МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Брестский государственный технический университет»

Кафедра высшей математики

Векторный анализ. Ряды. Элементы ТФКП

Методические указания по дисциплине «Высшая математика» для студентов технических специальностей

УДК 519.2.(076)

Настоящая разработка содержит методические материалы по разделам курса «Высшая математика», изучаемым в Ш семестре студентами технических специальностей. В ней приведены вопросы учебной программы, тексты аттестационных работ, решение типовых вариантов этих работ, типовые задачи. Разработка может быть использована студентами для успешного выполнения и защиты аттестационных работ, при подготовке к экзамену.

Составители: Денисович О.К., ассистент, Емельянова Г.Р., ассистент, Лизунова И.В., доцент.

Рецензент: В.Ф. Савчук, зав. кафедрой алгебры и геометрии Брестского государственного университета, к.ф.-м.н.

© Учреждение образования «Брестский государственный технический университет», 2002

I. Вопросы учебной программы на III семестр.

- 1. Поверхностные интегралы первого рода, их свойства и вычисление.
- 2. Поверхностные интегралы второго рода, их свойства и вычисление.
- 3. Скалярные поля. Линии и поверхности уровня.
- 4. Векторное поле. Векторные линии.
- 5. Производная по направлению.
- 6. Градиент и его свойства.
- 7. Поток вектора через поверхность.
- 8. Дивергенция векторного поля.
- 9. Формула Остроградского-Гаусса.
- 10. Циркуляция вектора.
- 11. Ротор векторного поля.
- 12. Формула Стокса.
- 13. Примеры простейших векторных полей.
- 14. Операторы Гамильтона и Лапласа.
- 15. Числовой ряд и его сумма.
- 16. Свойства сходящихся рядов.
- 17. Необходимый признак сходимости числового ряда.
- 18. Признак сравнения.
- 19. Признаки Даламбера и Коши.
- 20. Интегральный признак Коши.
- 21. Знакочередующиеся ряды. Признак Лейбница.
- 22. Знакопеременные ряды. Абсолютная и условная сходимости.
- 23. Свойства абсолютно и условно сходящихся рядов.
- 24. Функциональный ряд и его область сходимости.
- 25. Равномерная сходимость функционального ряда.
- 26. Признак Вейерштрасса.
- 27. Свойства равномерно сходящихся рядов.
- 28. Степенной ряд. Теорема Абеля.
- 29. Область сходимости степенного ряда.
- 30. Свойства степенных рядов.
- 31. Условия представления функции рядом Тейлора.
- 32. Разложение элементарных функций в ряд Тейлора.
- 33. Приложения степенных рядов.
- 34. Тригонометрический ряд Фурье для 2π -периодической функции.
- 35. Теорема Дирихле (без доказательства).
- 36. Ряд Фурье для четных и нечетных функций.
- 37. Ряд Фурье для функций, заданных на отрезке $[0;\pi]$.
- 38. Ряд Фурье для функций, заданных на отрезке длины 2l.
- 39. Основные типы уравнений математической физики.

- 40. Метод Даламбера.
- 41. Метод Фурье решения волнового уравнения.
- 42. Метод сеток для уравнения теплопроводности.
- 43. Решение задачи Дирихле методом конечных разностей.
- 44. Понятие функции комплексной переменной. Геометрическая интерпретация.
- 45. Предел и непрерывность функции комплексной переменной.
- 46. Основные элементарные функции комплексной переменной.
- 47. Производная функции комплексной переменной. Условия Коши-Римана.
- 48. Геометрический смысл модуля и аргумента производной аналитической функции.
- 49. Понятие конформного отображения.
- 50. Интеграл от функции комплексной переменной, его свойства и вычисление.
- 51. Интегральная теорема Коши.
- 52. Интегральная формула Коши. Формулы для производных.
- 53. Ряд Тейлора в комплексной области.
- 54. Ряд Лорана.
- 55. Нули и изолированные особые точки аналитической функции.
- 56. Вычет аналитической функции в изолированной особой точке.
- 57. Вычет в бесконечно удаленной точке.
- 58. Основная теорема о вычетах.
- 59. Применение вычетов к вычислению интегралов.

