distribution width. 
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Figure 7.4-19 – Loading history for a slab (Figure 2 from [20]) 

 

7.4.7.2 Element types 

When carrying out FE analysis, the selection of a particular type of element is 

no longer necessary as most commercially available software packages for slab design 

do not offer an option. For reference it is usual to use a «plate» element; this will 

provide results for flexure, shear and displacement. In the future it is likely that 

membrane action will be modelled and considered in the design, in which case a 

«shell» elements would be used. 

Plate and shell elements are generally triangular or quadrilateral with node at 

each corner (see Figure 7.4-20). However, elements have been developed that include 

an additional node on each side, this gives triangle elements with six nodes and 

quadrilateral elements with eight nodes. By introducing more nodes into an element 

the accuracy of results is increased; alternatively, the number of elements can be 

reduced for the same number of nodes, so reducing computational time. 

 

 
Figure 7.4-20 – Types of finite elements (FE) 

 

The term «mesh» is used to describe sub-division of surface members into 

elements, with a finer mesh giving more accurate results. 
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As it was stated in [17] where a very coarse mesh was used (up to 5000 mm) it 

took just 30 second to analyze; although it is analytically correct it does not give 

sufficient detail. Conversely, when a much finer mesh was used (up to 500 mm) it 

took 15 minutes to analyze and gives the shape of bending moment diagram that 

would be expected. However, a mesh up to 1000 mm took just four minutes to analyze 

it gave very similar results and is considered to be sufficiently accurate for the 

purpose of structural design. From other hand, the 500 mm mesh has produced a 

higher peak moment; this is due to «singularities» or infinite stresses and internal 

forces that occur at the location of high point loads. This is due to assumptions that 

have been made in the model. Definite advice cannot be given as to the ideal size 

mesh size, but a good starting point is for elements to be not greater than span/10 

or 1000 mm, whichever is the smallest. Elements should be «well conditioned», i.e. 

the ratio of maximum to minimum length of the sides should not exceed 2 to 1. 

7.4.7.3 Modelling of support conditions 

7.4.7. 3.1 General aspects 

The support conditions in a finite element model of structure often have a 

decisive influence on the analysis results. Consequently, the modelling of the 

supports needs to be paid special attention. 

In reality, the support from foundation or from other structural parts provides 

stiffness with respect to both translation and rotation. In the structural model, this 

is often simplified to free or fixed translations or rotations at the supports. In many 

situations these simplification can be motivated. However, in other cases such 

simplifications may have a critical influence on the analysis results. In such cases 

the supporting structure, or its supporting stiffness through translation or rotation 

springs, should be included in the model. 

It also important to ensure that support conditions are introduced in the model 

at their correct locations and in correct directions. Note that constrained degrees of 

freedom in the model will control the deformation and rotation distribution in the 

analysis. Consequently, a small shift in the direction or position of a constraint may 

shift the deformed shape, and hence the internal distribution and magnitude of 

internal stresses, moments and forces. 

For slabs supported by bearings or columns, the support conditions are often 

modelled as concentrated at single nodes. The effect of this is that a singularity is 

introduced in solution, with the sectional forces and moments tending to infinity upon 

mesh refinement. There are two principally different ways to deal with this problem: 

either the modelling of the support is improved so that the singularity is avoided or 

the results are evaluated in the failure-critical sections adjacent to the supports. 

In most cases it is sufficient to model supports or connections to other structural 

parts in single points or lines. From the point of view of reinforcement design, the 

peak values that occur right at the connection are not of interest. Instead, design 

rules are needed in critical sections adjacent to the supports. For instance, if a slab 
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is monolithically connected to a column, the effects of the singularity in the slab may 

be disregarded. 

7.4.7.3.2  Modelling of supports at single points or lines 

Generally, for analyses used as basis for detailed design, it is recommended to 

model supports through prescribed boundary conditions in single points or along 

single lines. In this way unintended rotation restraints in the numerical model 

different ways to model a wall support for continuous one-way slab (Figure 7.4-21) 

and compared the results with simple beam calculations. 

The wall provides vertical support but the connection cannot transfer any 

moments, i.e. it is a «hinged» support. 

 

 
Figure 7.4-21 – Different ways to model a «hinged» line support                                             

for a slab modelled with linear shell elements, adapted from [17] 
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The pin support (a) is recommended. The pin support with stiff couplings (b) also 

gives good results while the other alternatives give incorrect results [17]. 

For the case of monolithic connection between the wall column and the slab, two 

modelling alternatives are shown in Figure 7.4-22. 

 

 
Figure 7.4-22 – Different ways to model a monolithic connection                                             

between the slab and the supporting wall/column [17] 

 

Modelling alternative (a) (see Figure 7.2-35) involves a stiff coupling (rigid link) 

applied at the column top over a length equal to half slab width. This modelling 

alternative gives results in good agreement with continuum (solid) model if the slab 

thickness t  and the wall (column) width a fulfil the following conditions: 

 








0,1 0,2min( ; );

2,

a l l

a

t

 (7.4-25) 
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where: 01l  and 02l  represent the distances from the column center to joint of zero 

moment on either side of the column. These distance can be evaluated for a load case 

involving the permanent only. In case, the slab thickness is much smaller than the 

span, i.e.  01 02min( ; )a l l , the stiff coupling can for simplicity be  left out and the wall 

or column be extend up the center of the slab.  

Modelling alternative (b) (see Figure 7.4-23) gives higher moments at the 

supports and by consequence lower moments within the span. In addition, one 

should be careful not to introduce over constraint out of the plane that can cause too 

high moments and membrane forces for temperature loading. 

Apart from the alternatives presented in Figure 7.4-21 there are several other 

ways to model the monolithic connection. One possibility would be to use alternative 

(b) but not eхtent the rigid coupling over the whole width a of the wall (or column) 

while another possibility would be to increase the thickness of the slab over the 

connections zone thus accounting for the increase in stiffness within this region.  

If the width a of the wall (or column) and the thickness t  of the slab do not 

respect the support conditions in more detail so that the stress model the support 

conditions in more detail described in a more realistic way (a modelling alternative 

avoiding singularities at the supports). 

An alternative to model the support given by a column or bearing in a single 

point, and evaluate the results in adjacent critical sections, is to the solution is to 

replace the point reactions by surface loading as shown in Figure 7.4-23.  

 

 
Figure 7.4-23 – Point reactions replaced by surface loading (Figure 2.4 from [17]) 

 
For elastomeric bearing, the surf load q  can be approximated according to: 

 /q R S  where R  is the support reaction force and S is the equivalent surface of the 

bearing. For more rigid supports and monolithic connections the support pressure 

will be concentrated towards the edges of the support surface.  

This can be taken into account after evaluation of the support pressure 

distribution. Alternatively, equally distributed pressure can used as a conservative 

approximation. At least two firot order elements should be used over the width a. For 

supports that are wide compared to the slab thickness, more elements are needed. 

In accordance with recommendation [17], the general analysis procedure is as 

follows: 

- to computations are first performed with a point support at the centre of the 

bearing in order to determine the reaction force; 

- the surface pressure is then computed and applied upwards at the support; 
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- the analysis is then performed once again, now adding the computed surface 

pressure at the support, in order to determine the actual reaction force at the support 

point should become (approximated) zero. 

The solution presented above is not the only possible solution. An alternative 

approach is to model the bearing or support by springs according to the principle 

shown in Figure 7.4-24. 

Note that the modelling alternative presented in Figure 7.4-24 does not introduce 

any spurious rotational restraints in the model. The stiffness properties of the springs 

can be determined from the stiffness properties of support, e.g. a bearing. Note also 

that the spring stiff ness must be different in the middle, on the side and at the corner 

of the support plate if discrete spring elements connecting the nodes are used to 

describe e.g. a constant surface stiffness.  

