БИОЛОГИЯ, МЕДИЦИНСКИЕ И ХИМИЧЕСКИЕ ТЕХНОЛОГИИ

Список цитируемых источников

- 1. Flavonoid: A review on Naringenin / P. V. Rao [et al.] // J. Pharmacogn. Phytochem. 2017, № 6. P. 2778–2783.
- 2. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review / Z. Memariani [et al.] // Pharmacol. Res. $-2021.-Vol.\ 171.-105264$ p.
- 3. Thermodynamic parameters and mitochondrial effects of supramolecular complexes of quercetin with β -cyclodextrins / T.V. Ilyich [et al.] // J. of Molec. Liquids. -2021. N = 325. -115184 p.
- 4. Комплексы включения кверцетина с β -циклодекстринами: ультрофиолетовая и инфракрасная спектроскопия, квантово-химическое моделирование / Т. В. Ильич [и др.] // Биофизика. -2020. Т. 65. № 3. С. 1-11.
- 5. Complexations of β -cyclodextrins with naringenin, naringin and catechin: thermodynamic parameters and regulation of mitochondrial functions in vitro / T.A. Kovalenya [et al.] // Phys. & Chem. Liquids. -2022. Vol. 60, N0 1. P. 1–11.
- 6. Nunnari, J. Mitochondria: In Sickness and in Health. Review / J. Nunnari, A. Suomalainen // Cell. 2012. Vol. 148. P. 1145–1150.
- 7. Stocks, J. The autoxidation of human red cell lipids induced by hydrogen peroxide / J. Stocks, T. L. Dormandy // British J. Haematol. 1971. Vol. 20, № 1. P. 95–111.
- 8. Protein measurement with the Folin phenol reagent / O. H. Lowry [et al.] // J. Biol. Chem. $-1951.-Vol.\ 193,\ No.\ 1.-P.\ 265-275.$
- 9. Akerman, K.E.O. Safranine as a probe of the mitochondrial membrane potential / K.E.O. Akerman, M. K. F. Wikström // FEBS Letters. 1976. Vol. 6, № 2. P. 191–197.
- 10. Oxygen-related processes in red blood cells exposed to tert-butyl hydroperoxide / I. K. Dremza [et al.] // Redox Report. 2006. Vol. 11, № 4. P. 185–192.
- 11. Kinetic model for Ca^{2+} -induced permeability transition in energized liver mitochondria discriminates between inhibitor mechanisms / S.V. Baranov [et al.] // J. Biol. Chem. 2008. Vol. 283, No. 2. P. 665–676.

УДК 547.729:544.31

ПОЛУЭМПИРИЧЕСКАЯ ОЦЕНКА ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ АЛКИЛЗАМЕЩЕННЫХ 1,3-ДИОКСОЛАНОВ

Е.В. Ковалёва¹, И.В. Гарист², Е.Н. Степурко³, А.В. Блохин³

¹Могилёвский государственный университет имени А.А. Кулешова, г. Могилёв, Беларусь ²Белорусский государственный университет пищевых и химических технологий, г. Могилёв, Беларусь

³Белорусский государственный университет, г. Минск, Беларусь

SEMI-EMPIRICAL EVALUATION OF THERMODYNAMIC PROPERTIES OFALKYL-SUBSTITUTED 1,3-DIOXOLANES

K.U. Kavaliova¹, I.V. Garist², E.N. Stepurko³, A.V. Blokhin³

¹Mogilev State A. Kuleshov University, Belarus ²Belarusian State University of Food and Chemical Technologies, Mogilev, Belarus ³Belarusian State University, Minsk, Belarus

Анномация. Предложена модифицированная инкрементная полуэмпирическая методика оценки величин термодинамических свойств циклических ацеталей ряда 1,3-диоксолана с одним и более алкильными заместителями, основанная на классификации инкрементов замены и внутримолекулярных 1,4- и более дальних взаимодействий различного типа. Найдены численные значения инкрементов замены и взаимодействий, которые могут быть использованы для прогнозирования величин свойств $\Delta_f H_m^o$ (ж., 298.15

БИОЛОГИЯ, МЕДИЦИНСКИЕ И ХИМИЧЕСКИЕ ТЕХНОЛОГИИ

К), $\Delta_f H_m^o$ (г., 298.15 K) и $\Delta_v H_m^o$ (298.15 K) не изученных экспериментально алкилзамещенных 1,3-диоксоланов с одним или несколькими алкильными группами.