II. Перечень типовых задач по темам семестра

- 1. Дана функция $u(x,y,z)=3x^2y+\frac{3z^2}{y}$, точка $M_0(-2,3,1)$ и вектор $\vec{a}=(-1,2,-2)$. Найти:
 - 1) направление наискорейшего возрастания функции в точке M_0 ;
 - 2) наибольшую скорость изменения функции u(x, y, z) в точке M_0 ;
 - 3) скорость изменения функции u(x,y,z) в точке M_0 в направлении вектора \vec{a} .
- 2. Вычислить поток векторного поля $\vec{a}(M) = (x+z)\vec{i} + (2y-x)\vec{j} + z\vec{k}$ через внешнюю поверхность пирамиды, образуемую плоскостью (p): x-2y+2z=4 и координатными плоскостями двумя способами:
 - 1) используя определение потока;
 - 2) с помощью формулы Остроградского-Гаусса.

- 3. Вычислить циркуляцию векторного поля $\vec{a}(M) = (x-2z)\vec{i} + (x+3y+z)\vec{j} + (5x+y)\vec{k}$ по контуру треугольника, полученного в результате пересечения плоскости (p): x+y+z=1 с координатными плоскостями при положительном направлении обхода относительно нормального вектора $\vec{n} = (1,1,1)$ этой плоскости двумя способами:
 - 1) используя определение циркуляции;
 - 2) с помощью формулы Стокса.
- 4. Проверить, является ли векторное поле $\vec{a}(M) = (y+z)\vec{i} + xy\vec{j} xz\vec{k}$ потенциальным и соленоидальным.
- 5. Исследовать на сходимость

$$a) \sum_{n=1}^{\infty} \frac{2n}{n^2 \sqrt{n} + 7}; \, \delta) \sum_{n=1}^{\infty} \frac{n!}{5^n (n+3)!}; \, \epsilon) \sum_{n=1}^{\infty} \left(\sin \frac{\pi}{5n+1} \right)^n; \, \epsilon) \sum_{n=1}^{\infty} \frac{1}{(n+1) \ln^2 (n+1)}.$$

6. Исследовать на абсолютную и условную сходимость

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+5}{3^n}$$
; δ) $\sum_{n=1}^{\infty} \frac{(-1)^2}{2n-1}$.

7. Найти область сходимости

a)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n (n+3)}$$
; δ) $\sum_{n=1}^{\infty} \frac{n!(x+10)^n}{n^n}$; ϵ) $\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^{2n}}{2n}$.

8. Вычислить приближенно с точностью 0,001

a)
$$\sqrt{1,3}$$
, 6) e^2 , 8) $\cos 2^{\circ}$, 2) $\lg 7$.

9. Вычислить приближенно с точностью 0,001

a)
$$\int_{0}^{0.25} \ln(1+\sqrt{x}) dx$$
; δ) $\int_{0}^{0.5} \frac{arctg \, x}{x} dx$; ϵ) $\int_{0}^{1} \sin x^{2} dx$.

10. Разложить в ряд Фурье периодическую функцию f(x), заданную на отрезке $[-\pi;\pi]$.

$$f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ x - 1, & 0 \le x \le \pi. \end{cases}$$

11. Разложить в ряд Фурье по косинусам функцию

$$f(x) = \begin{cases} x, & 0 \le x \le 1, \\ 2 - x, & 1 < x \le 2. \end{cases}$$

- 12. Выяснить, является ли аналитической функция
- a) $w = 2z^3 3z^2 + 1$; 6) $w = |z| \cdot \text{Re } \overline{z}$.
- 13. Найти коэффициент растяжения и угол поворота в точке $z_0 = -i$ при отображении $w = f(z) = x^2 y^2 + 2xyi$.
- 14. Восстановить аналитическую в окрестности точки $z_0 = 0$ функцию f(z) = u(x, y) + iv(x, y), если $u(x, y) = x^3 3xy^2 x$ и f(0) = 0.
- 15. Разложить функцию $f(z) = \frac{1}{z(z+1)}$ в ряд Лорана в кольце 0 < |z| < 1.
- 16. Вычислить $\int_{\gamma} z \cdot \overline{z} dz$; $\gamma : (|z| = 1, \text{ Im } z = 0)$.
- 17. Вычислить $\int\limits_{\gamma} (3z^2 + 2z) \, dz$, γ дуга параболы $y = x^2$ между точками z = 1 + i и z = 0.
- 18. Вычислить

a)
$$\oint_{|z|=2} (3\sin 2z + z^3) dz$$
; $\oint_{|z-2|=3} \frac{\cos^2 z + 1}{z^2(z+\pi)} dz$; $\oint_{|z-3|=1} \frac{\sin 3z + 2}{z^2(z-\pi)} dz$.

19. Найти вычеты функции относительно всех изолированных особых точек $f(z) = \frac{z^2 + z - 4}{z^2(z - 1)}$.

