1.3. Почвы и земельные ресурсы

Одним из важнейших видов природных ресурсов является почвенный покров, который обеспечивает 98 % продуктов питания человека. Велика также роль почвы в качестве основной среды обитания и жизнедеятельности всего разнообразия живых существ на Земле. Почвенные ресурсы являются слабо обновляемым природным ресурсом, поэтому одним из важнейших элементов системы рационального его использования является эффективность использования и охрана земель, защита почв от разрушения, деградации и загрязнения, снижения естественного плодородия, внедрение экологобезопасных систем земледелия, позволяющие минимизировать отрицательные антропогенные воздействия.

Общий земельный фонд Брестской области по состоянию на 1 января 2001 г. составляет 3279,2 тыс. εa , из которых большую часть занимают сельскохозяйственные угодья — 14,8 тыс. κm^2 (45 %); далее следуют лесные угодья — 12,1 тыс. κm^2 (37 %); территория, покрытая водой, составляет 3,6 тыс. κm^2 (11 %) и прочие земли занимают 2,3 тыс. κm^2 (7 %) (таблица 1.16) [Природная..., 2001].

Таблица 1.16. Структура земельного фонда Брестской области по видам земель

Вид земельных ресурсов	тыс. га	%
Всего сельскохозяйственных земель	1476,0	45,00
Лесных и прочих лесопокрытых	1209,8	36,89
Болот	287,8	8,78
Под водой	82,9	2,53
Под дорогами, прогонами, просеками, трубопроводами	65,2	1,99
Под улицами, площадями и другими местами общего поль-		
зования	20,1	0,62
Под постройками и дворами	57,0	1,74
Нарушенные	2,6	0,08
Другие	77,8	2,37
Общая площадь земель	3279,2	100,00

На одного жителя Брестской области в 2000 г. приходилось 0,99 ϵa сельскохозяйственных земель и 0,57 ϵa — пахотных земель. В таблице 1.17 приведено распределение земель по землевладельцам и землепользователям [Народное..., 2001].

Таблица 1.17. Земельный фонд Брестской области (в тыс. га)

		- <u>+</u>		В том	числе		
Землевладельцы и землепользователи		Сельскохозяйствен- ные земли	пахотные	под постоянными культурами	гонокосы	пастбища	Лесные земли
1. Земли в пользовании сельскохо-							
зяйственных предприятий и граждан	1849,9	1464,1	851,9		250,5	336,7	129,0
В Т.Ч.: КОЛХОЗОВ	1376,5	1052,8	580,8	3,5	198,1	267,7	119,2
COBXO3OB	208,1	173,7	111,2	1,7	25,6	34,8	8,2
межхозяйственных сельскохозяй-							
ственных предприятий	6,9	4,3	2,4	-	1,1	0,8	0,3
других с/х предприятий	29,0	14,8	10,3	0,2	2,3	2,0	1,1
фермерских хозяйств	7,6	6,7	4,4	0,1	1,2	1,0	0,2
земли в пользовании граждан	221,8	211,8	142,8	16,4	22,2	30,4	1
2. Земли запаса и лесохозяйственных предприятий	1045,5	6,2	1,8	-	3,4	1,0	883,6
3. Земли прочих землепользователей	387,7	5,6	2,1	0,2	2,5	0,8	197,2
Общая площадь земель (территория)	3279,2	1476,0	855,8	22,1	256,4	338,6	1209,8

Современной почвенный покров Брестской области начал формироваться во время последнего Позёрского оледенения. Хотя территория области и не была покрыта ледником, однако близкое его присутствие существенно повлияло на почвообразовательный покров через морозное выветривание, отток талых ледниковых вод и т. д. Все это определило состав материнских пород, которые в процессе почвообразования преобразовались в почвы, определило их механический состав и структуру. Подстилающие породы, на которых образовались почвы, представлены как правило рыхлыми крупнозернистыми породами, только на севере области небольшими массивами встречаются суглинистые флювиогляциальные и моренные отложения. Однако их площадь невелика, поэтому они не играют существенной роли в формировании почв области. В таблице 1.18 приведены площади основных типов почв [Природная..., 2002].

Почвы	%	тыс.га
Дерново-карбонатные	0,4	13,12
Дерново-подзолистые	22,6	741,1
Дерново-подзолистые заболоченные	26,3	862,43
Дерновые заболоченные	14,3	468,93
Торфяно-болотные	23,8	780,45
Пойменные	12,6	413,18
Bcero	100	3279,2

Таблица 1.18. Площади основных типов почв

Брестская область имеет в целом умеренно теплый климат, что способствует формированию дерново-подзолистых почв. Однако отдельные районы имеют существенные различия по количеству атмосферных осадков, температуре и влажности воздуха, испарению и их изменчивости по сезонам и годам. К тому же довольно сложный рельеф и пестрота почвообразующих пород, типичные для зоны ледниковой аккумуляции, создают большое разнообразие условий для развития почв.

Преобладающий промывной водный режима является определяющим фактором процессов почвообразования, хотя он и не является постоянным нисходящим током влаги с проникновением ее до грунтовых вод. Условия сквозного промачивания почвенного слоя создаются, как правило, лишь весной во время снеготаяния и частично в дождливую осень. Это снижает степень выраженности подзолистого процесса почвообразования и способствует формированию дерново-подзолистых почв. Совокупность факторов и условий почвообразования способствует развитию в основном подзолистого, дернового и болотного процессов в чистом виде или их сочетаний.

Болотный процесс почвообразования развивается в условиях избыточного увлажнения, особенностью которого являются анаэробные условия и восстановительные процессы. В анаэробных условиях уменьшается активность окислительных процессов, в связи с этим ослабевают и процессы минерализации органического вещества. На поверхности почвы накапливаются полуразложившиеся органические остатки в виде торфа, которому свойственна высокая влагоемкость и низкая аэрация при избыточном увлажнении, что ведет к дальнейшему развитию процессов заболачивания. Процессы заболачивания протекающие временно чаще всего обусловлены понижением рельефа, способствующим избыточному увлажнению почв только весной после снеготаяния, а также после длительных и обильных дождей в летне-осенний период. При избыточном увлажнении в почвах развивается процесс оглеения минеральной породы, характерной особенностью которого является превращение окисного железа в закисное, более подвижное соединение, которое окрашивает

почвы в синий цвет. Эти новообразования являются неопровержимыми признаками явлений временного избыточного увлажнения. При постоянном избыточном увлажнении ионы закисного железа вступают в реакцию с кремнеземом и глиноземом, образуя вторичные алюмоферросиликаты. Эти минералы имеют сизую, грязно-зеленоватую или голубоватую окраску, и при накоплении их в почве образуется глеевый горизонт. Часто болотные почвы образуются в связи с зарастанием и заторфованием водоемов (озер, заводей рек, прудов и т. п.). В результате развития болотного процесса почвообразования в таких условиях образуются торфяно-болотные почвы низинного или верхового типа.

