НАУКИ О ЗЕМЛЕ, ЭКОЛОГИЯ, АГРОПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ

- 10. Gonzalez-Chavez, S. A. Lactoferrin: structure, function and applications / S. A. Gonzalez-Chavez, S. Arevalo-Gallegos, Q. Rascon-Cruz // Int. J. Antimicrob. Agents. 2009. V. 33. P. 301.
- 11. Jenssen, H. Antimicrobial properties of lactoferrin / H. Jenssen, R. E. W. Hancock // Biochimie. 2009. Vol. 91. P. 19–29.
- 12. Multifunctional roles of lactoferrin: a critical overview / P. P. Ward [et. al.] // Cell. Mol. Life Sci. 2005. Vol. 62. P. 2540–2548.

УДК 636.2.034:612.02

ЭФФЕКТИВНОСТЬ ТРАНСПЛАНТАЦИИ ЗАМОРОЖЕННО-ОТТАЯННЫХ ЭМБРИОНОВ

М.А. Сехина, С.М. Дешко УО «ГГАУ», г. Гродно, Беларусь

EFFECTIVENESS OF FROZEN-THAWED EMBRYO TRANSPLANTATION

M. Sekhina, S. Deshko

EI «GSAU», Grodno, Belarus

Аннотация. Изучена эффективность трансплантации замороженно-оттаяных эмбрионов в ОАО Гастелловское, Минского района в 2019–2023 годах.

Ключевые слова: криоконсервация, витрификация, эмбрион, бластоциста, морула.

Annotation. The efficiency of transplantation of frozen-thawed embryos was researched in Gastellovskoye, Minsk region in 2019–2023.

Keywords: cryopreservation, vitrification, embryo, blastocyst, morula.

Известно, что степень метаболических процессов и клеточные функции живых клеток резко снижаются в ответ на низкую температуру. Кроме того, при ультранизкой температуре биохимическая и метаболическая активность живых клеток практически прекращается, и они переходят в состояние покоя. Тем не менее, воздействие ультранизкой температуры на живые клетки вызывает в них сложные изменения, связанные с изменением физической структуры и биофизических процессов, что снижает их выживаемость после замораживания-оттаивания [1, 2].

Двумя основными причинами повреждения ооцитов и эмбрионов крупного рогатого скота являются физический ущерб, вызванный образованием кристаллов льда, и химический ущерб, возникающий в результате изменений внутриклеточных концентраций растворенных веществ [3]. Оба этих типа повреждений можно избежать или, по крайней мере, смягчить, контролируя снижение температуры и изменяя клеточные условия [4].

Исследования проводились в ОАО Гастелловское Минского района в 2019-2023 годах. В качестве доноров использовались лактирующие полновозрастные коровы и телки в возрасте 11–12 месяцев. В качестве реципиентов выступали телки в возрасте 14-16 месяцев с синхронизированным половым циклом по отношению к донорам.

Целью исследования являлось изучение эффективности криоконсервации эмбрионов, находящихся на разных стадиях развития.

Эмбрионы криоконсервировались при помощи метода витрификации. Принцип этого метода заключается в помещении эмбриона в концентрированный раствор криопротектора, затем перенос эмбриона на носитель «криотоп» и мгновенное погружение в жидкий азот [5].

В качестве криопротектора использовался раствор на основе культуральной среды с содержанием диметилсульфоксида (ДМСО), этиленгликоля (ЭГ), а также фетальной сыворотки крови КРС (FBS) и 0.5М сахарозы. Насыщение эмбрионов криопротектором проводили в 2 этапа. Сначала эмбрион переносили в эквелибрационный раствор, где он находился в

НАУКИ О ЗЕМЛЕ, ЭКОЛОГИЯ, АГРОПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ

течение 12 минут, с концентрацией 3Γ -7% и ДМСО-7%, и далее в витрификационный раствор, с концентрацией 3Γ -14%, DMSO-14% в течение 40–45 секунд.

Хранение осуществлялось в жидком азоте в сосуде Дьюара. Оттаивание эмбрионов проводили в растворе для девитрификации, состоящем из 0,5М сахарозы на основе культуральной среды. Носитель с эмбрионом извлекался из жидкого азота и мгновенно помещался в лунку с раствором для размораживания, предварительно подогретым до температуры +37 °C, на одну минуту, далее погружался в раствор для разбавления на 3 минуты и после этого дважды отмывался в базовой среде в течение 1 минуты.

В таблице 1, приведенной ниже, представлены результаты криоконсервации эмбрионов на разных стадиях развития.

Таблица 1 – Сравнительная эффективность трансплантации свежих и замороженооттаянных эмбрионов

оттанных эморионов					
	Показатели		Количество	Стельных	Уровень
Показатели		пересадок, п	реципиентов, п	стельности, %	
Морулы поздние					
свежие, всего			238	120	50,4
заморожено-оттаянные, всего			61	26	42,6
Бластоцисты					
свежие, всего			141	89	63,1
заморожено-оттаянные, всего			36	13	36,1
из них	Бл І	свежие	31	21	67,7
		заморожено-оттаянные	6	3	50,0
	Бл II	свежие	54	34	63,0
		заморожено-оттаянные	21	8	38,1
	Бл III	свежие	40	30	75,0
		заморожено-оттаянные	8	1	12,5

Анализ данных, представленных в таблице 1, показывает, что уровень приживляемости заморожено-оттаянных морул снижается по сравнению со свежими на $7.8\,$ п.п., а заморожено-оттаянных бластоцист по сравнению со свежими на $27\,$ п.п. Приживляемость заморожено-оттаянных морул на $6.5\,$ п.п. выше по сравнению с заморожено-оттаянными бластоцистами. Среди бластоцист наиболее высокие показатели приживляемости показали ранние бластоцисты (Бл I) – $50.0\,$ %, что выше по сравнению с поздними бластоцистами (Бл II) на $11.9\,$ п.п., экспандированными (Бл III) на $37.5\,$ п.п. По сравнению со свежими заморожено оттаянные бластоцисты снизили приживляемость следующим образом: ранние бластоцисты на $17.7\,$ п.п., поздние на $24.9\,$, экспандированные на $62.5\,$ п.п.

Таким образом, приживляемость деконсервированных морул снижается по сравнению со свежими на 7,8 п.п., а бластоцист на 27,0 п.п. Уровень стельности после трансплантации заморожено-оттаянных морул повышается по сравнению с бластоцистами на 6,5 п.п. Среди бластоцист наиболее высокую приживляемость показали ранние бластоцисты — 50,0 %, а наиболее низкую экспандированные — 12,5 %. Снижение составило 37,5 п.п., следовательно, наиболее пригодны для криоконсервации являются поздние морулы и ранние бластоцисты.

Список цитируемых источников

- 1. Arav, A. Cryopreservation of oocytes and embryos/ A. Arav // Theriogenology. 2014. Vol. 81 (1). P. 96–102.
- 2. Gordon, I. Reproductive technologies in farm Animals / I. Gordon // In vitro embryo production. 2017. Vol. 2. P. 100–101.
- 3. Varghese, A. C. Current trends, biological foundations and future prospects of oocyte and embryo cryopreservation / A. C. Varghese, Z. P. Nagy, A. Agarwal // Reproductive Biomedicine.
- 4. Martinez, A.G. Pregnancy rates after transfer of frozen bovine embryos: A field trial / A. G. Martinez, G. M. Brogliatti, A. Valcarcel // Theriogenology. 2002. Vol. 58. P. 63–72.
- 5. Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives / M. Moussa [et. al.] // Science China Life Sciences. 2014. Vol. 57 (9). P. 903–914.