III. Теоретические вопросы к защите AP «Ряды»

- 1. Какой ряд называется сходящимся?
- 2. Что называется суммой ряда?
- 3. Формулировка необходимого признака сходимости ряда.
- 4. Формулировка признаков сравнения.
- 5. Формулировка признака Даламбера.
- 6. Формулировка радикального признака Коши.
- 7. Формулировка интегрального признака Коши.
- 8. Формулировка признака Лейбница.
- 9. Какой ряд называется абсолютно сходящимся, а какой условно?
- 10. Что называется областью сходимости функционального ряда?
- 11. Запись ряда Фурье для функции, заданной на $[-\pi;\pi]$.
- 12. Запись ряда Фурье для функции, заданной на [-l;l].

IV. Тексты вариантов аттестационной работы «Ряды»

Задание 1. Доказать сходимость ряда и найти его сумму

1.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 + n - 2}$$
2.
$$\sum_{n=2}^{\infty} \frac{6}{4n^2 - 9}$$
3.
$$\sum_{n=1}^{\infty} \frac{6}{9n^2 + 6n - 8}$$
4.
$$\sum_{n=0}^{\infty} \frac{2}{4n^2 + 8n + 3}$$
5.
$$\sum_{n=1}^{\infty} \frac{3}{9n^2 + 3n - 2}$$
6.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+3)}$$
7.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)(n+3)}$$
8.
$$\sum_{n=3}^{\infty} \frac{1}{n(n^2 - 4)}$$
9.
$$\sum_{n=2}^{\infty} \frac{1}{n(n^2 - 1)}$$
10.
$$\sum_{n=3}^{\infty} \frac{4}{n(n-1)(n-2)}$$
11.
$$\sum_{n=1}^{\infty} \frac{4}{4n^2 + 4n - 3}$$
12.
$$\sum_{n=1}^{\infty} \frac{3}{9n^2 - 3n - 2}$$
13.
$$\sum_{n=1}^{\infty} \frac{3}{9n^2 + 3n - 20}$$
14.
$$\sum_{n=1}^{\infty} \frac{8}{16n^2 + 8n - 15}$$
15.
$$\sum_{n=1}^{\infty} \frac{8}{16n^2 - 8n - 15}$$
16.
$$\sum_{n=1}^{\infty} \frac{6}{9n^2 + 12n - 5}$$
17.
$$\sum_{n=1}^{\infty} \frac{5}{25n^2 - 5n - 6}$$
18.
$$\sum_{n=1}^{\infty} \frac{5}{25n^2 + 5n - 6}$$
19.
$$\sum_{n=2}^{\infty} \frac{24}{9n^2 - 12n - 5}$$
20.
$$\sum_{n=1}^{\infty} \frac{9}{9n^2 + 21n - 8}$$
21.
$$\sum_{n=1}^{\infty} \frac{12}{36n^2 + 12n - 35}$$
22.
$$\sum_{n=1}^{\infty} \frac{12}{36n^2 - 12n - 35}$$
23.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
24.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$$
25.
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$
26.
$$\sum_{n=1}^{\infty} \frac{3}{n \cdot (n+1)}$$
27.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 + n - 2}$$
28.
$$\sum_{n=3}^{\infty} \frac{3}{n^2 - n - 2}$$
29.
$$\sum_{n=2}^{\infty} \frac{6}{9n^2 - 6n - 8}$$
30.
$$\sum_{n=2}^{\infty} \frac{4}{4n^2 - 4n - 3}$$

Задание 2. Исследовать на сходимость ряды

1.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)};$ $\delta)$ $\sum_{n=2}^{\infty} \frac{n+1}{2^n(n-1)!};$ $\epsilon)$ $\sum_{n=1}^{\infty} \frac{1}{(6n-2)\ln^2(3n+1)}.$

2.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{n}{n^2 + 2}$; $\delta)$ $\sum_{n=1}^{\infty} \frac{2^{n+1}(n^3 + 1)}{(n+1)!}$; δ $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(7n+7)}$.

3.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{n-1}{(n+3)n};$ $\delta)$ $\sum_{n=1}^{\infty} \frac{n!}{(3n+5)\cdot 2^n};$ $\epsilon)$ $\sum_{n=1}^{\infty} \left(\frac{4n+1}{7n-3}\right)^{2n^2+1}.$

5.
$$a) \sum_{n=1}^{\infty} \frac{2n-1}{n^2(n+2)};$$
 $b) \sum_{n=1}^{\infty} \frac{3^{n-1}n}{(4n+1)};$ $b) \sum_{n=2}^{\infty} \frac{1}{n \ln n \cdot \ln(\ln n)}.$