Подзолистый процесс почвообразования развивается в основном под влиянием промывного водного режима, в результате которого формируется два основных слоя или горизонта: верхний – горизонт выноса (А) и нижний – горизонт отложения веществ (В). Глубже этих горизонтов залегает неизменная порода или подпочва (С).

На территории области подзолистый процесс протекает в сочетании с дерновым и болотным процессами почвообразования. Степень развития подзолистого процесса почвообразования тесно связана с характером почвообразующих пород, их строением и химическим составом. На суглинистых почвообразующих породах, характеризующихся устойчивым водным режимом, почвы развиваются интенсивно, и в них более четко формируются генетические горизонты. Эти почвы характеризуются повышенным содержанием физической глины, большой влагоемкостью и малой водопроницаемостью. Поэтому в подобных почвах происходит неглубокий, но интенсивный вынос из верхних горизонтов растворимых соединений, что приводит обычно к образованию укороченного профиля почвы. В связи с вымыванием карбонатов вглубь степень насыщенности основаниями в нижних горизонтах обычно возрастет до 80 % и более.

Примерно такая же закономерность в формировании дерново-подзолистых почв наблюдается и на глинах.

На супесчаных и песчаных почвообразующих породах, характеризующихся большей водопроницаемостью и динамичностью водного режима по сравнению с почвами на суглинках, весною и осенью вода проникает в толщу на значительно большую глубину. В этой связи горизонт выноса легкорастворимых минеральных соединений в них растянут и достигает иногда значительной мощности.

На территории области почв, развивающихся на однородных почвообразующих породах, не так много. В основном преобладают почвы на породах двух- и трехслойного строения, когда суглинки подстилаются супесями или песками, или наоборот. При таком строении почвообразующих пород развитие и мощность их горизонтов, а также свойства, определяющие плодородие почв, будут весьма различными. Почвы, характеризующиеся в той или иной степени проявлением подзолистого процесса, содержат мало гумуса, имеют кислую реакцию среды, в основном слабо обеспечены подвижным фосфором и обменным калием.

Анализ водного режима почв показывает, что наиболее интенсивно процессы почвообразования протекают в верхнем метровом слое почвы и особенно сильно в двух верхних генетических горизонтах (Ап и A_2). В связи с этим на суглинистых почвообразующих породах с обильным увлажнением формируются в основном сильнооподзоленные почвы с подзолистым горизонтом (A_2) палево-желтого цвета.

Дерновый процесс почвообразования развивается под воздействием травянистой растительности, органические остатки которой откладываются на поверхности почвы. При участии микроорганизмов мертвые остатки растительности разлагаются и обогащают верхний горизонт почвы перегноем. Дерновый процесс протекает в основном в сочетании с подзолистым. В результате сочетания этих двух процессов формируются и преобладают дерновоподзолистые почвы. Формирование гумусового горизонта в этих почвах протекает сложно, поскольку в процессе разложения растительных остатков образуются органические кислоты, в закреплении которых, наряду с полуторными окислами, большая роль принадлежит кальцию. Но в связи с тем, что в дерновоподзолистых почвах карбонаты выщелочены, закрепление гумуса происходит в основном полуторными окислами железа и алюминия, гумус имеет фульватный состав.

Наряду с перечисленными почвообразовательными процессами, зависящими главным образом от климатических факторов, состава почвообразующих пород, условий рельефа и растительности, большое влияние на развитие почв оказывают некоторые частные условия и производственная деятельность человека. С ними связано окультуривание почв, изменение их свойств под влиянием осушительных мелиораций, проявление ветровой и водной эрозий и др.

Почвенно-географическое районирование наиболее полно отражает особенность природной среды отдельных районов, т. к. при этом, помимо особенностей рельефа, климата и водного режима, учитывается и характер почвенного покрова территории.

Территория Брестской области занимает 43 % южной (Полесской) провинции и 10,3 % *центральной* (Белорусской) провинции [Почвы..., 1974].

Для более подробной характеристики территории, с учетом природных особенностей. *Полесскую провинцию* разделяют на два округа; юго-западный и юго-восточный.

Юго-восточный округ занимает 30,4 тыс. κm^2 и на 81,3 % размещен в Брестской области в пределах Припятского и Брестского Полесья. По рельефу территория округа — в основном, однообразная равнина с отдельными широкими (100...200 *м*) слабоприподнятыми гривами, сменяющимися еще более широкими понижениями. Местами встречаются приподнятые на 10...15 *м* сглаженные холмы донной морены, а нередко и перевеянные грядовобугристые пески. Особенно здесь выделяется водно-ледниковая равнина Загородье, расположенная между рр. Пиной и Ясельдой. Высота этой равнины над уровнем моря составляет 150...160 *м*, а над окружающими ее болотами — 10...15 *м*. Расчленение территории слабое как по густоте, так и по глубине.

Юго-западный округ характеризуется наименьшей в условиях Беларуси устойчивостью зимы. В 20...30 % зим в этой местности не образуется устойчивого снежного покрова. Средние многолетние данные показывают, что осадков здесь выпадает свыше 500 *мм* на протяжении года, а сумма среднесуточных температур выше +10 °C доходит до 2500 °C. Почвообразующими породами являются донно-моренные суглинки, водно-ледниковые супеси, а также древнеаллювиальные пески и торф низинного типа.

Особенности природных условий и, главным образом, почвенного покрова дают основание выделить в этом округе три почвенных района:

- 1) Брестско-Дрогичинско-Ивановский район дерново-подзолистых за-болоченных супесчаных почв;
- 2) Ганцевичско-Лунинецко-Малоритско-Столинско-Пинский район торфяно-болотных почв;
- 3) Туровско-Давид-Городокский район дерново-карбонатных и перегнойно-карбонатных суглинистых почв.

