механика грунтов, основания и фундаменты

УДК 624.1+624.131

Пойта П.С., д-р техн. наук, проф.; Клебанюк Д.Н.; Шведовский П.В., канд. техн. наук, проф. (БрГТУ, г. Брест)

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ЗОНЫ УПЛОТНЕНИЯ ГРУНТА ПРИ УПЛОТНЕНИИ ГРУНТОВОГО ОСНОВАНИЯ ТЯЖЕЛЫМИ ТРАМБОВКАМИ

Исследования, выполненные различными авторами [1 – 5], показывают, что наиболее целесообразно при уплотнении грунтовых оснований применение тяжелых трамбовок, обеспечивающих значительно большую остаточную осадку грунта в отпечатке при одних и тех же энергетических затратах (табл. 1).

Таблица 1

Масса трамбовки, т	1		1,5	2		2,5		3	4
Число ударов	6	12	4	6	3	2	3	4	3
Затраченная работа, т-м	12	15,4	12	15,4	12	10	15	15,4	15,4
Остаточная осадка, см	15,8	4,7	18,5	7,7	19,5	18,2	22	10,2	12,4

Зависимость величины остаточной осадки от массы трамбовки [3 - 5]

При этом отмечено, что увеличение массы трамбовки не только обеспечивает большую осадку, но и дает более равномерное распределение плотности сухого грунта по глубине уплотняемой толщи.

Не менее важен и тот факт, что достижение грунтом требуемой плотности возможно лишь при определенном числе ударов в одной точке, зависящем от статического давления на грунт, т.е. соотношения массы трамбовки и плошали ее основания.

Нормативными документами [6] проектирование уплотняемых грунтовых оснований рекомендуется осуществлять на основании связи между динамической и статической осадкой (нагрузкой) трамбовки:

$$S = k_{\nu} \cdot S_{st}, \tag{1}$$

где k_a – коэффициент динамичности при интенсивных ударах и

$$k_s = \sqrt{\frac{2 \cdot H}{S_{sr}}},\tag{2}$$

H — высота сбрасывания трамбовки, м; S_n — осадка трамбовки от действия статической нагрузки (P_n), определяемая согласно [6] — при определении динамической нагрузки (P) и по зависимости (3) — при определении осадки, диаметра трамбовки и глубины зоны уплотнения:

$$S_{st} = (1 - v^2) \cdot \omega \cdot d_{mp} \cdot (\frac{P}{E}); \qquad (3)$$

 υ — коэффициент поперечной деформации грунтов; ω — безразмерный коэффициент и ω =0,785; E — модуль деформации до уплотнения, кПа; d_{mn} — диаметр трамбовки, м; P — давление на грунт, кПа.

Однако в этих предложениях принято, что величина о постоянна и не зависит от напряженного состояния грунтового массива. Исследования [4; 6] и другие свидетельствуют, что эта величина переменна, а принятое в инженерной практике ее постоянство обусловлено только желанием не усложнять расчеты.

На рисунке 1 приведены этюры распределения вертикальных напряжений для различных величин о при одних и тех же технологических и инженерно-геологических условиях: пески мелкие маловлажные; плотность грунга до начала уплотнения – 15,0, после – 17,7 кН/м³; диаметр трамбовки – 0,7 м; давление на грунт по плоскости подошвы трамбовки – 25 кПа. При этом принято, что действие статической нагрузки на грунт от массы трамбовки соответствует в полной мере условиям штамповых испытаний.

Анализ изолиний напряжений $(\sigma_{_t}/P)$ % в грунтовом массиве по слубине $(h/d_{_{mp}})$ и в зоне влияния $(l/d_{_{mp}})$ показывает, что даже под центром трамбовки на глубине $h/d_{_{mp}}=1$ напряжения отличаются в два раза: соответственно $\sigma_{_{N=0.17}}=0.5P$ и $\sigma_{_{N=0.25}}=0.95P$.