6.
$$a) \sum_{n=1}^{\infty} \frac{3n+1}{(n+1)(5n-3)}; \qquad 6) \sum_{n=1}^{\infty} \frac{n^n}{(n+1)!}; \qquad e) \sum_{n=1}^{\infty} \left(\frac{3n-2}{2n+3}\right)^{\frac{n+1}{2}}.$$

7.
$$a) \sum_{n=1}^{\infty} \frac{1}{5n-2}; \qquad 6) \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}; \qquad 6) \sum_{n=1}^{\infty} \left(\frac{2n-1}{3n+1}\right)^{\frac{n}{2}}.$$

8.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}};$ $\delta)$ $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 ... (2n-1)}{3^n (n+1)!};$ $\epsilon)$ $\sum_{n=1}^{\infty} \frac{4^{n+1}}{\left(1 + \frac{1}{n}\right)^{n^2}}.$

9.
$$a) \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+3}}; \quad \delta) \sum_{n=1}^{\infty} \frac{3^n}{(n+2)!4^{n-1}}; \quad \epsilon) \sum_{n=1}^{\infty} \frac{1}{n \ln 5n}.$$

10. a)
$$\sum_{n=1}^{\infty} \frac{6n-2}{3n+1}$$
; δ) $\sum_{n=1}^{\infty} \frac{4^{2n-1}(n+2)}{(n-1)!}$; ϵ) $\sum_{n=1}^{\infty} \frac{1}{5^n} \left(1 + \frac{1}{n}\right)^{n^2}$.

11.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{2n+1}{4n^2-7};$ $\delta)$ $\sum_{n=1}^{\infty} \frac{3^n(5n-2)}{n^n};$ $\epsilon)$ $\sum_{n=1}^{\infty} \left(\frac{5n-1}{7n+2}\right)^{2n+3}.$

12.
$$a) \sum_{n=1}^{\infty} \frac{1}{16n^2 - 5n + 1};$$
 $b) \sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 ... (3n - 2)}{7 \cdot 9 \cdot 11 ... (2n + 5)};$ $b) \sum_{n=1}^{\infty} \frac{3^n}{\left(1 + \frac{1}{n}\right)^{n^2}}.$

13.
$$a) \sum_{n=1}^{\infty} \frac{n}{(n+1)(3n^2-1)}; \quad \emptyset) \sum_{n=1}^{\infty} n! \sin \frac{\pi}{3^n}; \quad \emptyset) \sum_{n=1}^{\infty} \left(\frac{3n+2}{3n+1}\right)^n.$$

15.
$$a) \sum_{n=1}^{\infty} \frac{1}{\ln(n+2)}; \quad \delta) \sum_{n=1}^{\infty} \frac{6^n (n^2-1)}{n!}; \quad \epsilon) \sum_{n=1}^{\infty} \left(\frac{5n+1}{6n-5}\right)^{n^2+1}.$$

16.
 a)
$$\sum_{n=1}^{\infty} \frac{1}{3^n + n}$$
; δ) $\sum_{n=1}^{\infty} \frac{\sin \frac{\pi}{2^n}}{n!}$; ϵ) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} \cdot \frac{1}{4^n}$.

17.
$$a) \sum_{n=1}^{\infty} \frac{1}{5^n + n^2}; \qquad \delta) \sum_{n=1}^{\infty} \frac{3^{2n-1}n}{4n+3}; \qquad \epsilon) \sum_{n=1}^{\infty} \left(\frac{n+2}{3n-1}\right)^{n^2}.$$

19.
$$a) \sum_{n=1}^{\infty} \frac{1}{\sqrt{3n+n^3}}; \qquad 6) \sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \dots (3n-2)}{2^{n+1} n!}; \qquad 6) \sum_{n=1}^{\infty} \left(\frac{2n-1}{3n+2}\right)^{\frac{n}{2}}.$$

22. a)
$$\sum_{n=1}^{\infty} \frac{1}{3n^4 + 2}$$
; \emptyset) $\sum_{n=1}^{\infty} \frac{5^n \cdot \sqrt[3]{n^2}}{(n+1)!}$; θ) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

23. a)
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+4)}$$
; δ) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{4 \cdot 8 \cdot 12 \dots 4n}$; ϵ) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{e^n}$.

24. a)
$$\sum_{n=1}^{\infty} \frac{1}{n+4^n}$$
; δ) $\sum_{n=1}^{\infty} \frac{n+5}{n!} \sin \frac{2}{3^n}$; ϵ) $\sum_{n=1}^{\infty} \frac{3^n}{(n+1)^n}$.