Для *Брестско-Дрогичинско-Ивановского района* в условиях выровненной поверхности, образованной водно-ледниковыми и донно-моренными отложениями, характерны дерново-подзолистые слабооподзоленные, местами слобоэродированные почвы на водно-ледниковых супесях, подстилаемых моренными суглинками, местами песками. Выровненность территории района создает условия для широкого развития болотного процесса почвообразования. Переувлажненные в разной степени почвы в Дрогичинском районе составляют 91,5 %, Ивановском — 88,4 %, Кобринском — 82,8 %, а заболоченность пахотных угодий в этих районах превышает 80 %. Сложность почвенного покрова определяет мелкую контурность угодий и почвенных выделов. В

этих районах на 100 га приходится в среднем 9,6 почвенного контура. По механическому составу почвы района подразделяются на суглинистые (5 %), супесчаные (78 %), песчаные (10 %), торфяные (7 %). Агрохимическая характеристика их следующая: кислые почвы составляют свыше 50 %, слабообеспеченые фосфором — около 70 %; калием — около 80 %. Средневзвешенное содержание в 100 ε почвы подвижных форм фосфора не превышает 7,9 ε жалия — 6,3 ε жг.

 Γ анцевичско-Лунинецко-Малоритско-Столинско-Пинский район торфяно-болотных почв занимает все Припятское Полесье на площади 23,8 тыс. κm^2 и на 77,4 % расположен в Брестской области. Данный район подразделяется на четыре подрайона:

- 1) Ганцевичско-Лунинецко-Житковичский подрайон торфяно-болотных почв низинного типа и дерново-подзолистых заболоченных почв, развивающихся на древне-аллювиальных песках;
- 2) Малоритский подрайон заболоченных дерново-подзолистых песчаных и торфяно-болотных почв;
- 3) Столинский подрайон дерново-подзолистых заболоченных и торфяно-болотных почв верхового типа;
- 4) Пинский подрайон пойменных торфяных и заболоченных дерновых почв.

Ганцевичско-Лунинецко-Житковичский подрайон характеризуется выровненностью рельефа, слабопологими плоскими покышениями, чередующимися с огромными заболоченными понижениями. Отдельные болотные массивы занимают десятки тысяч гектар. Заболоченность территории в Ганцевичском районе достигает 93 %, Лунинецком – 89,5 %, Житковичском – 67,8 %. Мелкогривистый характер рельефа обуславливает сильную мелкоконтурность угодий. В среднем на 100 га территории приходится 10,3 почвенных контуров. Поэтому без проведения мелиоративных работ увеличение контуров угодий и рациональное сельскохозяйственное использование земель здесь весьма затруднительно. Преобладающими являются торфяно-болотные почвы низинного типа, формирующиеся преимущественно на осоковых, гипново-осоковых торфах. Они образуют комплексы и мозаики в сочетании с заболоченными в разной степени дерново-подзолистыми слабооподзоленным и почвами, развивающимися на мощных рыхлых древнеаллювиальных песках, нередко подстилаемых донно-моренными отложениями. На повышенных элементах рельефа, где почвенно-грунтовые воды находятся на глубине 1,5 м и более, почвы начинают подвергаться ветровой эрозии. По механическому составу почвы района подразделяются на торфяно-болотные (45 %), песчаные (40 %), супесчаные (15 %). Среди болот, на песчаных «островах» нередко встречаются дерновые заболачиваемые карбонатные почвы, которые сформировались под воздействием богатых солями почвенно-грунтовых вод. Плодородие минеральных почв подрайона невысокое, они обладают повышенной кислотностью и мало содержат доступные для растений формы фосфора и калия.

Малоритский подрайон сложен преимущественно дерново-подзолистоглееватыми и глеевыми почвами, а также дерново-подзолистыми почвами с аллювиально-гумусным горизонтом, развивающиеся на водно-ледниковых и древнеаллювиальных песках, переходящие с глубиной 6,5 м в рыхлые мощные пески. Значительные площади заняты торфяно-болотными почвами низинного преимущественно развивающимися на осоковых тростниковых торфах. В некоторых местах среди песчаных лесных почв формируются торфяно-болотные почвы верхового типа на сфагново-пушицевых торфах (имшарины). По механическому составу почвы подразделяются на песчаные (70 %) и торфяные (30 %). Пахотные почвы подрайона обладают низким плодородием, кислые и слабо обеспеченные фосфором (7,9 мг) и калием (4,5 мг) па 100 г почвы. В Малоритском районе площади кислых почв составляют 52,6%, слабообеспеченных фосфором -53,4%; калием -71,8%.

Столинский подрайон характеризуется наличием низинных и больших площадей верховых болот. Среди минеральных почв преобладают дерновоподзолистые слабо- и среднеоподзоленные почвы, в различной степени заболоченные, развивающиеся на водно-ледниковых и древнеаллювиальных песках. На повышенных элементах Столинского плато эти почвы развиваются на рыхлых водно-ледниковых супесях, местами подстилаемыми моренными средними суглинками. В долинах рек и на надпойменных террасах формируются эвтрофные торфяно-болотные, а на водно-ледниковых отложениях, в огромных бессточных котловинах — олиготрофные торфяно-болотные почвы. По механическому составу почвы подрайона подразделяются на песчаные (55 %), торфяные (30 %) и супесчаные (15 %). Плодородие минеральных земель невысокое, среди пахотных угодий 47,5 % занимают кислые почвы с рН<5, слабообеспеченные фосфором — 51,4 %, калием — 67,5 %.

Пинский подрайон в основном сложен песчаными аллювиальными, нередко слоистыми, в отдельных понижениях заиленными почвами. Преобладают в пойме аллювиальные (пойменные) торфяно-болотные почвы, различающиеся как по мощности, так и по ботаническому составу торфов. Там, где пойма полностью заторфована, ботанический состав торфа как почвообразующей породы достаточно однороден — осоково-тростниковый и глиновоосоково-тростниковый. В притеррасных болотах торф ольхово-разнотравный,

высокой степени разложения и высокой зольности. На торфяно-болотные почвы необходимо вносить фосфорные и калийные удобрения, так как в торфах очень малое содержание минеральных веществ, необходимых для растений. Пойменные торфяно-болотные почвы известковать нецелесообразно, потому что сама кислотность торфа имеет иную природу, чем дерново-подзолистые почвы и высокую буферность среды.