Напряжения от вертикальной нагрузки, равномерно распределенной по площади круга, согласно [6] может определяться по зависимости:

$$\frac{\sigma_z}{P} = 1 - \exp(-\frac{d_{mp}}{8vz^2}),\tag{4}$$

а в случае, если подощва трамбовки не круглая, приняв, что вертикальная нагрузка распределяется по закону параболы, зависимость будет иметь вид:

$$\frac{\sigma_{z}}{P} = 1 - \frac{8vz^{2}}{d_{mp}^{2}} \cdot \left[1 - \exp(\frac{d_{mp}^{2}}{8vz^{2}}) \right]. \tag{5}$$

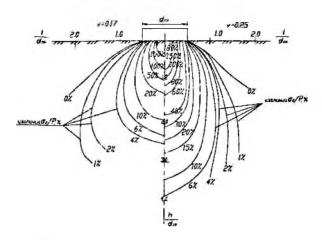


Рис. 1. Этгоры распределения вертикальных напряжений для раздичных величии U

Из уравнения (4) соответственно имеем:

$$\exp(-\frac{d_{mp}}{8vz^2}) = 1 - \frac{\sigma_z}{P}$$
 (6)

Учитывая, что абсолютное большинство тяжелых трамбовок круглые, нами по имеющимся данным [1-6] построены графики зависимссти $\sigma_i = f(d_{mp})$ и $\sigma_r = \phi(h,P)$, анализ которых позволяет отметить как наличие характерных связей напряжений по глубине, диаметра трамбовки и нагрузки на массив (массы трамбовки), так и близость значений σ_i , определенных полевыми испытаниями и теоретическими расчетами, при этом максимальное упрочняющее изменение структуры грунтов уплотняемого основания наиболее характерно для зоны $h/d_{mp} \approx 0,5-1,0$.

Для практического использования по данным теоретических расчетов построены графики зависимости $\sigma_z/P = f(P, h/d_{mp})$ для основных видов грунтов – пески, суглинки, глины (рис. 2).

Не менее спорным является и величина безразмерного коэффициента ω . Вероятностный подход и вероятностные расчетные схемы структуры грунта [6] позволяют относительно полно учесть при расчетах напряженно-деформированного состояния грунтового основания (НДС) неоднородность грунта, форму и взаимный контакт частиц, неравномерность взаимной передачи статических усилий на частицы и др. через коэффициент структуры грунта α .

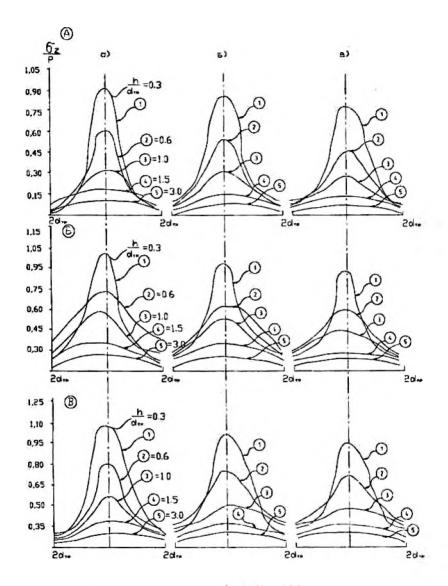


Рис. 2. Графики зависимости $\sigma_x/P = f(P, h/d_{exp})$ для песков (A). суглинков (Б), глин (В) при статических нагрузках: $a - (> 50 \text{ кПа}); \delta - (25 - 50 \text{ кПа}); s - (20 - 25 \text{ кПа})$

Коэффициент структуры грунта

$$\alpha = \frac{4ak^2}{b^2},\tag{7}$$

где a и b- средние размеры частиц; k- коэффициент неравномерности передачи усилий на частицы и

$$k = \frac{P_0}{P \cdot \sqrt{\frac{2}{\pi n}}};$$
 (8)

 P_0 и P- соответственно нагрузка на частицу по поверхности линии загружения и общая нагрузка на массив от трамбовки; n- количество контактных частиц.