26. a)
$$\sum_{n=1}^{\infty} \frac{(n+1)n}{(n+2)(n^2+1)};$$
 b) $\sum_{n=1}^{\infty} \frac{n+2}{n!} tg \frac{2}{3^n};$ b) $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)}.$

27.
$$a) \sum_{n=1}^{\infty} \frac{n+1}{(n+2)n};$$
 $b) \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 ... (2n-1)}{3^n (n+1)!};$ $b) \sum_{n=1}^{\infty} \frac{(n+2)^{n^2}}{(3n-1)}.$

28. a)
$$\sum_{n=1}^{\infty} \frac{n+2}{5n^4-2}$$
; δ) $\sum_{n=1}^{\infty} \frac{3^n \sqrt{n}}{(n+1)!}$; ϵ) $\sum_{n=2}^{\infty} \frac{1}{(2n-3)\ln^2(2n-3)}$.

29. a)
$$\sum_{n=1}^{\infty} \frac{n+3}{n(n+5)(2n-1)}$$
; δ) $\sum_{n=1}^{\infty} \frac{3^n}{(2n-1)(n+3)!}$; ϵ) $\sum_{n=1}^{\infty} \left(\frac{n+7}{(2n+1)}\right)^{n-3}$.

30. a)
$$\sum_{n=1}^{\infty} \left(\arcsin \frac{5}{3^n} \right)^n$$
; δ) $\sum_{n=1}^{\infty} \frac{2n-1}{(2n+1)!}$; ϵ) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{2n+3}}$.

Задание 3. Исследовать на абсолютную и условную сходимость

1. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n^2+1)}$	$2. \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}$	3. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)\ln(n+1)}$
4. $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{\pi}{2^n}$	$5. \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^n}{n! (3n-1)}$	6. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{3n^2 - 2}$
7. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (2n-1)}{4n^3 + 5}$	8. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n \ln^2 n}$	$9. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{3n+1}{5^n}$
10. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{4n^2 + 3}$	11. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{2n+3}}$	12. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2n-1)}{(n+1)! \cdot 5^n}$
13. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5n-2}$	14. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^n}{\left(1 + \frac{1}{n}\right)^{n^2}}$	15. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{4n^3 + 2}$
16. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+2)}$	17. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{5n-2}}$	18. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^2}{3n^3 + 2}$
19. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (2n+1)}{8n+5}$	20. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{6n^2 - 1}$	21. $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{2n-1}{5n+2} \right)^{3n+4}$
$22. \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{3n^4 + 5}$	23. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4^n}{(n+1)!}$	24. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (3n^2 - 1)}{4n^3 + 2}$
25. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{7n^2 - 5}$	26. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{5n^2 + 7}$	$27. \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{3n^4 + 5}$

28.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2n+1}{n+7}\right)^{\frac{\pi}{2}} \left| \sum_{n=1}^{\infty} \frac{(-1)^n}{(n+2)\ln^2(n+2)} \right|$$
30.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+5)}{n^3 - 3n + 2}$$

Задание 4. Найти область сходимости степенных рядов

1.
$$a) \sum_{n=1}^{\infty} \frac{n+2}{n!} x^n; \qquad \delta) \sum_{n=1}^{\infty} \frac{(2x+3)^n}{3n+5}.$$

2.
$$a) \sum_{n=1}^{\infty} \frac{n! x^n}{n^3 + 1}; \qquad \delta) \sum_{n=1}^{\infty} \frac{(4n-1)(x+3)^n}{3^n}.$$

3.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{(2x+5)^n}{(n+4)^2};$ $b)$ $\sum_{n=1}^{\infty} \frac{n! x^n}{n^7+2}.$

4. a)
$$\sum_{n=1}^{\infty} \frac{(3x+4)^{2n-1}}{4^n \cdot n}$$
; δ) $\sum_{n=1}^{\infty} \frac{n^2 x^n}{(n+2)!}$.

5.
$$a) \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)\cdot 2^n}; \qquad 6) \sum_{n=1}^{\infty} n! \cdot 3^n (x+3)^n.$$

6.
$$a) \sum_{n=1}^{\infty} \frac{(3x+2)^n}{n^2}; \qquad \delta) \sum_{n=1}^{\infty} \frac{n^4 x^n}{(n+1)!}$$

7.
$$a) \sum_{n=1}^{\infty} \frac{n(x+2)^{2n}}{3^n}; \qquad \delta) \sum_{n=1}^{\infty} \frac{(n+1)^2 x^n}{n!}.$$

8.
$$a) \sum_{n=1}^{\infty} \frac{x^{n+1}}{n \cdot 10^n}; \qquad \delta) \sum_{n=1}^{\infty} (2n+1)!(x+5)^n.$$

