Исходя из изображения тепловизора, сам отопительный прибор не нагревался, хоть и на обратном трубопроводе заметно возросла температура, однако теплоотдача труб в сравнении с общей теплоотдачей системы незначительна (рисунок 1).

Можно сделать вывод, что рассмотренный эффект при температурах теплоносителя около 70°С не наблюдается. Установка различного оборудования для предотвращения остаточной теплопередачи нецелесообразна, и, вероятнее всего, не будет окупаема. Однако можно предположить, что в высокотемпературных системах отопления (около 95°С) явление остаточной теплопередачи будет более выраженным.

Список использованных источников:

- 1. Рекомендации по применению секционных радиаторов итальянского предприятия GLOBAL (вторая редакция) / В.И.Сасин, Г.А.Бершидский, Т.Н.Прокопенко, В.Д.Кушнир. М.: ООО «Витатерм», 2005.
- 2. Сканави А.Н., Махов Л.М. Отопление: Учебник для вузов. М.: Издательство АСБ, 2002.

Лопачук С.А.

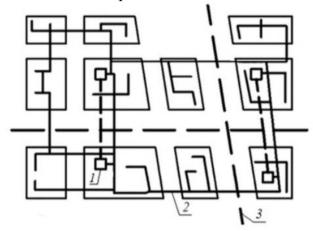
КЛАССИФИКАЦИЯ, МОДИФИКАЦИЯ И РАСЧЁТ СИСТЕМ ГАЗОСНАБЖЕНИЯ. ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ СИСТЕМ В ЗАВИСИМОСТИ ОТ МОДИФИКАЦИИ

Брестский государственный технический университет, студент факультета инженерных систем и экологии специальности теплогазоснабжение, вентиляция и охрана воздушного бассейна группы ТВ-15. Научный руководитель: Сальникова С.Р., ст. преподаватель кафедры теплогазоснабжения и вентиляции

Для газоснабжения городов и населенных пунктов применяются одно-, двух-, трех- и многоступенчатые системы газоснабжения.

Таблица 1. Классификация систем по давлению

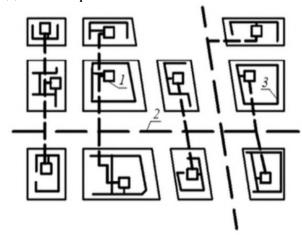
Классификация газопроводов по давлению, категория		Вид транспортируемого газа	Рабочее давление в газопроводе, МПа	Условное обозначение газопровода на чертежах, схемах и опознавательных знаках по ГОСТ 21.609-2014
Высокое	1a	Природный	Св. 1,2	
	1	Природный	Св. 0,6 до 1,2 включ.	Γ4
		СУГ (сжиженный природный газ)	Св. 0,6 до 1,6 вкл.	Γ4
	2	Природный и СУГ	Св. 0,3 до 0,6 вкл.	Г3
Среднее	_	Природный и СУГ	Св. 0,005 до 0,3 вкл.	Γ2
Низкое	_	Природный и СУГ	До 0,005 включ.	Γ1


Городские системы газоснабжения присоединяются к магистральным газопроводам через ГРС (газораспределительные станции). Связь между газопроводами различных давлений осуществляется через ГРП (газорегуляторные пункты). Выбор схемы газоснабжения (количество ступеней давления) производится исходя из следующих соображений: чем больше давление газа в газопроводе, тем меньше его диаметр и стоимость, но зато усложняется прокладка сети: необходимо

выдерживать большие расстояния до здания и сооружения, в силу чего не по всем улицам можно проложить сеть высокого давления. С увеличением количества ступеней давления в системе добавляются новые газопроводы и ГРП, но уменьшаются диаметры последующих ступеней давления.

По степени перевода на среднее или высокое давление различаются три модификации систем газоснабжения:

1) система с газорегуляторными пунктами (ГРП). В ней по сетям среднего (или высокого) давления транспортируют только основные потоки газа, а между бытовыми и мелкими коммунальными потребителями распределяют его по широко развитым СНД (рис. 1).