 

 
Figure 7.4-24 – Bearing support modelled by spring elements (Figure 2.5 from [17]) 

 

The modelling alternative described in Figure 7.4-24 should also be adopted if 

the support has a large minimum width compared to the span length and/or slab 

thickness. Typically, this situation occurs if wide columns are monolithically 

connected to the slab. In this case the column should be included in the model and 

the stiff plate in Figure 7.4-24 should be rigidly connected to the column top. 

The stiffness of the columns should be modelled by using rotational spring 
stiffness. For a pin-ended column the stiffness can be taken as   3 /k E L l  and for 

a fully fixed column   4 /k E L l  (see Figure 7.4-25).    

 

 

a) – far end fixed; b) – far end pinned 

Figure 7.4-25 Modeling column stiffness (Figure 8 from [20]) 
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However, for columns supporting the upper storeys, edges and corners the end 

condition will not be fully fixed and cracking can occur that will reduce their stiffness. 

The rules for governing the maximum moment that can be transferred between 

the slab and column are given in EN1992 [N3] (Annex I: 1.2(5)). These rules are 

applicable even when using FE analysis. If the maximum transfer moments is 

exceeded the design sagging moment should be increased to reduce the hogging 

moment at the critical support. 

7.4.7.4 Mesh density at support region  

As it was shown in [17, 20] and stated above, when performing a linear finite 

element analysis of concrete slab, cross-sectional forces and moments become high 

at concentrated support, and will tend to infinity upon mesh refinement. However, 

when using the analysis as a basis for reinforcement design, the peak values of 

interest. Instead, the cross-sectional forces and moments in critical sections adjacent 

to the support are headed for design. When designing the slab reinforcement, 

averaged values of the bending moments over certain distribution widths 

perpendicular to the reinforcement direction will normally be used, see Chapter 4. 

The influence of the mesh density around a column on these averaged moment values 

will be much smaller than on the moment value at the critical section right at the 

edge of the column. Based on this observation, it is recommended that the mesh 

density around the point support node in a slab (e.g. a column or an abutment), should 

be chosen such that there is at least one shell element regardless of order, between the 

support node and the critical cross-section. Figure 7.4-26 illustrates an example of 

such a mesh refinement around column supports. 

 

 

Figure 7.4-26 – Example of mesh refinements around column supports of a bridge slab        

(Figure 8 from[17]) 
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For situations where a slab is supported by a line support, there is no problem 

with singularities. However, the element mesh needs to be fine enough to give 

accurate results in the adjacent critical sections. Also here it is recommended to 

provide at least one element length between the line support node and the critical 

cross-section, regardless of the shell element order.  

Alternatively, the maximum moment and shear force at the line support can be 

used as a conservative approximation.  

EN1992 [N3] gives some specific guidance in Annex I on how to deal with loading 

for unusual layout. When designing EN1992 [N3] the combination of the full factored 

dead load over the whole slab together with the factored live loading on alternate bays 

should be used (see Figure 7.4-27). These should be considered separately in each 

orthogonal direction. Note that a «chequer-board» pattern loading is an unlikely 

pattern and may not give the most unfavorable arrangements. 

As it stated in [17, 20] all software will allow a number of load cases to be 

considered, and the engineer must assess how to treat pattern loading. It requires 

engineering judgement to determine the most unfavorable arrangement of design 

loads for a floor slab with an unusual geometry. However, EN 1992 [N3] gives some 

specific guidance in Annex I on how to deal with loading for unusual layout. 

Where pattern loading is to be considered the maximum span moments for all 

flat slabs designed to EN 1992 [N3] can be obtained by using the combination of the 

full factored permanent (dead) load over the whole slab together with the factored 

variable (live) loading at alternate bays (see Figure 7.4-27). These should be 

considered separately in each orthogonal direction. Note that a «chequer-board» 

pattern loading is an unlikely pattern and may not give the most unfavorable 

arrangements [20]. 

For non-linear cracked section analysis, two stiffness matrices will be required, 

one each for the ULS and SLS. This is because the material properties will be different 

from those at the ULS. The load should be assigned to both cases with appropriate 

partial factors.    
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Figure 7.4-27 – Load arrangements for flat slabs [20] 

 

7.4.7.5 Choice of result sections 

7.4.7.5.1 Result sections for moments 

(1) General 

The exact loading on the slab and the maximum moment will depend on the 

loading on the distribution of the support pressure towards the bottom of the slab 

(see Figure 7.4-28). At the location where the maximum bending moment occurs a 

vertical bending crack will develop and eventually the reinforcement in this section 

will start to yield, possibly limiting the capacity with respect to bending. The same 

principle applies for a two-way slab; the critical sections for bending are situated at 

locations where the maximum moment occurs. 

If the supports are modelled to describe the support pressure in a more realistic 

way, as it was shown in section above, the result sections for the moments are the 

sections where maximum moments are obtained in the FEM analysis. If, on the other 

hand, the supports are modelled in a simplified way, in single points or along discrete 
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lines, the maximum bending moments obtained from the FEM analysis will over-

estimate the real moments. At locations where the slab is supported at single points 

it will even tend to infinity upon mesh refinement. Here, the locations of the result 

section where FEM results should be evaluated depend on the design and the actual 

stiffness of the slab-support connection. 

 

 
Figure 7.4-28 Bending moment variation and critical section for the bending moment            

in a slab with distributed support pressure [17] 

 

(2) Monolithic connections modelled in single points or lines 

If the slab is monolithically connected with its supports, columns or walls, it can 

be shown that the maximum stresses do not occur inside the connection region but 

instead appear at the border of the connection. 

It should be noted, that the cross-sectional moments and forces in the slab are 

defined as integrals of the stresses over the cross-section and do not have a clear 

interpretation inside a connection region [17]. 

A critical bending crack will form no closer to the theoretical support point than 

along the surface of the column or the wall. This is also where the tensile 

reinforcement will start to yield. 

Consequently, the critical cross-section for bending failure in the slab is along 

the surface of the column or wall (see Figure 7.4-29). 

In [17] it was recommended to model monolithic connections between a slab and 

its supporting walls and columns along discrete lines and in single points. 

For a monolithic connection modelled in this way the result section for moments 

can be taken as the section along the surface of the column or wall, see                     

Figure 7.4-29. This corresponds to the recommendations given in Eurocode 2            
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(EN 1992 [N3], clause 5.3.2.2), provided that the support width is smaller than the 

slab thickness. 

 

 
Figure 7.4-29 – Result section for bending moments, for a monolithic connection          

modelled as a connection in a single point or along a discrete line between                 

structural finite elements (typically beam and shell elements (Figure 7.4-29 from [17]). 

 

The width a  of the column, in Figure 7.4-29, is the side length of a quadratic or 

rectangular column cross section. For a circular column, the real geometry can be 

approximated by an equivalent quadratic cross-section with: 

 

 


2
a , (7.4-26) 

 
where: ⵁ is the diameter of the column. 

(3) Simple supports modelled in single points or lines 

If the slab is simply supported on a wall or a column and the support transfers 

compression stresses only, the position of the critical section depends on the stiffnes 

of the support. 

In case of a slab resting on a rigid support, the resultants of the support stresses 

for each support half will shift towards the edge of the support. As an approximation, 

the support resultants can be assumed to act at the face of the support. On the other 

hand, if the support is very weak, the support pressure will tend to approach a 

uniformly distributed support stress. These two cases can be seen as extremes 

regarding the support pressure distribution (see Figure 7.4-28). In case of column 

supports, the support pressure for rigid supports will tend to shift more towards the 

support edges than for wall. As a conservative approximation, case (b) can be 

assumed. 
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a) – rigid support; b) – weak support 

Figure 7.4-30 Result section for bending moments for a simple support                        

modelled in a single point or along a discrete line between structural finite elements    

(typically beam and shell elements).  