9.
$$a) \sum_{n=1}^{\infty} \frac{x^{2n}}{9^n (2n+1)}; \qquad 6) \sum_{n=1}^{\infty} n! \cdot 2^{n+1} (x+3)^n.$$

10. a)
$$\sum_{n=1}^{\infty} \frac{x^n n!}{(4n-3)};$$
 6) $\sum_{n=1}^{\infty} \frac{(3x-2)^{2n}}{(2n-1)^2 \cdot 4^n}.$

11.
$$a$$
) $\sum_{n=1}^{\infty} \frac{x^{2n-1}(6n+5)}{(n+1)!};$ δ) $\sum_{n=1}^{\infty} \frac{(x-7)^n}{n \cdot 4^{n+1}}.$

12.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{n!(x+2)^n}{3n};$ $\delta)$ $\sum_{n=1}^{\infty} \frac{x^{2n}(5n-2)}{9^n}.$

13.
$$a) \sum_{n=1}^{\infty} \frac{x^n (4n+3)}{(n+2)!}; \qquad \delta) \sum_{n=1}^{\infty} \frac{(x+3)^{2n-1}}{n \cdot 16^{n-1}}.$$

14.
$$a) \sum_{n=1}^{\infty} (n+1)!(3x+5)^n; \qquad 6) \sum_{n=1}^{\infty} \frac{x^{2n}}{(7n-5)\cdot 9^{n+1}}.$$

15.
$$a) \sum_{n=1}^{\infty} (nx)^{2n+1}; \qquad \delta) \sum_{n=1}^{\infty} \frac{(x+6)^n}{(4n-7)\cdot 3^{n-1}}.$$

16. a)
$$\sum_{n=1}^{\infty} \frac{3^{n-1} x^n}{5n-1}$$
; δ) $\sum_{n=1}^{\infty} n! (x-6)^{2n}$.

17.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{x^{2n-1}(4n-1)}{16^{n-1}};$ $\delta)$ $\sum_{n=1}^{\infty} \frac{(x+5)^n}{(3n+2)\cdot n!}.$

18. a)
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}(4n-1)}{16^{n-1}};$$
 σ σ

19.
$$a)$$
 $\sum_{n=1}^{\infty} \frac{x^n n^2}{(n+2)!};$ $\delta)$ $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{25^n (7n+2)}.$

20. a)
$$\sum_{n=1}^{\infty} \frac{n^3 x^{2n-1}}{(n+4)!}$$
; δ) $\sum_{n=1}^{\infty} \frac{(x+4)^n}{7^{n-1}(6n-5)}$.

21. a)
$$\sum_{n=1}^{\infty} \frac{n! \cdot x^n}{2n+7}$$
; δ) $\sum_{n=1}^{\infty} \frac{(x+6)^{2n}}{9^n (n+2)}$.

22. a)
$$\sum_{n=1}^{\infty} \frac{(n+1)^5}{n!} x^{2n+1};$$
 b) $\sum_{n=1}^{\infty} \frac{(x+8)^n}{5^{n-1}(4n+1)}.$

23. a)
$$\sum_{n=1}^{\infty} \frac{x^n (5n+4)}{(n+1)!}$$
; σ $\sum_{n=1}^{\infty} \frac{(x-3)^{2n-1}}{4^n (n+7)}$.

24. a)
$$\sum_{n=1}^{\infty} \frac{x^n}{7^{n+2}(4n+5)}$$
; δ) $\sum_{n=1}^{\infty} \frac{(x+9)^{2n-1}}{n \cdot (n+1)!}$

25. a)
$$\sum_{n=1}^{\infty} \frac{x^{2n}(2n+5)}{16^{n+1}};$$
 σ) $\sum_{n=1}^{\infty} \frac{(x-10)^n}{(n^4+5)(2n-1)!}$

26. a)
$$\sum_{n=1}^{\infty} \frac{x^{2n+2}(2n+1)}{4^{n+2}};$$
 δ) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^n}{(n^2+3)(n+4)!}.$

27.
$$a) \sum_{n=1}^{\infty} \frac{x^{n+1}}{n \cdot 10^n}; \qquad 6) \sum_{n=1}^{\infty} n! 2^{n+1} (x+3)^n.$$

28. a)
$$\sum_{n=1}^{\infty} \frac{(x-3)^n (5n-2)}{2^{n+2}};$$
 δ) $\sum_{n=1}^{\infty} \frac{n^3 x^{2n}}{(n+3)!}.$

