УДК 53.06:51-74

В. И. ГЛАДКОВСКИЙ, В. В. БОРУШКО Брест, БрГТУ

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ ТЕПЛОВЫХ УСЛОВИЙ РАБОТЫ МАТРИЦЫ СВЕТОДИОДОВ

Полупроводниковая светотехника в настоящее время является одним из приоритетных направлений развития науки и техники в большинстве развитых стран. В машиностроении и авиакосмической технике все более широко применяются мощные светодиодные источники. Эти полупроводниковые источники света обладают целым рядом преимуществ, среди которых можно назвать энергетическую эффективность, экологическую безопасность, компактность конструкции и достаточно низкие управляющие напряжения, обеспечивающие длительный срок службы устройства. Световая отдача светодиодов, которая определяется через отношение излучаемого источником светового потока к потребляемой им мощности, составляет в настоящее время величину порядка 100-120 Лм/Вт, что по разным оценкам в 6-8 раз эффективнее, чем у ламп накаливания, и в 3-4 раза выше, чем у огромного количества всевозможных энергосберегающих ламп. Кроме того, у светодиодов существуют и другие преимущества: достаточно высокая механическая прочность и надежность; высокий уровень электробезопасности; низкий уровень пульсаций светового потока; возможность миниатюрного исполнения; высокие экологические свойства, связанные с отсутствием компонентов, содержащих ртуть.

В то же время известно, что рабочие параметры светодиодов сильно зависят от температуры. При возрастании температуры прямое напряжение р-п перехода светодиода уменьшается. Если управляющее устройство не уменьшит подаваемое напряжение, то произойдет локальный перегрев, что может привести к появлению на печатной плате так называемых «горячих точек». Это, в свою очередь, вызывает ухудшение работоспособности, а то и разрушение всей схемы за счет ускорения нежелательных физикохимических процессов в материалах и конструкциях компонентов. Перечисленные выше факторы приводят к необходимости установления жестких ограничений на рабочий диапазон температур элементов, создания цепей температурной защиты и совершенствования способов отвода тепла. Поэтому моделирование теплового режима становится одним из важнейших этапов разработки и проектирования современных светодиодных матриц.

Для определения оптимальных тепловых условий работы матрицы светодиодов было проведено математическое моделирование. Компьютерная

реализация математической модели производилась с применением программного пакета COMSOL Multiphysics. Исследования проводились при различных значениях тока, проходящего через матрицу.

Объектом исследования являлась светодиодная матрица размерами $1,5\times0,6$ см², расположенная на алюминиевой подложке. Общий вид устройства показан на рисунке 1.

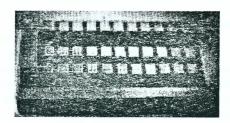


Рисунок 1 - Общий вид светодиодной матрицы

На подложку методом поверхностного монтажа посажены соединенные электрически последовательно тридцать три светодиода марки Philips-Lumileds LXZ1-PE01-0048. Заметим, что параллельное соединение светодиодов нежелательно, так как это увеличивает стоимость изделия и уменьшает его эффективность. Питание светодиодов осуществлялось постоянным током в диапазоне от 1 до 1000 мА. Для повышения эффективности охлаждения светодиодная матрица помещалась в стеклянную трубку с прокачиваемой по ней насосом охлаждающей жидкостью, в качестве которой использовался этиловый спирт.

В основе математической модели, описывающей распространение тепла по элементам системы, лежит уравнение теплопроводности:

$$\rho C_P = -k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right),$$

где C_p — теплоемкость, ρ — плотность, k — коэффициент теплопроводности, T — температура.

Для конкретизации математической модели были приняты следующие начальные и граничные условия:

- 1. Температура нижней поверхности алюминиевой подложки принималась равной начальной температуре: 293,15 К.
- 2. На внешней границе светодиодного кристалла GaN задавался тепловой поток q внутрь подложки.

- 3. На всех остальных внешних поверхностях задавались условия конвективного теплообмена: $-\nabla(-k\nabla T)=0$, где $\nabla=\frac{\partial}{\partial x}\vec{i}+\frac{\partial}{\partial y}\vec{j}+\frac{\partial}{\partial z}\vec{k}$ векторный дифференциальный оператор Гамильтона.
- 4. На границах между элементами задавался режим непрерывности теплового потока: $q_i = -k_i \nabla T_i$, где q_i тепловая мощность излучения конкретного элемента.

Модель светодиодной матрицы из 33 светодиодов с максимумом спектра излучения в зеленой области спектра (примерно 500 нм) была построена в пакете моделирования COMSOLMultiphysics. При разработке модели учитывались физические свойства всех слоев изделия: алюминиевого основания, медной фольги, диэлектрика, припоя и кристалла из нитрида галлия. Трехмерная тетраэдрическая сетка (состоит из 1×546×256 элементов на сгущающихся сетках) показана на рисунке 2.

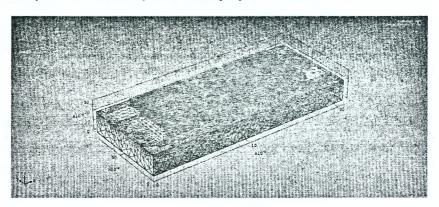
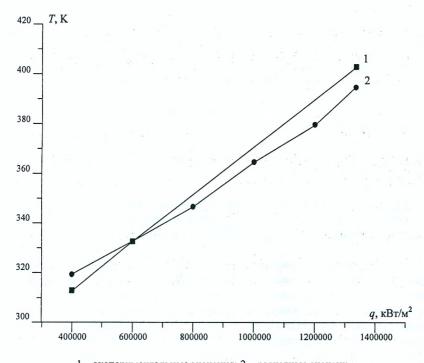



Рисунок 2 – Вид сетки в среде моделирования COMSOLMultiphysics

Численное решение математической модели было получено методом конечных элементов. В результате расчета программа выдает распределение температуры по элементам системы, что позволяет судить о температурном режиме устройства и выявить его «горячие точки».

Моделирование теплового распределения проводилось при различных величинах тока инжекции светодиодов. На рисунке 3 представлены зависимости максимальной температуры T в активной области светодиодов от тепловой мощности q, идущей на нагревание светодиодного кристалла, полученные в результате расчетов и экспериментально. Экспериментальный график строился по результатам опытов при трех значениях тока инжекции.

1 – экспериментальные значения; 2 – расчетные значения

Рисунок 3 — Сравнение экспериментальных и расчетных зависимостей температуры от тепловой мощности

Осуществив подбор табличных параметров слоев, получили расчетным методом результаты, достаточно близкие к экспериментальным [1]. Из сравнения графиков, построенных по экспериментальным и расчетным данным, следует, что зависимости достаточно близки друг к другу. Использование данного программного обеспечения для моделирования теплового режима работы светодиодов является вполне оправданным. Обычно для охлаждения используют радиатор, однако в нашем случае он не дает достаточного охлаждения. Для обеспечения более эффективного охлаждения матрицы логично использовать оба способа одновременно. Оценка этого способа охлаждения будет дана при дальнейшей работе над моделью.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Матрица светодиодов с принудительным охлаждением / А. В. Данильчик [и др.] // Полупроводниковые лазеры и системы на их основе : сб. науч. ст. 9-го белорус.-рос. семинара / НАН Беларуси, Ин-т физики им. Б. И. Степанова, РАН, Физ.-техн. ин-т им. А. Ф. Иоффе ; науч. ред. Г. П. Яблонский. – Минск : Ковчег, 2013. – С. 178–179.