 

According to clause 5.3.2.2 EN 1992 [N3], the design support moment, 

calculated with center-to-center distance between support points, can be reduced 

with: 

 


  ,

8
Ed

R a
M  (7.4-27) 

 

where: R  is the support reaction and a is the support width.  

It is shown that the maximum support moment according EN 1992 [N3] 

assumption can be conservatively approximated from the theoretical moment 

distribution (with discrete supports at the support center) as the moment a distance 

0,25·a  from the support point. Similarly, it is shown that the assumption of support 

resultants at the edges of the support in the theoretical moment distribution (i.e.     

0,5·a  from the center support point). A weak support for a concrete slab could 

typically be a masonry wall or column. However, hot even for this support condition 

we would obtain an equally distributed support pressure.  

For a concrete support of a one-way concrete slab that transvers both 

compressive and tensile strains, in [17] was shown that the support resultant for each 

support half be at 2/3 of the distance from the centre towards the edges, and for a 

steel support the edges, and for a steel support that transfers only compressive forces 

at 95 % of the distance towards the edges.  

Without any detailed evaluation of the real support pressure, a distributed 

support pressure can be assumed as a conservative approximation. This mean that, 

for simple supports modelled in single points or lines, the result section for moments 

can be taken as the section at half the distance between the center and edge of the 

column or wall (see Figure 7.4-30). 

This corresponds to the recommendation given in EN 1992 [N3] (see clause 

5.3.2.2). 
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(4) Bearing supports modelled in single points or lines 

A bearing consists principally of an elastomeric material between two steel 

plates. The steel plate that is in direct contact with the concrete slab is usually very 

stiff. For this case the result section can be assumed to be along the edge of the 

bearing top plate (see Figure 7.4-31 a). 

On the other hand, if the steel plate can not be regarded as stiff, the support 

pressure will change towards a more distributed support pressure. For this case, and 

as a conservative assumption in general, the result section for moments can be taken 

as the section at half the distance between the center and the edge of the bearing top 

plate (see Figure 7.4-31 b).  

 

 
                                    a)                                                                     b) 

a) – rigid bearing top plate; b) – flexible (or no) bearing top plate 

Figure 7.4-31 – Result section for bending moments, for a bearing support                    

modelled in a single points or long a discrete line (beam and shell models) 

 

7.4.7.5.2 Result section for shear force  

The location of result sections for shear forces at supports depend on where 

failure-critical shear cracks may occur. 

The shear force in a slab section is caused by the part of the vertical load that is 

transferred towards the support across this section. Consequently, the shear force 

obtained from the slab analysis in the section at a distance  cotz (where z  is the 

internal lever arm), is the shear force that needs to be transferred across the critical 

shear crack (see Figure 7.4-32). Any load that is acting on the slab top surface closer 

to the support than this will be transferred directly to the support. The self-weight of 

the slab can be treated as a load acting on the top of the slab. 

It can be concluded that the critical result section in a slab with respect to shear 

forces are not located closer to the support edge than cotz θ  (see Figure 7.4-32). This 

is independent of the design and stiffness of the slab-support connection. For slabs 

without shear reinforcement, the critical shear crack can generally be assumed to 

have an inclination θ  not steeper than 45º. In this case   cot .z θ z d  
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Figure 7.4-32 Critical section for shear force                                                                

(independent of the design and stiffness of the slab-support connections) [17] 

 

In slabs with shear reinforcement, the risk for shear compression failure must 

also be checked in accordance with provisions given in Chapter 4.2. For this case, 

the entire shear force at the support edge must be accounted for.   

7.4.7.6 Intepreting results. Redistribution of sectional forces 
and moments 

The results from FE analysis will generally be in the form of contour plots of 

stresses and forces, althougth a «section» through the contour plots (either bending 

moment or areas of steel) can usually be obtained. These will show very large peaks 

in bending moment at the supports. The temptation to provide reinforcement to resist 

this peak moment should be avoided. This potential error stems from a lack of 

understanding of the assumptions made in the modelling. The reinforcement in the 

concrete will be distributed across a larger area; it is not therefore necessary to design 

to resist this peak moment. However, a method is required for distributing this peak 

moment across a larger area. 

7.4.7.6.1  Design moments adjustment 

As it was stated in [17] where high peak moments occur the concrete will crack 

and the reinforcement may yield if it’s the elastic limit is exceeded. The forces are 

then shed shed to the surrounding areas. Even if slab were designed to resist this 

moment it is unlikely that it would actually acluve this capacity for the following 

reasons:  

-  the construction process often leads to construction stage overload; 

-  the reinforcement in unlikely to be placed at exactly the point of peak moment. 
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It is therefore necessary to acknowledge that some of the peak moments to 

adjacent areas will occur due to the material properties of concrete, and not attempt 

to design against it. 

In fact a recent paper by Scott and Whittle [17], concluded the redistribution 

occurs even at the SLS because of flu mismatch between the uniform flexural 

stuffness assumed and the variation in actual stuffness that occurs because of the 

variation in the reinforcement.  

When using FE, especially for slabs with irregular geometry, it is not usually 

possible to carry out redistribution of the moment; 

- It is not simple to determine where to distribute the hogging moment; 

- If the software is carry out the design there is usually no method for changing 

the analysis output. 

7.4.7.6.2  Effect of simplification in the modelling in accordance with [17] 

As already pointed out, unrealistic concentrations of cross-sectional moments 

and shear forces will generally occur in linear FEM analyses due to simplifications in 

the modelling. Geometrical simplifications are typically simplified modelling of 

supports and connections between structural elements, or simplified modelling of 

concentrated loads e.g. wheel pressures on bridge slabs [17].The material 

simplifications are mainly related to the assumption that reinforced concrete behaves 

like a linear elastic and isotropic material. In reality however, reinforced concrete has 

a highly non-linear behaviour involving both cracking and crushing of concrete and 

yielding of reinforcement. 

Simplifications made in the geometrical modelling often lead to very high 

concentrations of moments and shear forces at least locally. This occurs, for example, 

when a slab modelled with shell elements is supported by columns modelled with 

beam elements or by bearings modelled with boundary conditions applied at a single 

node.  

The singularities that may occur are local disturbances of the moment and force 

fields, and do not influence the cross-sectional moments and shear forces a short 

distance from the support point where the singularity appears. In accordance with     

[17], as long as the results in the critical sections are used and the finite element mesh 

is dense enough, modelling of support conditions in discrete points or lines does not 

influence the designing cross-sectional moments and shear forces. 

However, not even the high stress obtained in the critical sections do normally 

exist in reality. The concrete will crack already for service loads, leading to 

redistribution of moment and forces. In the ultimate limit state, the reinforcement 

will start to yield, leading to even large redistributions. 

The material simplification introduced the assumption of linear elastic response 

will lead to higher cross-sectional moments that in reality, e.g. around a column or 

concentrated support, since cracking a subsequent yielding in the reinforcement is 

not included in the model. 
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7.4.7.6.3 Sectional forces and moments for reinforcement design 

As it was shown in [17] in an ultimate limit state, the forces in each main 

reinforcement layer times its inner lever arm will result in a bending reinforcement 

moment resistance. These reinforcement moment resistance must balance the 

complete linear moment field, including torsional moment. The reinforcement 

moments rxm  and rym  for design of reinforcement in two perpendicular directions x  

and y  can be defined according to Equation (7.4-28) and Equation (7.4-29): 

 

  , ( ) ;ry pos neg y xym m μ m        (7.4-28)   

 

  , ( ) ,ry pos neg y xym m μ m        (7.4-29)   

 

where: xm  and ym  are the linear bending moments in the x  and y  direction, i.e. 

moments generated by the normal stress in sections acting in x  and y  directions, 

respectively (and leading to reinforcement in the x  and y  directions, respectively).  

Furthermore, xym  is the torsional moment and μ  is a factor that can be choses 

with respect to practical consideration, usually close to 1. In the above equations, the 

indices «pos» and «neg» refer to the top and bottom of the slab, respectively with the 

positive z  direction pointing to the top. 