Ключевые слова: диоксоланы-1,3 алкилпроизводные, диоксацикланы, аддитивность, полуэмпирические расчеты, энтальпии образования, энтальпии испарения.

Annotation. A modified incremental semi-empirical method for assessing the thermodynamic properties of cyclic acetals of the 1,3-dioxolane series with one or more alkyl substituents is proposed. The technique is based on the classification of substitution increments and intramolecular 1,4- and longer-range interactions of various types. Numerical values of substitution increments and interactions were found that can be used to predict the values of the properties $\Delta_f H_m^o$ (1., 298.15 K), $\Delta_f H_m^o$ (g., 298.15 K) and $\Delta_v H_m^o$ (298.15 K) of alkyl-substituted 1,3-dioxolanes not studied experimentally with one or more alkyl groups.

Keywords: dioxolane-1,3 alkyl derivatives, dioxacyclanes, additivity, semi-empirical calculations, enthalpies of formation, enthalpies of evaporation.

Пятичленные кислородсодержащие гетероциклические соединения, называемые 1,3-диоксоланами, весьма распространены в природных объектах и выполняют важную роль в протекании сложных биохимических процессов. Последнее время характеризуется значительным ростом интереса к 1,3-диоксолану и, в частности, к его различным производным, которые широко используются в нефтехимической, фармацевтической, пищевой, текстильной промышленности и др. Возрастающий интерес к производным 1,3-диоксолана связан со своеобразием их свойств, большой практической ценностью их применения в качестве растворителей, ингибиторов коррозии сталей, присадок к топливам, пластификаторов и стабилизаторов, при производстве термопластичных полимерных материалов [1]. Области применения диоксоланов постоянно расширяются и нуждаются в дальнейшем углубленном исследовании их физико-химических, биологических, термодинамических и других свойств. В связи с этим чрезвычайно актуальным становится привлечение методов химической термодинамики для обоснования и оптимизации технологий получения и переработки соединений ряда диоксолана.

Поскольку установление значений термодинамических свойств экспериментальными способами для большинства органических соединений из-за их многочисленности не представляется возможным, широкое применение при изучении взаимосвязи «структура — свойство», прогнозировании и планировании экспериментов нашли полуэмпирические методы расчета, основанные на аддитивных методах расчета. Традиционный аддитивный метод групповых вкладов (МГВ), несмотря на простую и понятную классификацию структурных фрагментов, недостаточно хорошо описывает термодинамические свойства циклических ацеталей, к которым относятся алкильные замещенные 1,3-диоксолана. Кроме учета ближних 1,2 и 1,3-внутримолекулярных взаимодействий, в МГВ обеспечивается лишь частичный учет более дальних 1,4-взаимодействий с помощью гош-поправки на взаимодействия заместителей.

Нами разработана полуэмпирическая методика определения величин термодинамических свойств 2-, 4-, 2,2-, 2,4-, 2,2,4-алкильных замещенных ряда 1,3-диоксолана при 298.15 К. Методика основана на аддитивном определении численных значений инкрементов замены атомов водорода в цикле и заместителях на соответствующие алкильные группы и полном учете 1,4-внутримолекулярных взаимодействий различного типа. Классификация внутримолекулярных взаимодействий предполагает различать 1,4-взаимодействия заместителей с ближайшими атомами цикла (1,4-(C,C) и 1,4-(C,O), 1,4-взаимодействия в заместителях, а также *цис*-взаимодействия заместителей в цикле. Величина свойства 1,3-диоксолана при температуре 298.15 К принималась известной.