Газорегуляторные пункты имеют пропускную способность 1000–3000 м3/ч, радиус действия до 1500 м. Располагают их в отдельно стоящих отапливаемых зданиях. Средний диаметр подводящих газопроводов составляет 100–150 мм. По СВД транспортируют газ промышленным потребителям и сетевым ГРП.

1 – ГРП; 2 – газопровод низкого давления; 3 – газопровод среднего давления.
Рисунок 1. Схема газораспределительной сети с ГРП

2) система с квартальными регуляторными пунктами (КРП) (рис. 2).

Большую часть наружных СНД переводят на среднее или высокое давление. КРП оборудуют регуляторами малой производительности, соответствующей потребности примерно одного квартала; устанавливают их в шкафах или киосках, поэтому КРП имеют значительно меньшую стоимость, чем ГРП. Наружные сети представляют собой малоразветвленные, преимущественно тупиковые газопроводы, соединяющие отдельные здания квартала с КРП.

1 - ШРП; 2 - газопровод низкого давления; 3 - газопровод среднего давления. Рисунок 2. Схема газораспределительной сети с КРП (ШРП)

3) система с домовыми регуляторными пунктами (ДРП).

ДРП (рис. 3) используется с целью редуцирования транспортируемого газа по трубам, с более высокого или среднего давления на низкое. Автоматически поддерживает выходное давление в установленных пределах в независимости от изменения входного давления и расхода газа в самой системе газоснабжения для построек любого типа.

Рисунок 3. Домовой регуляторный пункт.

Экономическая эффективность систем в зависимости от модификации

Выбран условный поселок, состоящий из домов с разным уровнем потребления газа, и три схемы газораспределения, материал труб — полиэтилен:

- 1) с ГРП или шкафной установкой, общей для всего поселка, и сетями низкого давления (рис. 4);
- 2) со шкафными регуляторами на группу домов и сетями низкого и среднего давления (рис. 5);
- 3) с индивидуальными шкафными регуляторами и сетями среднего давления (рис. 6).

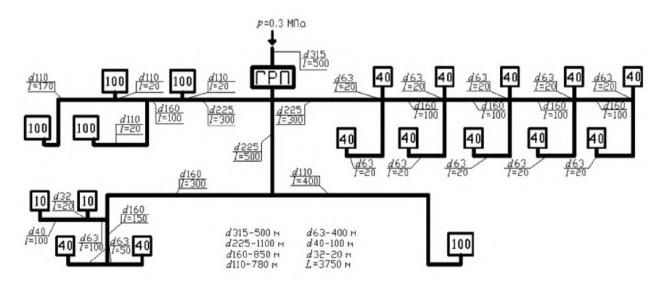


Рисунок 4. Схема 1 с ГРП или шкафной установкой, общей для всего поселка, и сетями низкого давления

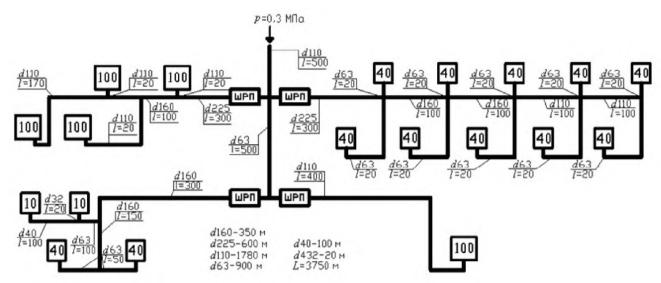


Рисунок 5. Схема 2 со шкафными регуляторами на группу домов и сетями низкого и среднего давления

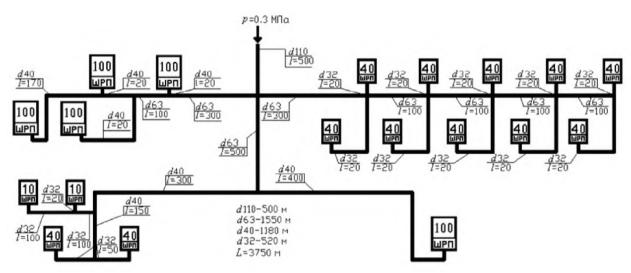


Рисунок 6. Схема 3 с индивидуальными шкафными регуляторами и сетями среднего давления