In addition to the reinforcement moments, associated membrane forces can be 

evaluated as follows: 

 

  , ( ) ;rx pos ned x xyn n μ n     (7.4-30)   

 

  , ( )

1
.ry pos ned y xyn n n

μ
    (7.4-31)   

 

And included in the computation of the reinforcement areas. In                    

Equation (7.4-30) and Equation (7.4-31), xn , yn  and xyn  are the membrane forces at 

the mid-surface of the slab. The indices «pos» and «neg» refer in this case to tension 

and compression, respectively. 
If the reinforcement directions x  and y  are not orthogonal, Equation (7.4-26) 

and Equation (7.4-27) are replaced by Equation (7.4-28) and Equation (7.4-29): 

 

;m
  
  

     

1 2

, ( ) 2

1 2

sin ( ) cos ( )1

sin sin sin( ) cos cos( )

2 2

rx pos neg

m ψ-δ +m ψ-δ ±
=

ψ ± m δ ψ-δ -m δ ψ-δ
        (7.4-32) 

 

 
  
  

     
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1 2

2

1 2

sin cos1

sin sin sin( ) cos cos( )

2

ry,pos(neg)

                m δ+m δ±
m = .

ψ ± m δ ψ-δ -m δ ψ-δ
        (7.4-33)   
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In Equation (7.4-30) and Equation (7.4-31) 1m  and 2m  denote the principal 

moments at the considered location and the angles δ  and ψ  are defined in           

Figure 7.4-33. 

 

 
Figure 7.4-33 – Direction definition for skew reinforcement  

 

Equation (7.4-28) and Equation (7.4-29) are modified in the same manner giving: 

 

  
  

     

2 2

1 2

, ( ) 2

1 2

sin ( ) cos ( )1
;

sin sin sin( ) cos cos( )
rx pos neg

n ψ-δ +n ψ-δ ±
n =

ψ ± n δ ψ-δ -n δ ψ-δ
             (7.4-34) 

 

  
 

     

2 2

1 2

, ( ) 2

1 2

sin cos1

sin sin sin( ) cos cos( )
ry pos neg

                n δ+n δ±
n = .

ψ ± n δ ψ-δ -n δ ψ-δ
             (7.4-35)   

 

In Equation (7.4-32) and Equation (7.4-33) 1n  and 2n  denote the principal 

membrane forces at the considered location and the angles δ  and ψ  have the same 

significance as defined in Figure 7.4-33 (i.e. δ  is the angle between x and the 

direction of 1n  and ψ  is the angle between x  and y ). 

In addition to the moments, the FE analysis of the slab will also provide shear 

forces in two directions. Any necessary shear reinforcement area should be computed 

for the resultant shear force defined as: 

 

 2 2

0 .x yv v v                                       (7.4-36) 
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7.4.7.7 Redistribution of reinforcement moments  

Owing to the capacity of plastic redistributions in concrete structures, the 

reinforcement moments (as well as the shear forces) can be redistributed over a 

certain width, here denoted w . The average value of the moment avm  can then be 

used to compute the necessary reinforcement which is normally placed within the 

distribution width.  

The procedure can be illustrated for the simple example depicted in                  

Figure 7.4-34. Considering a slab supported by four columns monolithically 

connected to the slab. The diagram at the bottom left shows (see Figure 4.2 b) the 

variation of the reinforcement moment rxm  along line 1L  in a direction parallel to the 

moment’s direction (in this case the x  direction). 

The diagram in Figure 7.4-34 shows the distribution of rxm  along 2L                 

(length w ) in direction orthogonal to the moment direction (in this case the y  

direction). The distribution of the moment rxm  along line 2L  is replaced by a constant 

distribution with the average value ,rx avm  computed according to the equation in 

Figure 7.4-34 c. In this equation the integral is nothing else than the total moment 

over a strip of width w . The averaging procedure aims then to design the 

reinforcement in the slab strip of width w  for the total moment within the strip and 

distributing the reinforcement uniformly over the width of the strip. Note that the 

averaging procedure described above always takes place in a direction normal to the 

direction of the moment.  

 

 
Figure 7.4-34 – Redistribution of the reinforcement moment xtm  over a width w   
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As an alternative, the averaging over the strip width can instead be made after 

calculating the corresponding required reinforcement (as continuous fields over the 

slab), thus giving: 

 

  ,

0

1
.

w

sx av sxA A dy
w

 (7.4-37) 

 

Which approach that is preferred is a question of what is most convenient, for 

example depending on which approach that is implemented in the software used for 

the structural analysis. 

As a general remark it should be noted that the distribution width (strip width) 

used for reinforcement design is, at least for ultimate limit states, limited to the width 

over which yielding of the reinforcement can distribute without exceeding the rotational 

capacity in the point with the largest rotation. Consequently, what limits the distribution 

width is the rotational capacity of the slab. 

The recommendation given in [17] apply reinforcement moments and associated 

membrane effects and are based on the provisions given in EN 1992 [N3] but, since 

no specific guidelines are given for redistribution of moment and forces from linear 

FE analysis, and more detailed advices are based on what has been found in special 

literature, software manuals and on practical considerations from engineering 

practice [17]. 

The recommendation found in literature are generally based on the assumption 

that reinforced concrete slabs have good capabilities for plastic redistributions in 

ultimate limit state, but that the reinforcement need to be concentrated to regions 

with concentrated supports with response in service state. 

For flat slabs, the reinforcement is typically arranged in support strips over the 

columns with a middle strip in between, in the two main directions. 

The recommendation given in [17] are belived to be conservative. This implicates 

that there is a potential to improve them and to find more liberal provision based on 

improved knowledge on the response of concrete slabs. 

7.4.7.7.1 Ultimate limit states 

The distribution widths at a support (column or bearing) can be chosen 

according to the recommendation [17] as below: 

 

 min(3 ; ),
10

cL
w h                                      (7.4-38) 

 

for 0,45ux

d
 (0,35 for concrete strength classes C50/60); 

 min(5 ; ),
5

cL
w h                                     (7.4-39) 
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for 0,30ux

d
 (0,23 for concrete strength classes   C50/60); 

 

 ,
4

cL
w                                             (7.4-40) 

 

for 0,25ux

d
 (0,15 for concrete strength classes   C50/60);  

 

 ,
2

cL
w                                            (7.4-41) 

 

for 0,15ux

d
(0,10 for concrete strength classes   C50/60); 

 

 min(5 ; ),
5

cL
w h                                  (7.4-42) 

 

for 0,0ux

d
. 

In the above equations, h  is the height of the section, ux  is the depth of the 

neutral axis at the ultimate limit state after redistribution and d  is the effective depth 

of the section. cL  is the characteristic span width, determined differently for different 

categories of slabs in the following sections. For values of 
ux

d
 in between the limits 

above w  can be determined by linear interpolation. 

Regardless of the ductility requirements or any other of the limitations defined 

in the reminder of this report the value of the distribution width should never be 

taken less than (  2 h a ), i.e.    min (2 )w w h a , where a  is the dimension of the 

support in the considered direction. 

The following limitations apply for the distribution width determined using 

Equations (7.4-36)–(7.4-40):  

1. The ratio of the averaged and maximum reinforcement moments (see also 

Figure 7.4-34) should be restricted to   
,

,max

0,6.
rx av

rx

m

m
 

2. If the column has a capital (or a drop panel) the distributions width should be 

chosen as shown in Figure 7.4-35. In addition, before redistribution, the 

reinforcement moments and associated membrane forces must be transformed so 

that they are defined with respect to the same reference line. 