В результате соответствующих иреобразований, с учетом результатов имеющихся лабораторных и полевых исследований штамповых испытаний [6], для $d_{mp}=1$ м, расчетные зависимости принимают вид:

$$\alpha = \frac{8k^2 \cdot d_{30}}{C_c^2}; \ k = \frac{\pi \cdot d_{mp}}{2\sqrt{2 \cdot C_p}}, \tag{9}$$

где C_c — коэффициент формы гранулометрической кривой и $C_v = d_{30}^2/(d_{60} \cdot d_{10})$; C_u — мера формы гранулометрической кривой и $C_u = d_{60}/d_{10}$; d_{60} , d_{30} , d_{10} — соответственно диаметры частиц, процентное содержание которых в грунте менее 60, 30, 10 %.

Величину значения ω при $d_{np}>1 M$ рекомендуется определять по графику $\omega=f(\alpha_{nn})$ (рис. 3), если $0.74\geq\alpha\geq0.81$.

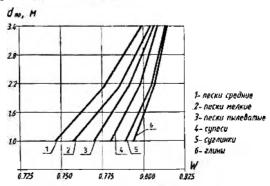


Рис. 3. График связи $\omega = f(d_{mo})$

Рассмотрим предложенную методику определения V и ω на конкретном примере из Приложения A [7]: пески средние, рыхлые; $\rho = 1.7 \, \text{г/см}^3$; $\omega = 14\%$; $E = 3000 \, \text{кПа}$; $P = 100 \, \text{кH}$; $d_{mp} = 1.3 \, \text{м}$; $\rho_d = 1.49 \, \text{г/см}^3$. Кривая гранулометрического состава приведена на рисунке 4.

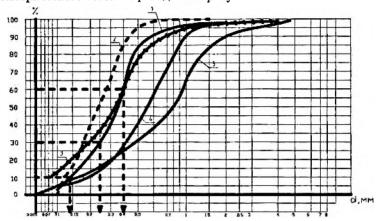


Рис. 4. Кривая гранулометрического состава грунгов на экспериментальных объектах: 1 — пески средние, средней прочности; 2 — пески мелкие, средней прочности; 3 — песчаные насыпные; 4 — песчаные насыпные; 5 — песчаные крупные, средней прочности

Имеем: $d_{10} = 0.14$ мм; $d_{30} = 0.25$ мм; $d_{60} = 0.37$ мм.

По зависимости (9) – $C_a = 2.64$; $C_a = 1.11$; k = 0.68; $\alpha = 0.74$.

Так как $\alpha = 0.74$, то ω принимаем равным 0.74. По графикам $\sigma_z/P = f(P, h/d_{mn})$ (см. рис. 2 A(a)) $\sigma_z/P = 0.61$.

Согласно зависимости (6) имеем:

$$\exp(-\frac{1.0}{8.0.05}) = 1 - 0.61 = 0.39$$

откуда v = 0.27,

Тогла

$$d_{mp} = \frac{2.55 \cdot 100 \cdot 8 \cdot (1 - 0.27) \cdot 0.74}{\frac{16.5 - 14.9}{16.5} \cdot 3 \cdot 3000} = 1.22 \,\mathrm{M}.$$

Принятый диаметр трамбовки $d_{mp}=1.3\,\mathrm{m}$ можно и оставить, но оптимальную деформативность и прочность оснований обеспечила бы трамбовка $d_{mp}=1.2\,\mathrm{m}$.

Для четырех экспериментальных объектов по предложенной методике были определены оптимальные конструктивные параметры тяжелых трамбовок (табл. 2).