Туровско-Давид-Городокский район дерново-карбонатных и перегнойно-карбонатных суглинистых почв – это наиболее плодородные почвы в условиях Беларуси. Образование этих почв в центре Полесья обусловлено деятельностью древних водных потоков, которые приносили во время паводков большое количество взвешенных частиц эродированных черноземных почв из Новоград-Волынской возвышенности. При слиянии вод. текуших с юга, с водами Припяти скорость течения уменьшалась, и создавались условия выпадения взвешенных частиц в древней пойме Припяти, которая постепенно превратилась в низкую надпойменную террасу. В настоящее время в пойме р. Горынь преобладают пойменные перегнойно-глееватые и глеевые почвы, где раскинулись наиболее ценные естественные сенокосы и пастбища, служащие хорошей кормовой базой для сельскохозяйственных и диких животных. Здесь расположены перегнойно-карбонатные и дерновые оподзоленные почвы, развивающиеся на средних легких древнеаллювиальных суглинках, местами супесях, подстилаемых карбонатными породами. Значительные площади, особенно по понижениям, переувлажнены в различной степени. Пашня размещается преимущественно на высокоплодородных дерновых перегнойно-карбонатных суглинистых, супесчаных почвах. Отдельные повышения и гряды сложены древнеаллювиальными песчаными породами. По механическому составу почвы разделяются на суглинистые (70 %), супесчаные (15 %), песчаные (10 %) и торфяные (5 %). Почвы данного района обладают наиболее высоким плодородием и не нуждаются в известковании и внесении органических удобрений.

Центральная (Белорусская) провинция занимает 88,3 тыс. км². Продолжительность вегетационного периода составляет 200 дней. За этот период сумма активных (+ 0 °C) температур достигает в среднем 2700 °C. За теплый период, когда температура становится выше +10 °C, сумма температур почти повсеместно достигает 2700 °C. Атмосферные осадки выпадают достаточно равномерно по всей территории. Количество осадков составляет 550...600 мм. Почвенный покров провинции сложен и многообразен как по особенностям строения почвообразующих и подстилающих пород, так и по проявлению почвообразовательного процесса. Здесь формируются дерново-подзолистые, дерновые почвы автоморфного и полугидроморфного водного питания, также

широко развиты почвы гидроморфные – торфяно-болотные и пойменные. Центральная провинция разделяется на три почвенных округа: западный, центральный, восточный.

Западный округ включает подрайон Гродненско-Волковыско-Лидский район дерново-подзолистых супесчаных и суглинистых почв, который частично расположен на северо-западе Брестской области. Здесь распространены моренные возвышенности и приподнятые моренные равнины. Платообразные Пружанская и Ляховичская равнины имеют широковолнистый рельеф. Характерной особенностью этого подрайона являются выходы на поверхность мела, иногда со значительной примесью кремнистого щебня и гравелистых песков. Почвообразующие породы возвышенностей представлены моренными среднезавалуненными суглинками и песчанистыми, засоренными камнями супесями. Выровненные пространства, где преобладает широковолнистый рельеф, покрыты водно-ледниковыми супесями и песками. Здесь преобладают дерновоподзолистые средне- и глубокооподзоленные почвы, развивающиеся на водноледниковых слабозавалуненных супесях, часто легких и средних моренных суглинках. Супеси в большинстве своем подстилаются в пределах 1 м суглинкам. В местах выходов на поверхность мела или карбонатных пород встречаются перегнойно-карбонатные почвы. По понижениям и ложбинам распространены почвы, которые в различной степени переувлажнены, поэтому на них широко развиты процессы заболачивания. По механическому составу все почвы округа можно разделить на супесчаные (65 %), суглинистые (30 %), песчаные (3 %) и торфяные (2 %).

Новогрудско-Несвижско-Слуцкий район дерново-подзолисто-палевых почв, развивающихся на пылеватых лессовидных суглинках, расположен на Новогрудской возвышенности и Барановичско-Слуцком лессовидном плато. Рельеф территории слабоволнистый, местами мелко холмистый, прорезан долинами водотоков. Высокое естественное плодородие дерново-подзолистых почв на лессовидных суглинках обусловило высокую степень освоения территории. В общей площади почв района суглинистые составляют 95 %, супесчаные – 3%, торфяные почвы – 2%.

Исходя из совокупности природных и антропогенных факторов, выделяют естественное (природное), искусственное, потенциальное и экономическое плодородие [Бачила, 2001]. Естественное (природное) плодородие зависит от природных факторов (количества органического вещества, влажности, структуры почвенного покрова). Искусственное плодородие создается и поддерживается усилиями человека (внесение удобрений, гидромелиорация). Потенциальное плодородие определяется как способность почвы при благопри-

ятных условиях обеспечивать растения всеми необходимыми элементами и поддерживать высокий уровень экономического плодородия, который учитывается, в первую очередь, через урожайность сельскохозяйственных культур, а также через другие стоимостные оценочные показатели (чистый доход, валовой продукт, цена земли и т. д.). Уровень экономического или эффективного плодородия учитывает экономическую оценку земли и бонитировку почв.

Качественная оценка (бонитировка) сельхозугодий колхозов и совхозов Брестской области по состоянию на 1 ноября 1968 г. по результатам первого тура бонитировки почв представлены в таблице 1.19 [Почвы..., 1974].

Вид угодий	Площадь,	Средний	Максимальный	Минимальный
	га	балл	балл среди обла-	балл среди обла-
			стей республики	стей республики
Сельхозугодия	1349034	35	42	35
			Минская	Брестская
в.т. числе пашня	740889	42	48	42
			Минская, Моги-	Брестская, Грод-
			левская	ненская
Залежи	2319	37	42	35
			Витебская	Гродненская
Многолетние	9127	43	53	43
насаждения			Минская	Брестская
Кормовые уго-	596699	27	30	23
дья			Минская	Витебская

Таблица 1.19. Бонитировка сельхозугодий Брестской области

Таким образом, естественное плодородие сельхозугодий в Брестской области одно из самых низких в республике. Отмечается разнокачественность пахотных земель в баллах для Брестской области в целом: для сельхозугодий — 35 и пашни — 42. При этом наибольший балл среди районов области составляет 47, наименьший — 37; разница в 10 баллов, по хозяйствам, соответственно, — 71; 23 и 48 баллов. Распределение пахотных земель Брестской области (740,9 тыс. га) по классам бонитета представлено в таблице 1.20 [Почвы..., 1974].