3. If the capital (drop panel) extends continuously over a line of columns or 

bearings it can be dimensioned as a beam. The beam forces (normal forces, bending 

moments and shear forces) can be obtained by integration from the shell (slab) 

results. 
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Figure 7.4-35 – Distribution widths for capitals (or drop panels) (Figure 4.4 from [17]) 

 

4. If the distribution width exceeds the distance between points of zero moment 

0w in the direction normal to the direction of the considered moment (i.e. the direction 

of redistribution) then the average value should be computed according to the 

principle illustrated in Figure 7.4-36. This principle is illustrated for the 

reinforcement moment in the x direction, i.e. rxm  but the same applies for 
rym .    

 

 
Figure 7.4-36 – Definition of the average value for cases where the distribution width exceeds 

the distance between points of zero moment (Figure 4.5 from [17]) 

 

5. For supports placed near the edge of the slab, the distribution width should 

be evaluated according to the principle illustrated in Figure 7.4-37. This amounts to 

choosing a w  according to Equations (7.4-36)–(7.4-40) and then evaluating an 

effective width 
effw as indicated in the figure. This effective value should further be 

used in evaluating the averaged moment values. 

 

 
Figure 7.4-37 – Support near the edge of the slab [17] 
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7.4.7.7.2 Simplified approach in accordance with EN 1992 [N3] 

EN 1992 [N3] deal with the peak in bending moment for flat slabs by averaging 

it over the column strip and middle strip (Annex I), with the column strip slab-divided 

into inner and outer areas. This method can be used for designing reinforcement 

using the results of an FE analysis. A section is taken across the bending moment 
diagram (i.e. in the y direction for moments in the x direction). 

 

 
Figure 7.4-38 – Design bending moments compared with FE output (Figure 13 from [20]) 

 

At the face of the column (see Figure 4.7-38).The total bending moment is the 

area under the blue line (i.e. the integral), which can be apportioned according to 

rules given EN 1992 [N3]. 

The rules in EN 1992 [N3] (Annex I Table I.1) allows more flexibility in 

apportioning the total moment for the bay width to the column and middle strips. 

However EN 1992 [N3] is more rigid in terms of how much reinforcement should be 

applied to the inner column strip. In accordance with EN1992 [N3] (clause 9.4.1(2)) 

requires that the half the total reinforcement area for the bay width is placed in a 

strip that extends to a quarter of the bay width and is centered over the support. 

In accordance with EN 1992 [N3], allow the design moment to be taken at the 

face of the support, indeed EN 1992 [N3] indicates this should be done. However, it 

may be prudent for the design moment at edge columns to be taken at the center of 

the support. This is because of uncertainties in the modelling and because it is critical 
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that the moment is transferred from the slab to the column in these locations, if this 

has been assumed in the design. 

An alternative method is to simply average the bending moment over a width of 

slab. However, the requirements of EN 1992 [N3] (clause 9.4.1(2)) should be adopted. 

The widths of these strips can be determined by the designer (an example is shown 

in Figure 7.4-38). 

This method has the advantage that it can be used for a slab width is not 

required. It can also be used with area of steel results, removing the need to calculate 

the reinforcement areas by hand. It will be seen that both methods give a similar 

distribution of reinforcement when applied to the same strip widths. 

An alternative way to determining design bay width is to use the method set out 

in [20]. This method has been developed for post-teusioned concrete design, assuming 

the analysis is at the serviceability limit state and for a homogeneous elastic plate. 

However, the principle that the bay width is taken as being the distance between the 

lines of «zero shear» may still be applied (see Figure 7.4-39). 

This principle is particularly useful for an unusual geometries where using the 

lines of zero shear give a good basis on which to determine the bay width. 

 

 
Figure 7.4-39 – Extract of shear diagram indicating lines of zero shear (Figure 14 from [20]) 

 

Whichever method is chose, engineering judgment should be applied for unusual 

design situation, making sure that there is sufficient reinforcement to resist the 

applied moment, without being overly- conservative. 

A useful rule of thumb for verifying the results is that top reinforcement in the 

column strip will be in the order of twice the area of the bottom reinforcement (i.e. 

not the same as, or 4 times much as, the bottom reinforcement). 

7.4.7.7.3 Serviceability limit states 

(1) Distribution width for serviceability limit states design 

This method has been developed for post-tensioned concrete design. However, 

the principles that the bay with is taken as being the distance between the lines of 

«zero shear» may still be applied. This principle is particularly use full for unusual 

geometries where using the lines of zero shear give a good-basis on which to 

determine the bay widths. 

A use full rule of thumb for very tying the results is that top reinforcement in the 

column strip will be in the order of twice the area of the bottom reinforcement (i.e. 

not the same as, or 4 times as much as, the bottom reinforcement).  
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The choice of an appropriate distribution width for serviceability limit states is 

by far more intricate than for ultimate limit states and there are very few (if any) 

recommendations in the literature. This is mainly due to the fact that for serviceability 

limit states it is very difficult to determine the degree to which moment redistribution 

will take place. When a slab starts to crack, moments will redistribute from cracked 

areas to un-cracked areas (from support to field sections or vice versa). When the 

whole slab is cracked, the stiffer parts of the slab will attract larger moments. This 

means that the parts with larger maximum moments will contain a higher amount of 

reinforcement and hence become relatively stiffer after cracking. Consequently these 

parts will attract larger parts of the total moment after cracking than before. 

In EN1992 [N3], it is pointed out that the reinforced distribution should reflect 

the behavior of the slab under working conditions, with a concentration of moments 

over the column. Unless rigorous checks are made for serviceability, half of the total 

top reinforcement should be concentrated into a column strip with the width: 

 

  21 ,
8 8

ll
w  (7.4-42) 

 

where: 1l  and 2l  are the distances from the column of the strip to the adjacent 

columns, in the direction perpendicular to the reinforcement. This leads generally to 

a larger concentration of reinforcement to the column strip than what is given by a 

linear analysis. 

Given the above reasons the distribution width for serviceability limit states 

should be chosen more conservative than for ultimate limit states. Thus, for 

serviceability limit states the distribution width should be chosen between the limits 

given by: 

 

   min(3 ; ) min(5 ; ).
10 5

c cL L
h w h                             (7.4-43) 

 

(2) Approach to deflection calculation  

Deflection is influenced by many factors, including the tensile and compressive 

strength of the concrete, the elastic modulus, shrinkage, creep, ambient conditions, 

restraint, loading, time, duration of loading, cracking. 

Of the influences listed above, the three most critical factors are the values of 

tensile strength, elastic modulus, and creep, their effects have been discussed 

previously.  

There are several situations where deflection are critical:  

- deflection of the slab perimeter supporting cladding brackets/fixing on the slab 

perimeter prior to installation of the cladding; 

- deflection of the slab after erection of the partions; 

- where it affects the appearance. 

The accuracy of the deflection calculation can be refined where the age of loading 

can be confidently predicted and the type of aggregates to be used is known.  
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This is more likely to be the case where the designer is working for a contractor. 

The time of striking and the time when additional formwork loads from the slab above 

are applied will have a major influence on the deflection.  

This is because the slab is most likely to crack under these conditions and this 

will greatly influence the subsequent stiffness of the slab. The elastic modulus can be 

more accurately predicted when the type of aggregate in concrete is known, and this 

is more likely to be the case when the source of concrete has been determined. 

When the loading sequence is known, the critical loading stage at which cracking 

first occurs can be established by calculation k  for each stage, where: 

 




,
( )

ctmf
k

q β
                                          (7.4-44) 

 

where: ctmf  tensile strength of the concrete; 

            q  – loads applied at the stage; 

     β  – 0,5 for long-term loads. 

The critical load stage is where k  is at its minimum and is usually when the slab 

above is cast (i.e. construction stage overload), and the tensile strength should be 

calculated for this stage. 

The following methods can be used to carry out serviceability limit state design. 

They are listed in order of increasing. 

Sophistication: 

- span-to-effective depth ratios – compliance with code; 

- linear finite element analysis with adjustment of elastic modulus; 

- non-linear finite element analysis. 