При одинаковом расходе газа, например 1000 м3/ч, и протяженности газопроводов 3750 м в соответствии с гидравлическим расчетом мы видим существенную разницу между диаметрами газопроводов в каждой схеме. Для сравнения вариантов примем схему 3 как наиболее экономичную, ее стоимость возьмем за единицу (100 %). Тогда стоимость систем по схемам 1 и 2 будет равна значениям, указанным в табл. 2. В результате проведения сравнительного анализа стоимости строительства по каждой из схем составлена в табл. 2.

Таблица 2. Значения показателей по сравниваемым вариантам

Показатели, %	Схема 1	Схема 2	Схема 3
Стоимость материалов	146	137	100
Стоимость строительно- монтажных работ	235	179	100
Всего с НДС и затратами	141	115	100

Капитальные вложения в газовые сети можно значительно снизить, если проектировать их на более высокое давление. Основным резервом снижения стоимости городских газовых сетей является перевод наружных сетей с низкого давления (СНД) на среднее (ССД).

Список использованных источников:

- 1. Классификация газопроводов по давлению [электронный ресурс] / режим доступа: https://gidrotgv.ru/klassifikaciya-gazoprovodov-po-davleniyu/. дата доступа: 04.03.2021г.
- 2. Домовой газорегуляторный пункт [электронный ресурс] / режим доступа: http://gks64.ru/drp.php. дата доступа: 04.03.2021г.
- 3. Комина, Г. П., Прошутинский, А. О. Гидравлический расчет и проектирование газопроводов: учебное пособие по дисциплине «Газоснабжение» для студентов специальности 270109 теплогазоснабжение и вентиляция / Г. П. Комина, А. О. Прошутинский; СПбГАСУ. СПб.,2010. 148 с.

Огиевич Н.В.

СТОИМОСТЬ ПОДДЕРЖАНИЯ МИКРОКЛИМАТА ДЛЯ БОЛЬЩИХ ПОМЕЩЕНИЙ ЦЕНТРАЛЬНЫМ КОНДИЦИОНИРОВАНЕМ ПРИ СХЕМЕ ВОХДУХОРАСПРЕДЕЛЕНИЯ СМЕШИВАНИЕМ

Брестский государственный технический университет, студенты факультета инженерных систем и экологии специальности теплогазоснабжение, вентиляция и охрана воздушного бассейна группы ТВ-15. Научный руководитель: Янчилин П.Ф., м.т.н., ст. преподаватель кафедры теплогазоснабжения и вентиляции

Рассмотрим помещение объемом 469,4 м³ и площадью 117,4 м² со свободной планировкой рассчитанное на 40 человек. С целью поддержания заданного микроклимата в рабочем помещении в программе Autodesk Revit была запроектирована система кондиционирования (рисунок 1), в состав которой входят: воздуховоды, воздухораспределители приточные и вытяжные, приточно-вытяжная установка.

Расчётное помещение имеет категорию 3а — помещение с массовым пребыванием людей, в которых люди находятся преимущественно в положении сидя без уличной одежды [1].

Расчетные параметры внутреннего воздуха в гражданских зданиях устанавливаются чаще всего из санитарно-гигиенических и реже их технологических требований в зависимости от назначения помещения и уровня требований к метеорологической обстановке в помещении. В качестве расчетных параметров наружного воздуха при проектировании СКВ температура и энтальпия принимаются по Приложению Е в соответствии с п. 5.14 [2].

Таблица 1. Расчётные параметры наружного воздуха

Период	Категория	Температура	Удельная энтальпия,	Скорость движения
года	помещения	воздуха, °С	кДж/кг	воздуха, м/с
ΧП	20	-26	-24,9	3,6
ТП	3a	25	51,0	2,8