Таблица 2 Сравнительный анализ методик (существующей и предложенной) по расчету конструктивных параметров трамбовок

Объект	Вид грунта	Расчетные параметры					Параметры трамбовки						
		k C,	C,	C.	α	V	no [7]			вофотав мынива оп			
				_			2	Ø	d _{mp} , M	ν	Ø	d_{mp} , M	
1	Пески средние, средней прочности	0,68	1,11	2,64	0,74	0.28	9,3	0,79	1,29	0,28	0,74	1,21	
2	Пески мелкие, средней прочности	0,76	1,04	2,16	0,77	0,27	0,3	0,79	1,29	9,27	0,77	1,38	
3	Пески насыпные	0,51	1,25	5,01	0,53	0,26	0,3	0,79	1,29	0,26	0,75	1,47	
4	Пески намывные	0,63	1,22	3,15	0,82	0.31	0,3	0,79	1,29	.0,31	0,82	1,47	

Выводы. Сравнительный анализ расчетов d_{mp} позволяет отметить результативность предложенной методики,

Литература

- Гарицелов, М.Ю. Интенсивное ударное уплотнение насыпи из тугопластичных грунтов при строительстве ГАЭС / М.Ю. Гарицелов, А.И. Юдкевич, М.С. Петров // Энергетическое строительство. – 1986. – № 6. – С. 15 – 19.
- Ляпов, Г.М. Определение динамической сжимаемости грунтов / Г.М. Ляпов // Основания, фундаменты и механика грунтов. – 1966. – № 3. – С. 27 – 29.
- Швец, В.Б. Уплотнение грунтов оснований тяжелыми трамбовками / В.Б. Швец. – М.: Росстройиздат, 1958 – 162 с.
- 4. Вуцель, В.И. Интенсивное динамическое уплотнение грунтов / В.И. Вуцель, Ю.К. Зарецкий, М.Ю. Гарицелов // Энергетическое строительство за рубежом. 1983 № 4. С. 39 41.

- Пойта, П.С. Оптимизация технологических параметров уплотнения грунтов тяжелыми трамбовками / П.С. Пойта // Вестн. БГТУ, Строительство и архитектура. – 2003. – №1(19). – С. 109 – 110.
- Кандауров, И. И. Механика зернистых сред и ее применение в строительстве / И. И. Кандауров. – Л.: Стройиздат, 1988 – 218 с.
- Грунтовые основания уплотненные тяжелыми трамбовками:ТКП 45-5.01-107-2008(02250) / Минархстройтельства Респ. Беларусь. – Минск. – 29 с.

УДК 624.154:624.131

Никитенко М.И. д-р техн. наук, проф.; Бойко И.Л., канд. техн. наук, доц. (БНТУ, г. Минск)

АНАЛИЗ ПРИЧИН АВАРИЙ ОГРАЖДЕНИЙ КОТЛОВАНОВ

Рассматриваются основные конструкции ограждений котлованов и проанализированы причины возникающих аварий на разных объектах.

Подпорные стены при котлованах глубиной до 3 м часто выполняют из сборных фундаментных блоков, а глубже 3 м уголкового типа железобетонных монолитных или сборных. В котлованах глубже 7 м устойчивость ограждений при боковом распоре грунта с пригрузкой на поверхности обеспечивают посредством требуемого количества ярусов расстрелов или анкеров с уменьшением глубины защемления стен ниже дна котлована.

В котлованах Минского метрополитена и других строительных объектов вблизи от зданий и сооружений применяют разные конструкции ограждений исходя из специфики инженерно-геологических и гидрогеологических условий. Наиболее распространен свайно-балочный вариант (так называемое берлинское крепление) в виде стальных двутавровых балок с забиркой из деревянных брусьев. Недостатки таких ограждений связаны с большим расходом стали для опор и древесины на забирку, а также с вредными динамическими воздействиями на окружающие строения при забивке двутавровых балок.

Ограждения котлованов в виде траншейных и свайных стен, устраиваемых методом «стена в грунте», лишены таких недостатков, причем для подземных сооружений могут выполнять также и несущие функции, а при заделке в водоунор и противофильтрационные. Проходка выработок под защитой глинистой суспензии исключает динамические воздействия, а сами работы можно выполнять вблизи от существующих строений.