Таблица 1.20. Распределение пахотных земель Брестской области по бонитету

Бонитет, балл	<26	2630	3140	4150	5160	6165	>65
Площадь, тыс. га	3,6	26,1	279,7	347,6	74,8	7,6	1,5
Площадь, %	0,5	3,5	37,7	46,9	10,1	1,1	0,2

Впервые бонитировка почв сельхозугодий на территории республики и Брестской области была проведена в 1964 - 1969 гг. Однако в связи с изменением уровня плодородия почв в результате известкования, внесения органических и минеральных удобрений, проведением осущительных мелиораций и

культуртехнических работ качественное состояние земельных угодий со временем изменяется и нуждается в периодической оценке. Поэтому в 1974 – 1976 гг. был проведен второй тур бонитировочных работ, а в 1984 – 1985 гг. – третий. По результатам третьего тура бонитировочных работ земельные угодья в области распределились следующим образом. Общая площадь сельско-хозяйственных угодий составила 1466,4 тыс. га (44,7 % от общей площади территории области), пашни занимали 846,3 тыс. га (57,8 % от площади всех сельхозугодий), многолетние насаждения – 21,2 тыс. га (1,4 %), сенокосы – 253,5 тыс. га (17,3 %), пастбища 345,4 тыс. га (23,5 %) [Оценка..., 1989; Смеян, 1990].

Наиболее распространены дерново-подзолистые заболоченные почвы, которые занимают 26,3 % всей территории области. Второе место занимают торфяно-болотные почвы -23,9 %, далее следуют дерново-подзолистые -22,6 %, дерновые заболоченные -14,3 %, пойменные -12,6 % и дерново-карбонатные -0,4 % (таблица 1.21) [Оценка..., 1989; Смеян, 1990].

Таблица 1.21. Бонитировка почв сельскохозяйственных угодий по районам

	Сельскохозяй-		В том числе	
Район	ственные уго-	пашни	многолетние	кормовые
	дья		насаждения	угодья
Барановичский	34	36	32	30
Березовский	35	37	31	32
Брестский	32	33	33	30
Ганцевичский	32	33	28	31
Дрогичинский	33	34	30	33
Жабинковский	35	35	27	35
Ивановский	34	34	30	34
Ивацевичский	35	36	38	33
Каменецкий	35	35	33	33
Кобринский	33	35	32	30
Лунинецкий	31	32	23	31
Ляховичский	36	38	38	32
Малоритский	29	29	24	28
Пинский	32	35	28	30
Пружанский	34	34	30	33
Столинский	33	38	34	30
Итого по области:	33	35	32	31

Почвы области находятся в разной степени увлажнения и характеризуются как автоморфные, полугидроморфные, гидроморфные и заболоченные (таблица 1.22) [Оценка..., 1989; Смеян, 1990].

Таблица 1.22. Распределение пашни по степени увлажнения почв

	га	Удельный вес почв различного увлажнения в составе общей площади пашни, %							
	Tbic.	Автом	иорфные	Полу	угидро-	и, 70			
Район	Ш,			мор	фные	0	-H. X		
	Площадь пашни, тыс. га	всего	ıз них временно ıзбыт. ув лажн.	всего	из них гли- нистые и су- глинистые	эгнф d омофґи <u>Л</u>	Всего заболочен- ных и болотных почв		
Барановичский	80,5	89,7	21,6	8,8	0,8	1,5	10,3		
Березовский	38,6	51,6	33,2	39,6	-	8,8	48,4		
Брестский	42,3	68,3	24,4	27,8	-	3,9	31,7		
Ганцевичский	19,9	34,1	20,2	45,7	-	20,2	65,9		
Дрогичинский	43,1	40,9	31,7	53,2	-	5,9	59,1		
Жабинковский	28,6	60,0	29,4	37,7	-	2,3	40,0		
Ивановский	44,3	49,2	32,4	44,7	0,2	6,1	50,8		
Ивацевичский	54,3	46,6	20,3	28,0	-	25,4	53,4		
Каменецкий	68,1	84,6	17,7	13,7	-	1,7	15,4		
Кобринский	64,6	37,9	27,9	47,0	0,1	15,1	62,1		
Лунинецкий	40,6	24,5	12,7	52,3	-	23,2	75,5		
Ляховичский	38,5	72,3	28,6	19,5	0,2	8,2	27,7		
Малоритский	26,9	21,8	14,5	63,7	-	14,5	78,2		
Пинский	66,6	43,2	21,4	35,7	-	21,1	56,8		
Пружанский	76,1	73,3	26,0	14,6	-	12,1	26,7		
Столинский	43,3	44,1	21,8	49,7	-	6,2	55,9		
Итого по области:	776,4	56,6	23,9	32,7	0,1	10,7	43,4		

Одним из важнейших факторов получения высоких и устойчивых урожаев является обеспечение оптимального водно-воздушного режима корнеобитаемого слоя почв. Как показывают воднобалансовые расчеты в засушливые и острозасушливые годы при глубоком залегании уровней грунтовых вод на всех типах почв области наблюдается дефицит почвенной влаги. Так нормы водопотребности для орошения года 75 % обеспеченности для многолетних трав на минеральных почвах составляют $1670 \, m^3/2a$, на мелкозалежных торфяниках — $1600 \, m^3/2a$ и глубокозалежных торфяниках — $1330 \, m^3/2a$. В таблице $1.23 \,$ приведены дефициты водопотребления сельскохозяйственных культур на различных почвах для Брестской области [Укрупненные..., 1984]

Почвы	L'aver en ma	Обеспеченность, %				
ПОЧВЫ	Культура	50	75	95		
	Пастбища, многолетние травы	1220	1670	2210		
	Однолетние травы	970	1340	1870		
	Капуста поздняя	1080	1390	1870		
Минеральные	Картофель	780	1070	1600		
Мелкозалежные	Пастбища, многолетние травы	1130	1600	2040		
торфянники	Зерновые, яровые	420	700	1110		
Глубокозалежные	Пастбища, многолетние травы	860	1330	1770		
торфянники	Зерновые, яровые	240	520	930		

Таблица 1.23. Дефициты водопотребления сельскохозяйственных культур на различных почвах для Брестской области $(m^3/2a)$

Таким образом, возделывание сельскохозяйственных культур на землях области проблематично без проведения мелиораций земель. В таблице 1.24 представлена динамика мелиорированных земель области [Народное..., 2001].