(3) Linear FE deflection analysis 

In accordance with [17]. The linear FE-method should be used only to confirm 

that deflection is not critical and not a tool to estimate deflection. This method 

involves calculating the elastic modulus and slab stiffness by hand and adjusting the 

parameters used in the analysis. A cracked section analysis is carried out to 

determine the stiffness of the slab. The cracked section properties vary with the 

reinforcement size and layout, so this is an iterative process and should ideally be 

carried out for each element of slab. However, for initial sizing it is not unreasonable 

to assume that the cracked section stiffness is half the gross section stiffness [20], or 

to use a cracked section stiffness for a critical area of the slab and apply it globally, 

provided that it is not used to estimate deflection. 

Changing the slab stiffness in an FE-model can not usually be carried out 

directly because most finite element packages calculate section properties from the 

thickness of the elements. The overall depth of the concrete should be used, as this 

gives the correct torsional constant. 

However, to allow for reduction in slab stiffness, the elastic modulus can be 

adjusted by multiplying by the ratio of the cracked and uncracked slab stiffness, R , 
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to model the correct slab thickness. So an appropriate long-term elastic modulus is 

determined as follows: 





.

(1 )
cm

eff

R E
E

φ
                                       (7.4-45) 

 

In general, the long-term elastic modulus is usually between a third (for storage 

loads) and a half (for residential loads) of the short-term value [20].  

Therefore, allowing for the need to adjust for cracked stiffness, the long-term 

elastic modulus should be in the range one sixth to a quarter of the short-term elastic 

modulus. 

(4) Non-linear FE deflection analysis  

When using non-linear software, several analysis will often be required to obtain 

a final result. The software will carry out an iterative analysis to determine an initial 

deflection; this will be based on initial, assumed areas of reinforcement. 

As discussed previously an important aspect to achieving a realistic estimate of 

deflection is to consider the loading history for the slab; once the slab has cracked 

(and hence has reduced in stiffness) this will affect the deflection throughout the life 

of the slab. This should be considered in the model. 

The crack may not be cracked every where; rather it may be fully cracked in the 

zones of maximum moment, and in other planes it may be only partially cracked or 

not cracked at all. An accurate assessment of deflection can only be made where the 

appropriate section properties are calculated for each element in the slab. Software 

giving the most accurate deflection calculations will consider the shrinkage effects.  

7.4.7.8 Punching shear 

Although an FE model will produce shear stresses, where the columns are 

modelled as pins they have no effective shear perimeter and the shear force is infinite. 

In this case the simplest way to check punching shear is to take the reaction from 

the model and carry out the checks in the normal way using provisions in the Chapter 

4. This can be automated by using a spreadsheet for the design of reinforced concrte. 

If the area of the column has been modelled, then realistic shear stresses can be 

required in using them because there will be peaks which may exceed the design 

limits in the codes. 

Some software can undertake the punching shear checks and design of the 

reinforcement, and the user should ensure that openings within the shear perimeter 

are considered in the softwear. 
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7.4.7.9 Validation  

As with any analysis it is necessary to validate the results in order to avoid errors 

in the modelling and input of data. There is a risk of engineers assuming that because 

the computer can accurately and rapidly carry out complex calculations it must be 

right. 

There are number of simple check of analysis that can be carried out and the 

results of these checks should always be included when the calculations are 

presented [17, 20]: 

1) Are the supports correctly modeled? 

2) Is the element size appropriate – particularly at locations with high stress 

concentrations? 

3) Is there static equilibrium? Calculate by hand the total applied loads and 

compare these with the reactions from the model results; 

4) Carry out simplified calculations, by making approximations if necessary 

(This could be investigated); 

5) Do the contour plots look right? Are the peak deflections and moments 

where they would be expected? Sketch out by hand the expected results before carring 

out the analysis; 

6) Is the span-to-effective depth ratio in line with normal practice. 
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7.5 DETAILING 

7.5.1 TWO-WAY SLABS ON LINEAR SUPPORTS 

Longitudinal reinforcement must resist to dimensioning bending moments. In 

the performed analysis were neglected torsion moments in the corners of concrete 

slab. This simplification must be accounted in arrangement of longitudinal 

reinforcement according to detailing rules (see Figure 7.5-1): 

- longitudinal reinforcement can be reduced in border zones to zones to design 

area in the middle of span; 

- in the corners where simple supports meet to each other must be reinforcement 

transferring torsion moments. The minimum area of this reinforcement (in each way) 

is a maximum from values ,s xA  and ,s yA  in mid-span; 

- top reinforcement is not reduced anywhere. Slab has to be reinforced by top 

surface in fixed or partial fixed supports (length of reinforcement is depicte above); 

- in the corner where simple supports meet to each other must be reinforcement 

transferring torsion moments. The minimum area of this reinforcement (in each way) 

is a maximum from values ,s xA  and ,s yA  in mid-span; 

- in corner where simple support meets fixed support is necessary one half of    

max( ,s xA ; ,s yA ) placed parallel with fixed support; 

- in corners where fixed support meets fixed support is not needed reinforcement 

for torsion moments (this case is not in scheme above); 

- all reinforcement must be accompanied by distribution reinforcement; 

- no surfaces can be without any reinforcement due to volume changes of 

concrete (shrinkage). Thereby the surfaces without reinforcement should be 

accompanied by welded wire mesh. 
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a) – top reinforcement; b) – bottom reinforcement 

Figure 7.5-1 – Reinforcement arrangement (detailing rules for two-way spanning slab) 
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7.5.2 FLAT SLABS 

Column and middle strip should be reinforced to withstand the design moment 

obtained from Chapter 7.4. 

In general two-thirds of the amount of reinforcement required to resist the 

negative design moment in the column strip should be placed in a width to half that 

of the column strip symmetrically positioned about the centerline of the column. 

The area of reinforcement in each directions should not be less than 

  2/30,00014 ckf b h  or  0,0015 b h  (where: h is the overall depth of the slab (taken as 

/0,87d ); b is the width for which the reinforcement is calculated). 

If control of shrinkage and temperature cracking is critical, the area of 

reinforcement should not be less than 0,0065·b·h or 20 % of the area of main 

reinforcement. 

The area of tension or compression reinforcement in either direction should not 

exceed 4 % of the area of concrete. 

Main bars should not be less than 10 mm in diameter. To control flexural 

cracking the maximum bar spacing or maximum bar diameter of high-bond bars 

should not exceed the values given in Table 7.5-1, corresponding to the stress in the 

bar. In any case bar spacing should not exceed the lesser of 3·h or 500 mm. 

 
Table 7.5-1 – Alternative requirements to control crack width to 0,3 mm for members reinforced with 

high bond bars (Table 5.6 from [N3]) 

Maximum bar 

diameter (mm) 
Stress range (MPa) 

or 

Maximum bar 

spacing (mm) 
Stress range (MPa) 

40 150-165 300 ≤160 

32 165-190 275 160-180 

25 190-210 250 180-200 

20 210-230 225 200-220 

16 230-260 200 220-240 

12 260-290 175 240-260 

10 290-320 150 260-280 

8 320-360 125 280-300 

  100 300-320 

  75 320-340 

  50 340-360 

Notes: The stress in the reinforcement may be estimated from the relationship: 

    
             

2 1
,

1,5 1,35

yk s,reqk k
s

s k k s,prov

f Aψ Q +G
σ =

γ Q + G A δ
 

where: 2ψ  should be obtained from EN1990 [N1] for the particular type of loading considered; 

           
yk

s

f

γ
 may be taken as 435 MPa for 500 MPa reinforcement; 

           
,s reqA  is the area of tension reinforcement required at the section considered for the ultimate limit 

state; 

           
,s provA  is the area of the elastic ultimate moment at the section considered ( 1δ ); 

           δ  is the ration of the elastic ultimate moment at the section considered ( 1δ ). 
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ANNEX I 

TERMS AND DEFINITIONS 

COMMON TERMS USED IN EN 1990 TO EN 1999 

Construction works: everything that is constructed or results from 

construction operations. 
Note: The term covers both building and civil works. It refers to the complete construction works 

comprising structural, non-structural and geotechnical elements. 