29. a)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \cdot 3^{n-1}};$$
 δ) $\sum_{n=1}^{\infty} \frac{x^{2n+1} \cdot 3^n}{(n+1)!}$

29. a)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \cdot 3^{n-1}};$$
 δ) $\sum_{n=1}^{\infty} \frac{x^{2n+1} \cdot 3^n}{(n+1)!}.$

30. a) $\sum_{n=1}^{\infty} \frac{(x+1)^{n+2}}{3^{2n}};$ δ) $\sum_{n=1}^{\infty} \frac{x^{2n-1} \cdot (n+3)!}{2^n}.$

Задание 5. Вычислить с точностью ε , пользуясь разложением функции в степенной ряд

1.
$$\frac{1}{e}$$
, $\varepsilon = 10^{-4}$.
2. $\frac{1}{e}$, $\varepsilon = 10^{-4}$.
3. $\frac{1}{\sqrt[5]{e}}$, $\varepsilon = 10^{-4}$.
4. $\cos 1^{\circ}$, $\varepsilon = 10^{-3}$.
5. $\sin 10^{\circ}$, $\varepsilon = 10^{-5}$.
6. $\cos 10^{\circ}$, $\varepsilon = 10^{-5}$.
7. $\sqrt[3]{30}$, $\varepsilon = 10^{-3}$.
8. $\sqrt[3]{70}$, $\varepsilon = 10^{-3}$.
9. $\sqrt[3]{500}$, $\varepsilon = 10^{-3}$.
10. $\sqrt[3]{1015}$, $\varepsilon = 10^{-3}$.
11. $\sqrt[5]{250}$, $\varepsilon = 10^{-3}$.
12. $\sqrt[3]{129}$, $\varepsilon = 10^{-3}$.
13. $\sqrt[5]{34}$, $\varepsilon = 10^{-3}$.
14. $\sin 18^{\circ}$, $\varepsilon = 10^{-3}$.
15. $\cos 18^{\circ}$, $\varepsilon = 10^{-3}$.
16. e^{-2} , $\varepsilon = 10^{-4}$.
17. e^{-3} , $\varepsilon = 10^{-4}$.
18. $\sqrt[3]{751}$, $\varepsilon = 10^{-3}$.
19. $e^{-\frac{1}{2}}$, $\varepsilon = 10^{-4}$.
20. $e^{-\frac{1}{3}}$, $\varepsilon = 10^{-4}$.
21. $\sqrt[5]{520}$, $\varepsilon = 10^{-3}$.
22. $\sqrt[3]{29}$, $\varepsilon = 10^{-3}$.
23. $\sin 2^{\circ}$, $\varepsilon = 10^{-4}$.
24. $\cos 2^{\circ}$, $\varepsilon = 10^{-3}$.
25. e^{-4} , $\varepsilon = 10^{-4}$.
26. e^{-5} , $\varepsilon = 10^{-4}$.
27. $\sin 3^{\circ}$, $\varepsilon = 10^{-4}$.
28. $\sin 1^{\circ}$, $\varepsilon = 10^{-4}$.
29. $\sqrt[3]{126}$, $\varepsilon = 10^{-3}$.
30. $\sin 3^{\circ}$, $\varepsilon = 10^{-2}$.

Задание 6. Вычислить приближенно значение интеграла с точностью ε

1.
$$\int_{0}^{\sqrt{3}/3} x^3 arctgx \, dx$$
, $\varepsilon = 10^{-3}$. 2. $\int_{0}^{0.5} \frac{arctg \, x}{x} \, dx$, $\varepsilon = 10^{-3}$. 3. $\int_{0}^{0.5} \frac{dx}{1+x^4}$, $\varepsilon = 10^{-3}$. 4. $\int_{0}^{1.5} \frac{dx}{\sqrt[3]{27+x^3}}$, $\varepsilon = 10^{-3}$.