Таблица 1.24. Динамика мелиорированных земель в сельскохозяйственных предприятиях (тыс. ϵa)

_		Годы									
Показатели	1966	1970	1975	1980	1985	1990	1995	2000			
Общая площадь мелио-	251,6	371,6	491,1	606,5	659,3	714,4	736,0	764,2			
рированных земель											
в том числе: осушенные	251,6	371,6	491,1	572,9	624,6	678,5	716,6	744,8			
орошаемые				33,6	34,7	35,9	19,4	19,4			
С-х. земли	219,5	332,4	447,2	553,5	622,8	675,6	700,2	707,1			
в том числе: осушенные	219,5	332,4	447,2	522,5	590,2	639,7	680,8	687,7			
орошаемые				31,0	32,6	35,9	19,4	19,4			
Пахотные земли	136,6	191,3	227,8	265,1	283,2	306,7	323,5	323,2			
в том числе: осушенные	136,6	191,3	227,8	259,4	274,7	294,3	313,0	312,7			
орошаемые				5,7	8,5	12,4	10,5	10,5			
Сенокосы и пастбища	61,5	125,4	208,7	278,0	309,4	368,5	375,6	382,0			
в том числе: осушенные	61,5	125,4	208,7	252,9	285,7	345,1	366,8	373,2			
орошаемые				25,1	23,7	23,4	8,8	8,8			
Удельный вес мелиори-											
рованных земель в общей	15,2	23,0	31,0	38,8	43,5	46,1	47,5	48,3			
земельной площади, %											

Общая площадь осушенных земель в области составляет 717981 $\it ca$, из общей площади осушения закрытым дренажем осушено 378840 $\it ca$ (52,8 % всех осушенных земель области), из них системы двустороннего действия занимают 280323 $\it ca$ (74 % всех земель, осушенных закрытым дренажем).

По типу почв осущенные земли распределились следующим образом: песчаные почвы — $210785\ \emph{гa}$; супесчаные — $171948\ \emph{гa}$; суглинистые, глинистые — $26767\ \emph{ra}$; торфяники средней мощности и мощные $(1\ \emph{m}\ \emph{u}\ \emph{t}\ \emph{o}\ \emph{n})$ — $55190\ \emph{ra}$; торфяники и торфяно-глеевые (с мощностью торфа $0,3...1,0\ \emph{m})$ — $156322\ \emph{ra}$ и

торфяники минерализованные (до 0,3 м мощности торфа) — 81373 га. При этом закустарено 4431 га, закочкарено — 156 га, вымочки занимают 49168 га и переувлажнено — 134306 га.

К началу 90-х годов на всей плошали осущенных сельскохозяйственных земель получено по 33 у/га, а на пашне – по 45 у/га кормовых единиц. С начала 90-х годов объемы финансирования на нужды мелиорации резко уменьшились. Построенные в 50 - 60 гг. прошлого столетия гидромелиоративные системы морально и физически устарели и требуют реконструкции. Средства на ремонтно-эксплуатационные работы выделялись в объеме 30 - 60% от потребностей. Это явилось причиной того, что открытые каналы заросли, вследствие чего урожайность сельскохозяйственных культур за 1996 - 1998 гг. составила 85 % к уровню 1999 г. Вызывает серьезную озабоченность экологическое состояние осущенных земель прежде всего с высоким удельным весом торфяных почв. Из-за нерационального использования торфяных почв мощность торфяной залежи сократилась, происходит интенсивная минерализация, что снижает плодородие почв. Кроме того, в результате сработки залежи торфа при интенсивном использовании осущенных торфяно-болотных почв произошло значительное увеличение антропогенно преобразованных почв, что привело к уменьшению глубин водоприемников проводящей и регулирующей сети и не обеспечению норм осущения.

Осущение и освоение заболоченных земель в широких масштабах существенно изменяют экологическую среду и особенно - естественный водный режим не только мелиорированных, но и прилегающих территорий. При этом степень и характер изменения водного режима и сопряженных с ним других природных факторов будут различными в зависимости от климатических особенностей того или иного района, сложности гидрогеологических условий и почвенного покрова. При значительной пестроте микро- и мезорельефа формируется обычно весьма мозаичный почвенный покров, представленный широким набором дерново-подзолистых, дерново-болотных, торфяно-болотных и пойменных почв. Почвенная пестрота, в свою очередь, приводит к типологически сложной структуре растительности, полностью отвечающей геоморфологическим и гидролого-климатическим условиям. Таким образом, складываются своеобразные ландшафты, слагающиеся из множества более дробных таксономических категорий - комплексов, урочищ, биогеоценозов, характеризующихся специфическими особенностями. Изменение условий увлажнения под влиянием мелиоративных мероприятий неизбежно приводит к формированию новых - культурных и окультуренных ландшафтов. При этом наибольшей трансформации подвергается, наряду с гидрологическим режимом, почвенный покров территории. Характер почвообразовательных процессов во многом определяется водным, тепловым и пищевым режимом. Водный режим как отдельных почвенных разновидностей, так и их сочетаний в естественных условиях регулируется климатическими факторами, главным образом, в виде периодически изменяющейся величины атмосферных осадков, определяющей формирование почвенных и грунтовых вод, отражением чего является колебание уровня последних.

В естественные закономерности изменения водного режима вносит существенный вклад осушительная мелиорация. Так ширина зоны заметного снижения уровней грунтовых вод может составлять от 1 до 7...8 км, в зависимости от геоморфологических и гидрогеологических условий. Уровень грунтовых вод на расстоянии 5...7 км может понизиться от 5 до 30 см. Степень изменения водного режима зависит от водно-физических свойств каждой почвенной разности, интенсивности осушения, погодных условий и сельскохозяйственного использования.

В результате гидромелиорации существенно меняется тепловой режим почв. Малая теплопроводность осушенных торфяных почв по сравнению с неосушенными приводит к тому, что поверхностный слой первых нагревается примерно на 3...4 °C больше. Высокие дневные и низкие ночные температуры на поверхности мелиорированных торфяных почв обусловливают значительную суточную амплитуду (40...50 °C). Суточные амплитуды температур торфяных почв наблюдаются лишь в верхнем слое – до 10 см, на больших глубинах они незначительны. Осушенные торфяно-болотные почвы вследствие меньшей теплоемкости и лучших условий воздухообмена промерзают глубже неосушенных, но зато меньше песчаных и супесчаных. На глубине узла кущения озимых культур торфяные почвы теплее, чем минеральные, а осушенные торфяники весной оттаивают на полную глубину и прогреваются на глубине пахотного горизонта позже, чем минеральные.

