УДК 519.2

д. А. ЖАРКОВА, И. Н. МЕЛЬНИКОВА

Брест, БрГУ имени А. С. Пушкина

УРАВНЕНИЯ КОЛМОГОРОВА ДЛЯ СТАЦИОНАРНОГО РЕЖИМА

Обозначим через p_i вероятность того, что система находится в состоянии S_i (ограничимся рассмотрением стационарного режима – когда вероятности p_i не зависят от времени). В качестве примера выберем систему, граф состояний которой дан на рисунке 1. Пусть λ_1 – интенсивность потока отказов первого устройства, а – λ_2 второго устройства; μ_1 – интенсивность потока окончаний ремонтов первого устройства, а μ_2 – второго устройства. Учитывая интенсивности потоков событий, получаем размеченный граф состояний, изображенный на рисунке 2.

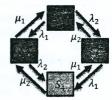


Рисунок 2

Представим себе, что имеется N одинаковых систем, описываемых графом состояний, изображенным на рисунке 2. Пусть $N\gg 1$. Число систем, находящихся в состоянии S_i , равно N_{p_i} (это утверждение тем точнее, чем больше N). Рассмотрим конкретное состояние, например S_i . Из этого состояния возможны переходы в состояния S_2 и S_3 — с суммарной вероятностью $\lambda_1 + \lambda_2$, отнесенной к единице времени. (В стационарном случае плотность вероятности есть вероятность за конечный промежуток времени Δt , деленная на Δt .) Таким образом, число уходов из состояния S_1 в единицу времени в рассматриваемом коллективе систем равно $Np_1(\lambda_1 + \lambda_2)$.

Здесь просматривается общее правило: совершаемое в единицу времени число переходов $S_i \to S_j$ равно произведению числа систем в состоянии S_i (в исходном состоянии) на вероятность перехода, отнесенную к единице времени. Мы рассмотрели уходы из состояния. Приходы в это состояние совершаются из S_2 и S_3 . Число приходов в S_1 в единицу времени равно $Np_2\mu_1 + Np_3\mu_2$. Поскольку рассматривается стационарный режим, то числа

уходов и приходов для каждого состояния должны быть сбалансированы. Следовательно, $Np_{\iota}(\lambda_1 + \lambda_2) = Np_2\mu_1 + Np_3\mu_2$.

Рассматривая баланс уходов и приходов для каждого из четырех состояний и сокращая в уравнениях общий множитель N, получаем следующие уравнения относительно вероятностей p_1 , p_2 , p_3 , p_4 :

Для состояния S_1 : $(\lambda_1 + \lambda_2)p_1 = \mu_1 p_2 + \mu_2 p_3$. Для состояния S_2 : $(\lambda_2 + \mu_1)p_2 = \lambda_1 p_1 + \mu_2 p_4$. Для состояния S_3 : $(\lambda_1 + \mu_2)p_3 = \lambda_2 p_1 + \mu_1 p_4$. Для состояния S_4 : $(\mu_1 + \mu_2)p_4 = \lambda_2 p_2 + \lambda_1 p_3$.

Нетрудно убедиться, что четвертое уравнение может быть получено сложением первых трех. Вместо этого уравнения воспользуемся уравнением $p_1+p_2+p_3+p_4=1$, которое означает, что система с достоверностью находится в каком-либо из четырех состояний. Таким образом, приходим к системе уравнений:

$$\begin{cases} (\lambda_1 + \lambda_2)p_1 = \mu_1 p_2 + \mu_2 p_3 \\ (\lambda_2 + \mu_1)p_2 = \lambda_1 p_1 + \mu_2 p_4 \\ (\lambda_1 + \mu_2)p_3 = \lambda_2 p_1 + \mu_1 p_4 \\ p_1 + p_2 + p_3 + p_4 = 1 \end{cases}$$

Таким образом, получены уравнения Колмогорова, записанные для системы, граф состояний которой показан на рисунке 2.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Вентцель, А. Д. Курс теории случайных процессов / А. Д. Вентцель. М. : Наука, 1975. 319 с.
- 2. Зуев, Н. М. Случайные процессы : задачник / Н. М. Зуев, Л. А. Хаткевич. Минск : БГУ, 2002.-34 с.