Type of building or civil engineering works: type of construction works 

designating its intended purpose, e.g. dwelling house, retaining wall, industrial 

building, road bridge. 

Type of construction: indication  of the  principal  structural  n1aterial, e.g. 

reinforced concrete  construction, steel construction, timber construction, masonry 

construction, steel and concrete composite construction. 

Construction material: material used in construction work, e.g. concrete, 

steel, timber, masonry. 

Structure: organised combination of connected parts designed to carry loads 

and provide adequate rigidity. 

Structural member: physically distinguishable part of a structure, e.g. a 

column, a beam, a slab, a foundation pile. 

Form of structure: arrangement of structural members. 
Note: Forms of structure are, for example, frames, suspension bridges. 

Structural system: load-bearing members of a building or civil engineering 

works and the way in which these members function together. 

Structural model: idealisation of the structural system used for the purposes 

of analysis, design and verification. 

SPECIAL TERMS RELATING TO DESIGN IN GENERAL 

Design criteria: quantitative formulations that describe for each limit state the 

conditions to be fulfilled. 

Design situations: sets of physical conditions representing the real conditions 

occurring during a certain time interval for which the design will demonstrate that 

relevant limit states are not exceeded. 

Transient design situation: design situation that is relevant during a period 

much shorter than the design working life of the structure and which has a high 

probability of occurrence. 
Note: A transient design situation refers to temporary conditions of the structure, of use, or 

exposure, e.g. during construction or repair. 
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Persistent design situation: design situation that is relevant during a period 

of the same order as the design working life of the structure. 

Note: Generally it refers to conditions of normal use. 

Accidental design situation: design situation involving exceptional conditions 

of the structure or its exposure, including fire, explosion, impact or local failure. 

Design working life: assumed period for which a structure or part of it is to be 

used for its intended purpose with anticipated maintenance but without major 

repair being necessary. 

Load arrangement: identification of the position, magnitude and direction of a 

free action. 

Load case: compatible load anangements, sets of deformations and 

imperfections considered simultaneously with fixed variable actions and permanent 

actions for a particular verification.  

Limit states: states beyond which the structure no longer fulfils the relevant 

design criteria. 

Ultimate limit states: states associated with collapse or with other similar 

forms of sttuctural failure. 
Note: They generally correspond to the maximum load-carrying resistance of a structure or 

structural member. 

Serviceability limit states: states that correspond to conditions beyond which 

specified service requirements for a structure or structural member are no longer 

met. 

Irreversible serviceability limit states: serviceability limit states where some 

consequences of actions exceeding the specified service requirements will remain 

when the actions are removed. 

Reversible serviceability limit states: serviceability limit states where no 

consequences of actions exceeding the specified service requirements will remain 

when the actions are removed. 

Serviceability criterion: design criterion for a serviceability linlit state. 

Resistance: capacity of a member or component, or a cross-section of a 

member or component of a structure, to withstand actions without mechanical 

failure e.g. bending resistance, buckling resistance, tension resistance. 

Strength: mechanical property of a material indicating its ability to resist 

actions, usually given in units of stress. 

Reliability: ability of a structure or a structural nlember to fulfil the specified 

requirements, includ-ing the design working life, for which it has been designed. 

Reliability is usually ex-pressed in probabilistic terms. 

Note: Reliability covers safety, serviceability and durability of a structure. 

Reliability differentiation: measures intended for the socio-economic 

optimisation of the resources to be used to build construction works, taking into 

account all the expected consequences of failures and the cost of the construction 

works. 
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Basic variable: part of a specified set of variables representing physical 

quantities which characterise actions and environmental influences, geometrical 

quantities, and nlaterial properties including soil properties. 

Maintenance: set of activities performed during the working life of the 

structure in order to enable it to fulfil the requirements for reliability. 
Note: Activities to restore the structure after an accidental or seismic event are normally outside 

the scope of maintenance. 

Nominal value: value fixed on non-statistical bases, for instance on acquired 

experience or on physical conditions. 

TERMS RELATING TO ACTIONS 

Action (F): a) set of forces (loads) applied to the structure (direct action); 

                        b) set of imposed deformations or accelerations caused, for 

example, by temperature changes, moisture variation, uneven settlement or 

earthquakes (indirect action). 
Note 1: An accidental action can be expected in many cases to cause severe consequences 

unless appropri-ate measures are taken. 
Note 2: Impact, snow, wind and seismic actions may be variable or accidental actions, 

depending on the available information of statistical distributions. 

Effect of action (E): effect of actions (or action effect) on structural members, 

(e.g. internal force, moment, stress, strain) or on the whole structure (e.g. deflection, 

rotation). 

Permanent action (G): action that is likely to act throughout a given reference 

period and for which the variation in magnitude with time is negligible, or for which 

the variation is always in the same direction (monotonic) until the action attains a 

certain linlit value. 

Variable action (Q): action for which the variation in magnitude with time is 

neither negligible nor monotonic. 

Accidental action (A): action, usually of short duration but of significant 

magnitude, that is unlikely to occur on a given structure during the design working 

life. 

Fixed action: action that has a fixed distribution and position over the 

structure or structural member such that the magnitude and direction of the action 

are determined unambiguously for the whole structure or structurallnember if this 

magnitude and direction are determined at one point on the structure or structural 

member. 

Free action: action that may have various spatial distributions over the 

structure. 

Single action: action that can be assumed to be statistically independent in 

time and space of any other action acting on the structure. 

Static action: action that does not cause significant acceleration of the 

structure or structurallnelnbers. 
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Dynamic action: action that causes significant acceleration of the structure or 

structural members. 

Quasi-static action: dynamic action represented by an equivalent static action 

in a static model. 

Characteristic value of an action (Fk): principal representative value of an 

action. 
Note: In so far as a characteristic value can be fixed on statistical bases, it is chosen so as to 

conespond to a prescribed probability of not being exceeded on the unfavourable side during a 
«reference period» taking into account the design working life of the stucture and the duration of the 

design situation. 

Combination value of a variable action (ψ0·Qk): value chosen – in so far as it 

can be fixed on statistical bases – so that the probability that the effects caused by 

the combination will be exceeded is approximately the same as by the characteristic 

value of an individual action. It may be expressed as a determined part of the 

characteristic value by using a factor ψ0≤1. 

Frequent value of a variable action (ψ1·Qk): value determined – in so far as it 

can be fixed on statistical bases – so that either the total tilne, within the reference 

period, during which it is exceeded is only a small given part of the reference period, 

or the frequency of it being exceeded is limited to a given value. It may be expressed 

as a determined part of the characteristic value by using a factor ψ1≤1. 

Note: For the frequent value of multi-component traffic actions see load groups in EN 1991-2. 

Quasi-permanent value of a variable action (ψ2·Qk): value determined so 

that the total period of time for which it will be exceeded is a large fraction of the 

reference period. It may be expressed as a detemined part of the characteristic 

va1ue by using a factor ψ2≤1. 

Accompanying value of a variable action (ψ·Qk): value of a variable action 

that accompanies the leading action in a combination. 
Note: The accompanying value of a variable action may be the combination value, the frequent 

value or the quasi-permanent value. 

Representative value of an action (Frep): value used for the verification of a 

limit state. A representative value may be the characteristic value (Fk) or an 

accompanying value (ψ·Fk). 

Design value of an action (Fd): value obtained by multiplying the 

representative value by the partial factor γi. 
Note: The product of the representative value multiplied by the partial factor γF= γSd×γf may also 

be designated as the design value of the action. 

Combination of actions: set of design values used for the verification of the 

structural reliability for a limit state under the simultaneous influence of different 

actions. 
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TERMS RELATING TO MATERIAL AND                   
PRODUCT PROPERTY 

Characteristic value (Xk or Rk): value of a material or product property having 

a prescribed probability of not being attained in a hypothetical unlimited test series. 