Гидромелиорация и сельскохозяйственное использование торфяноболотных почв накладывают отпечаток на их разложение и минерализацию органического вещества, особенно на мелкозалежных торфяниках. В связи с этим возникает опасность быстрой минерализации торфяных почв при использовании их в основном под пропашные культуры, что и наблюдается в настоящее время. После осущения торфяно-болотных почв темпы сработки торфа может достигать 2,5...3,5 см ежегодно. Одним из главных факторов разложения и преобразования органического вещества являются микроорганизмы, количество, состав и активность которых во многом определяет процесс минерализации. Понижение уровня грунтовых вод сопровождается возрастанием количества и активности бактерий и актиномицетов, усваивающих минеральный азот, нитрифицирующих бактерий и микроорганизмов, разрушающих гуминовые вещества торфа. При этом усиленно выделяется углекислота, в почве накапливаются нитраты, свободные аминокислоты и белки, повышается активность ряда почвенных ферментов и в то же время уменьшается содержание органического вещества и азота. Важнейшим принципом рационального использования мелиорированных торфяных почв является регулирование соотношения между накоплением и разрушением органического вещества торфа, что достигается при преимущественном возделывании многолетних трав и соответствующем этой культуре водном режиме.

При мелиорации дерново-болотных почв, формирующихся при активном участии минерализованных грунтовых вод, принципиальное значение имеет норма осушения. Опускание уровня грунтовых вод глубже 1 м и использование этих почв под пашню неизбежно приводят к нарастанию процессов оподзоливания. В дальнейшем особенно быстро идет разложение органического вещества и уменьшение запасов гумуса.

При научно-обоснованной мелиорации торфяно-болотных почв происходит резкое улучшение их качества. Так балл почвы с 30 возрастает до 80, т. е. в 2,7 раза, а качество избыточно увлажненных дерново-подзолистых суглинистых почв повышается в среднем на 20-25 баллов бонитета. Соблюдение в последующем прогрессивной системы земледелия обеспечивает дальнейшее повышение качества земель. Этот процесс протекает без дополнительных затрат на коренное улучшение земель.

На переувлажненных дерново-подзолистых почвах, легких по механическому составу, понижение уровня грунтовых вод до 1 *м* практически не меняет их качественной оценки, при более глубоком осушении качество таких почв ухудшается на 8 – 10 баллов [Почвы..., 1974].

Как показывают результаты инвентаризации, только 471373 $\it za$ осущенных земель Брестской области не требуют проведения дополнительных мероприятий. Для нормального функционирования гидромелиоративных систем области требуются следующие мероприятия: устройство полезащитных полос на протяжении 1566 $\it km$; устройство водоохранных полос протяженностью 11 $\it km$; проведение реконструкции их на площади 215475 $\it za$; проведение агромелиоративных мероприятий на площади 8759 $\it za$; культуртехнические мероприятия необходимо провести на площади 1807 $\it za$; выполнить облесение территории площадью 358 $\it za$; провести перезалужение 96762 $\it za$ территории; снять с учета осущенных земель 14935 $\it za$; перетрансформировать земельные угодья на площади 31135 $\it za$.

По данным инвентаризации гидромелиоративных систем, на территории области рекомендуется к снятию с учета осушенных земель с открытой сетью $12629\ \emph{гa}$, и $2306\ \emph{гa}$ с закрытым дренажем, в том числе пахотных земель $-2037\ \emph{гa}$, пастбищных $-1265\ \emph{гa}$, сенокосных $-3527\ \emph{гa}$, лесов и кустарников $-4851\ \emph{гa}$, торфоразработок $-716\ \emph{гa}$, болот $-11\ \emph{гa}$, дорог $-63\ \emph{гa}$, прочих $-2365\ \emph{гa}$. Кроме того, $9801\ \emph{гa}$ орошаемых земель также рекомендуется к снятию с учета, в т. ч. $2952\ \emph{гa}$ пахотных, $6561\ \emph{гa}$ пастбищ и $288\ \emph{гa}$ сенокосов.

Земли подлежащие снятия с учета как осушенные:

- земли бывших торфплощадок с неудовлетворительным в настоящее время водно-воздушным режимом почв и низким естественным плодородием, заросшие и зарастаемые древесно-кустарниковой растительностью (3421 га или 22,9 % от всех снятых с учета осушенных земель);
- подтопляемые земли, с не отрегулированными рекамиводоприемниками, прудами, местами выклинивания грунтовых напорных вод, заросшие кустарником и мелколесьем более чем на 60 % составляющие 3629 га (24,3 %);
- участки земель, расположенные в водоохранных зонах рек и водоемов, где невозможно достичь необходимой нормы осушения, составляющие 1136 га (7,6 %);
- земли, занятые под постройками, составляющие 2296 га (15,4%);
- выгоревшие торфяники, где экономически нецелесообразно восстановление почвенного плодородия, составляющие 401 га (2,7%);
- малопродуктивные песчаные земли, развеваемые ветром, составляющие 651 га (4,4 %);
- вторично заболоченный лес на осущаемых землях на площади 3299 га (22.0 %).

Подлежат переводу в менее продуктивные орошаемые земли на площади 9801 га. Основными причинами этого являются: истечение срока эксплуатации поливного, насосно-силового оборудования, трубопроводов, восстановление которых экономически нецелесообразно. Технико-экономические расчеты показали, что затраты на полное восстановление и реконструкцию оросительных систем при пастбищном и сенокосном использовании орошаемых земель не окупятся в нормативное время. Срок окупаемости составляет от 25 до 75 лет.

Характерной особенностью почв области является быстрая сработка органического вещества, уменьшение мощности торфа, что ведет к трансформации торфяных почв в органоминеральные. Основной причиной такого явления можно считать отношение хозяйств к использованию мелиорированных

земель. Из всех мелиорированных земель, требующих реконструкции, основная доля приходится на площади с преобладанием торфяников.

Происходящие процессы деградации торфяников требуют не только совершенствования структуры сельскохозяйственного использования этих земель, но и корректировки подходов к их мелиорации. Реконструкция старых мелиоративных систем должна проводиться с решением экологических вопросов, которым 30 – 40 лет назад уделялось мало внимания.