По совокупностям известных экспериментальных величин свойств алкил-1,3-диоксоланов: $\Delta_f H_m^0$ (ж., г.), $\Delta_l^g H_m^0$, $C_{p,m}^0$ (ж.) (10 соединений) найдены численные значения 9 инкрементов замены и взаимодействий, которые могут быть использованы для моделирования величин энтальпий образования (ж., г.) энтальпий испарения, изобарных теплоем-костей (ж.) соединений рассматриваемого ряда при 298.15 К, не изученных 202

БИОЛОГИЯ, МЕДИЦИНСКИЕ И ХИМИЧЕСКИЕ ТЕХНОЛОГИИ

экспериментально. Относительные погрешности воспроизведения величин свойств расчетом находятся на уровне экспериментальных погрешностей исходных данных: $\Delta_f H_m^0$ (ж.) 0.14 %, $\Delta_l^g H_m^0$ 0.99 %, $\Delta_f H_m^0$ (г.) 0.05 % и $C_{p,m}^0$ (ж.) 1.5 %. Полученные нами методом низкотемпературной адиабатической калориметрии величины $C_{p,m}^0$ (ж., 298.15 K) 4-метил-1,3-диоксолана (154.1±0.6) [2] и 2,2,4-триметил-1,3-диоксолана (213.8±0.9) [3] хорошо воспроизводятся расчетом, их относительные погрешности не превышают 0.1 %.

Список цитируемых источников

- 1. Яновская, Л. А. Химия ацеталей / Л. А. Яновская, С. С. Юфит, В. Ф. Кучеров. М. : Наука, 1975. 275 с.
- 2. XXIII International Conference on Chemical Thermodynamics in Russia (RCCT-2022): book of abstracts, Kazan, Russia, Aug. 22–27, 2022. Kazan, 2022. 188 p.
- 3. Химическая термодинамика и кинетика : сб. науч. тр. XIII Междунар. науч. конф., Великий Новгород, 15–19 мая 2023 г. Великий Новгород, 2023. С. 106–107.

УДК 616.831-009.7-06:616.98:578.834.1SARS-CoV-2]-053.2/.6

ОЦЕНКА ВЛИЯНИЯ ГОЛОВНОЙ БОЛИ В ПОСТКОВИДНОМ ПЕРИОДЕ НА КАЧЕСТВО ЖИЗНИ ДЕТЕЙ И ПОДРОСТКОВ

М.М. Костеневич, Л.В. Шалькевич

Институт повышения квалификации и переподготовки кадров здравоохранения Белорусский государственный медицинский университет, г. Минск, Беларусь

ASSESSMENT OF THE EFFECT OF HEADACHE IN THE POSTCOVID PERIOD ON THE OUALITY OF LIFE OF CHILDREN AND ADOLESCENTS

M.M. Kostenevich, L.V. Shalkevich

Institute of Advanced Training and Retraining of Healthcare Personnel of the Belarusian State Medical University, Minsk, Belarus

Аннотация. После пандемии COVID-19 отмечается увеличение частоты головных болей, ухудшение психологического самочувствия и снижение физической активности в детской популяции. Проведено исследование с использованием детского опросника качества жизни ($PedsQL^{TM}4.0$) среди детей с синдромом постковидной головной боли.

Ключевые слова: головная боль, постковидный синдром, качество жизни.

Annotation. After the COVID-19 pandemic, there has been an increase in the frequency of headaches, a deterioration in psychological well-being and a decrease in physical activity in the child population. A study was conducted using the children's quality of life questionnaire (PedsQL4.0) among children with postcovoid headache syndrome.

Keywords: headache, postcovoid syndrome, quality of life.

Головные боли оказывают существенное негативное влияние на качество жизни людей всех возрастов [1]. Глобальное бремя головных болей на качество жизни было подчеркнуто в отчете Global Burden of Disease за 2019 год [2]. После пандемии COVID-19 отмечается увеличение частоты головных болей, ухудшение психологического самочувствия и снижение физической активности в детской популяции [3]. В немногочисленных исследованиях, посвященных изучению влияния головных болей на качество жизни детей, сообщается об их значительном влиянии на физическое состояние, психологическое благополучие и социальную активность детей в возрасте до 18 лет включительно [4,5]. Исследования по проблеме постковидных головных болей у детей школьного возраста в Республике Беларусь до последнего времени не проводились, что обуславливает актуальность данного исследования.