This value generally corresponds to a specified fractile of the assumed statistical 

distribution of the particular property of the material or product. A nominal value is 

used as the characteristic value in some circumstances. 

Design value of a material or product property (Xd or Rd): value obtained by 

dividing the characteristic value by a partial factor γm or γM, or, in special 

circumstances, by direct determination. 

Nominal value of a material or product property (Xnom or Rnom): value 

normally used as a characteristic value and established from an appropriate 

document such as a European Standard or Prestandard. 

TERMS RELATING TO GEOMETRICAL DATA 

Characteristic value of a geometrical property (ak): value usually 

corresponding to the dimensions specified in the design. Where relevant, values of 

geometrical quantities may correspond to some prescribed fractiles of the statistical 

distribution. 

Design value of a geometrical property (ad): generally a nominal value. 

Where relevant, values of geometrical quantities may correspond to some prescribed 

fractile of the statistical distribution. 

Note: The design value of a geometrical property is generally equal to the characteristic value. 

However, it may be treated differently in cases where the limit state under consideration is very sensitive to 
the value of the geometrical property, for example when considering the effect of geometrical imperfections on 
buckling. In such cases, the design value will normally be established as a value specified directly, for 
example in an appropriate European Standard or Prestandard. Alternatively, it can be established from a 
statistical basis, with a value corresponding to a more appropriate fractile (e.g. a rarer value) than applies to 

the characteristic value. 

TERMS RELATING TO STRUCTURAL ANALYSIS 

Note: The definitions contained in the clause may not necessarily relate to terms used in          

EN 1990, but are included here to ensure a harmonisation of tenns relating to structural analysis for 
EN 1991 to EN 1999. 

Structural analysis: procedure or algorithm for determination of action effects 

in every point of a structure. 
Note: A structural analysis may have to be perfooned at three levels using different models: global 

analysis, member analysis, local analysis. 

Global analysis: determination, in a structure, of a consistent set of either 

internal forces and moments, or stresses, that are in equilibrium with a particular 

defined set of actions on the structure, and depend on geometrical, structural and 

material properties. 



405 

 

First order linear-elastic analysis without redistribution: elastic structural 

analysis based on linear stress/strain or moment/curvature laws and performed on 

the initial geometry. 

First order linear-elastic analysis with redistribution: linear elastic analysis 

in which the internal moments and forces are modified for structural design, 

consistently with the given external actions and without more explicit calculation of 

the rotation capacity. 

Second order linear-elastic analysis: elastic structural analysis, using linear 

stress/strain laws, applied to the geometry of the deformed structure. 

First order non-linear analysis: structural analysis, performed on the initial 

geometry, that takes account of the non-linear deformation properties of materials. 
Note: First order non-linear analysis is either elastic with appropriate assumptions, or elastic-perfectly 

plastic, or elasto-plastic or rigid-plastic. 

Second order non-linear analysis: structural analysis, perfornled on the geometry 

of the deformed structure, that takes account of the non-linear deformation properties of 

materials. 

Note: Second order non-linear analysis is either elastic-perfectly plastic or elasto-plastic. 

First order elastic-perfectly plastic analysis: structural analysis based on 

moment/curvature relationships consisting of a linear elastic part followed by a 

plastic part without hardening, performed on the initial geometry of the structure. 

Second order elastic-perfectly plastic analysis: structural analysis based on 

moment/curvature relationships consisting of a linear elastic part followed by a 

plastic part without hardening, performed on the geometry of the displaced (or 

deformed) structure. 

Elasto-plastic analysis: structural analysis that uses stress-strajn or 

moment/curvature relationships consisting of a linear elastic part followed by a 

plastic part with or without hardening. 
Note: In general, it is perfonned on the initial structural geometry, but it may also be applied to 

the geometly of the displaced (or deformed) structure. 

Rigid plastic analysis: analysis, performed on the initial geometry of the 

structure, that uses limit analysis theorems for direct assessment of the ultimate 

loading. 

Note: The moment/curvature law is assumed without elastic defonnation and without hardening. 

ADDITIONAL TERMS AND DEFINITIONS                      

USED IN EN 1992 

Precast structures: precast structures are characterized by structural 

elements manufactured elsewhere than in the final position in the structure. In the 

structure, elements are connected to ensurethe required structural integrity. 

Plain or lightly reinforced concrete members: structural concrete members 

having no reinforcement (plain concrete) or less reinforcement than the minimum 

amounts. 
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Unbonded and external tendons: unbonded tendons for post-tensioned 

members having ducts which are permanently ungrouted, and tendons external to 

the concrete cross-section (which may be encased in concrete after stressing, or 

have a protective membrane). 

Prestress: the process of prestressing consists in applying forces to the 

concrete structure by stressing tendons relative to the concrete member. 

«Prestress» is used globally to name all the permanent effects of the prestressing 

process, which comprise internal forces in the sections and deformations of the 

structure. Other means of prestressing are not considered in this standard. 
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ANNEX II 

BAR AREAS AND PERIMETERS 

Table A.II-1 – Sectional areas of groups of bars (mm2) 

Bar 

size 

(mm) 

Number of bars 

1 2 3 4 5 6 7 8 9 10 

6 28,3 56,6 84,9 113 142 170 198 226 255 283 

8 50,3 101 151 201 252 302 352 402 453 503 

10 78,5 157 236 314 393 471 550 628 707 785 

12 113 226 339 452 566 679 792 905 1020 1130 

16 201 402 603 804 1010 1210 1410 1610 1810 2010 

20 314 628 943 1260 1570 1890 2200 2510 2830 3140 

25 491 982 1470 1960 2450 2950 3440 3930 4420 4910 

32 804 1610 2410 3220 4020 4830 5630 6430 7240 8040 

40 1260 2510 3770 5030 6280 7540 8800 10100 11300 12600 

 

Table A.II-2 – Perimeters and weights of bars 

Bar size (mm) 6 8 10 12 16 20 25 32 40 

Perimeter 
(mm) 

18,85 25,10 31,40 37,70 50,20 62,80 78,50 100,50 125,60 

Weight (kg/m) 0,222 0,395 0,616 0,888 1,579 2,466 3,854 6,313 9,864 

Note: Bar weights based on a density of 7850 kg/m3.  

 

Table A.II-3 – Sectional areas per metre width for various bar spacings (mm2) 

Bar 

size 

(mm) 

Spacing of bars 

50 75 100 125 150 175 200 250 300 

6 566 377 283 226 189 162 142 113 94,3 

8 1010 671 503 402 335 287 252 201 168 

10 1570 1050 785 628 523 449 393 314 262 

12 2260 1510 1130 905 754 646 566 452 377 

16 4020 2680 2010 1610 1340 1150 1010 804 670 

20 6280 4190 3140 2510 2090 1800 1570 1260 1050 

25 9820 6550 4910 3930 3270 2810 2450 1960 1640 

32 16100 10700 8040 6430 5360 4600 4020 3220 2680 

40 25100 16800 12600 10100 8380 7180 6280 5030 4190 

 

Table A.II-4 – Shear reinforcement. Asw/sw for varying stirrup diameter and spacing 

Stirrup 
diameter 

(mm) 

Stirrup spacing (mm) 

85 90 100 125 150 175 200 225 250 275 300 

8 1,183 1,118 1,006 0,805 0,671 0,575 0,503 0,447 0,402 0,366 0,335 

10 1,847 1,744 1,570 1,256 1,047 0,897 0,785 0,698 0,628 0,571 0,523 

12 2,659 2,511 2,260 1,808 1,507 1,291 1,130 1,004 0,904 0,822 0,753 

16 4,729 4,467 4,020 3,216 2,680 2,297 2,010 1,787 1,608 1,462 1,340 
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