Экспертные оценки показывают, что общие потери органического вещества за период 1986-1995 гг. составили 43 $\mathit{мм}$ и торфяные месторождения на территории Брестской области занимают в нулевых границах 681601 $\mathit{гa}$ [Лихацевич, Мееровский и др., 1997], из которых мелиоративный фонд составляет 629,9 тыс. ra . Площадь осушенных торфяных почв, используемых в области как сельскохозяйственные угодья по результатам третьего тура инвентаризации земель составляла 202217 ra .

Большая часть торфяных почв имеет мощность до 1 *м*, а 90 % их подстилаются песчаными отложениями (таблица 1.25) [Лихацевич, Мееровский и др., 1997]. Значительные запасы органического вещества и азота, высокая влагообеспеченнсть позволяет считать торфяные почвы наиболее плодородными в условиях Беларуси.

Таблица 1.25. Площади торфяных почв в составе сельскохозяйственных угодий Брестской области

	В том числе с мощностью торфяного слоя, м										
Всего-	менее	0,3	0,30	0,30,5		0,51,0		1,02,0		более 2,0	
тыс. та	тыс. га	%	тыс. га	%	тыс. га	%	тыс. га	%	тыс. га	%	
202,2	29,1	14,4	51,5	25,5	73,0	36,1	37,8	18,7	10,8	5,3	

Изменения в структуре ландшафтов определяются типом осушенной почвы, причем, особой чувствительностью к внешним воздействиям отличаются осушенные торфяники. Темпы сработки торфяной залежи существенно зависят от направления ее сельскохозяйственного использования. Например, под многолетними травами скорость минерализации торфяной почвы в 3 раза ниже, чем под пропашными культурами [Лихацевич, Зеленовский, 2001]. Вместе с тем по данным института «Полесьегипроводхоз», до сегодняшнего дня в Брестской области под пропашными культурами находится 82,8 тыс. га, т. е. 39,9 % торфяников [Серков, Дубровский, 2001].

К настоящему времени в результате интенсивного сельскохозяйственного использования не менее трети осушенных торфяников уже утратили исходные генетические признаки и превратились в новые почвенные образова-

ния — так называемые антропогенно преобразованные органоминеральные почвы. В результате изменилось эколого-мелиоративное состояния агроландшафтов в направлении развития микро- и мезорельефа. Перепад отметок поверхности полей может достигать до 1,5...2,0 м постепенно приближая рельеф к подстилающим торф минеральным породам и как следствие этого процесса — уменьшение водопроницаемости почвы. С увеличением площади минеральных бугров растет почвенная пестрота, постепенно снижается водоаккумулирующая емкость почвенного профиля. В результате воздействия тяжелой почвообрабатывающей техники постепенно увеличивается прослойка между мелкозалежным торфяным слоем и подстилающим грунтом на границе минерального дна болота [Лихацевич, Зеленовский, 2001].

Для решения сложивших на сегодняшний день сложных проблем с осушенными мелкозалежными торфяниками нужны хорошие комплексные научные разработки с учетом требований сельского, лесного и водного хозяйства. При этом в зависимости от почвенных, гидрологических и природоохранных факторов необходимо научно обосновать дальнейшее использование осушенных участков водосборов. И особенно важно разработать дифференцированный подход к использованию осушенных земель на фоне формирования однородных по водному режиму технологических участков в системе севооборотов.

Мировой опыт подтверждает, что широкомасштабная гидромелиорация оказывает негативное воздействие на окружающую среду, но она может быть сведена к минимуму, при условии серьезного участия в решении этих вопросов со стороны государства. Что касается отрицательных оценок, возникающих время от времени в общественном сознании в отношении отдельных сторон коренных улучшений сельскохозяйственных угодий, то их можно, скорее всего, объяснить качеством информационной составляющей государства и общества, а также психологическими факторами [Сучков, 2001].

Отказ от регулирующей роли государства приводит к негативным последствиям. Так, значительные по объему гидромелиоративные работы были проведены в Литве. За 1945-1990 гг. было осушено 3 млн. га или более половины всех сельскохозяйственных угодий. В настоящее время процесс мелиорации заболоченных земель в этой стране практически прекращен. У государства нет средств, а мелкий фермер не в состоянии поддерживать гидромелиоративные системы в исправности. По выводам аграрного комитета литовского парламента, необходимо создавать новую правовую базу, которая выходила бы за рамки одной хозяйственной отрасли. Нужен также новый закон о мелио-

рации, законодательно закрепляющий все источники финансирования, создающие новые фонды и условия для кооперирования [Сучков, 2001].

Существенное уменьшение объемов осушения определило новые принципы мелиорации и использования мелиорированных земель. Главное внимание должно уделяться не освоению новых земель, а реконструкции морально устаревших и физически изношенных мелиоративных систем и повышению продуктивности мелиорированных земель за счет поддержания оптимального водного режима, своевременного проведения регламентных и ремонтных работ на мелиорированных системах, т. е. технически грамотной эксплуатации.

Одним из важнейших следует считать изучение системы эксплуатации и охраны земель, что невозможно без ведения земельного кадастра и эффективного землеустройства. Немаловажными факторами являются организация постоянного наблюдения и контроля за состоянием земель с целью предотвращения нанесения ущерба земельным ресурсам из-за ошибочных действий и некомпетентного вмешательства, а также проведение своевременных мероприятий по поддержанию высокого качества эксплуатируемых земель.

Несмотря на развитие различных форм собственности, в управлении земельными ресурсами ведущее место должно все-таки отводиться государству. Только на таком уровне возможно получение исчерпывающих сведений по структуре земельного фонда, выделение на этой основе земель со сложными природно-климатическими условиями, участков, подверженных деградации и уже деградированных земель. Важно учитывать фактор радиоактивного загрязнения, а также фактор воздействия промышленных и сельскохозяйственных объектов на земельные ресурсы. Большая роль должна отводиться организации и обустройству охраняемых (национальных парков, заповедников и заказников) и специфических территорий, требующих применения особых условий землепользования [Свитин, 2001].

1.4. Геология

Брестская область расположена в западной части обширной Восточно-Европейской платформы, простирающейся от Уральских гор (на востоке) до Карпат и Альп (на западе). Активные горообразовательные процессы в ее пределах закончились в самом начале геологического развития Земли (архейскую эру) около 2–4 млрд. лет назад, следы которых в виде вулканогенных пород обнаружены в самых низах геологического разреза региона. Вся последующая геологическая история развития области характеризуется динамизмом. Ее территория (или отдельные участки) то поднимались выше уровня мирового океана (период регрессии), то опускались ниже, превращаясь в его дно (период