5 $\int_{0}^{1/2} \frac{e^{-x^3}}{x} dx, \qquad \varepsilon = 10^{-5}$	6. $\int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{1+x^4}}, \qquad \varepsilon = 10^{-4}.$
7. $\int_{0}^{1/4} \sqrt{x} e^{-x} dx$, $\varepsilon = 10^{-4}$.	8. $\int_{0}^{1} \frac{\sqrt{x}}{2} \cos x dx, \qquad \varepsilon = 10^{-3} .$
9 $\int_{0}^{0.2} e^{-3x^2} dx$, $\varepsilon = 10^{-3}$	10. $\int_{0}^{0.5} x^{2}e^{-x^{2}} dx, \qquad \varepsilon = 10^{-3}.$
11. $\int_{0}^{1/4} \frac{arctgx}{\sqrt{x}} dx, \qquad \varepsilon = 10^{-3} .$	12. $\int_{0}^{0.4} \frac{\ln\left(1+\frac{x}{2}\right)}{x} dx, \qquad \varepsilon = 10^{-3}.$
13. $\int_{0}^{0.5} \sin(4x^2) dx$, $\varepsilon = 10^{-3}$.	14. $\int_{0}^{1} \frac{dx}{\sqrt[3]{8+x^3}}, \qquad \varepsilon = 10^{-3}.$
15. $\int_{0}^{0,4} e^{-\frac{3}{4}x^{2}} dx, \qquad \varepsilon = 10^{-3}.$	16. $\int_{0}^{1} arctg \frac{x^2}{2} dx$, $\varepsilon = 10^{-3}$.
17. $\int_{0}^{0,2} \frac{1 - e^{-x}}{x} dx, \qquad \varepsilon = 0.03.$	18. $\int_{0}^{0.1} \sqrt[3]{1 + \frac{x^2}{4}} dx, \qquad \varepsilon = 10^{-3}.$
19 $\int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx, \qquad \varepsilon = 10^{-2} .$	$20. \int_{0}^{1} \cos \sqrt[3]{x} \ dx, \qquad \varepsilon = 10^{-3} \ .$
21. $\int_{0}^{1} \cos x^{2} dx$, $\varepsilon = 10^{-4}$.	22. $\int_{0}^{0.5} \frac{\sin x^2}{x} dx$, $\varepsilon = 10^{-3}$.
23. $\int_{0}^{0.5} \sqrt{1+x^3} dx, \qquad \varepsilon = 10^{-3} .$	24. $\int_{0}^{2,5} \frac{dx}{\sqrt[3]{125 + x^3}}, \qquad \varepsilon = 10^{-3}.$
$25. \int_{0}^{1} \sqrt[3]{x} \cos x dx, \qquad \varepsilon = 10^{-3} \ .$	•
27. $\int_{0}^{0.5} x^{3}e^{-x^{2}}dx, \qquad \varepsilon = 10^{-3}.$	28. $\int_{0}^{0.5} \frac{dx}{\sqrt[4]{1+x^4}}, \qquad \varepsilon = 10^{-3}.$
29. $\int_{0}^{1/3} \frac{\sin 2x^{2}}{x^{2}} dx, \qquad \varepsilon = 10^{-4}.$	30. $\int_{0}^{1/4} \frac{e^{-x^2}}{3x^2} dx, \qquad \varepsilon = 10^{-3} .$

Задание 7. Найти решение дифференциального уравнения в виде степенного ряда, записав первые три отличные от нуля члены разложения

1. $y' = x^2 y + y^3$, $y(0) = 1$.	2. $y' = x + 2y^2$, $y(0) = 0$.
$3. y' = y^2 + x, y(0) = 1.$	4. $y'=y^2+x^3$, $y(0)=\frac{1}{2}$.
$5. y' = y + xe^y, y(0) = 2.$	6. $y' = x + x^2 + y^2$, $y(0) = 1$.
7. $y' = 2\cos x - xy$, $y(0) = 1$.	8. $y' = 2\cos x - xy$, $y(0) = 1$.
9. $y' = 2\cos x - xy^2$, $y(0) = 1$.	10. $y' = e^{3x} + 2xy^2$, $y(0) = 1$.
11. $y' = 2x + y^2 + e^x$, $y(0) = 1$.	12. $y' = e^{\sin x} + xy$, $y(0) = 0$.
13. $y' = xy + 1$, $y(0) = 1$.	14. $y' = x^2 - y^2$, $y(0) = 0$.
15. $y' = 1 + x + x^2 - 2y^2$, $y(0) = 1$.	16. $y' = 2\sin x + xy$, $y(0) = 0$.
17. $y' = x^2 + xy + y^2$, $y(0) = \frac{1}{2}$.	18. $y' = y \sin x + y^2 x^2$, $y(0) = \frac{1}{2}$.
19. $y' = 2y^2 + ye^x$, $y(0) = \frac{1}{3}$.	20. $y' = x + \frac{1}{y}$, $y(0) = 1$.
21. $y' = y^2 + y + x$, $y(0) = 1$.	22. $y' = e^x - y^2$, $y(0) = 1$.
23. $y' = 2e^y + xy$, $y(0) = 0$.	24. $y' = xy^3 - 1$, $y(0) = 1$.
25. $y' = 3xy^2 + e^{2x}$, $y(0) = 1$.	26. $y' = xy + 1$, $y(0) = 1$.
27. $y' = 2\sin x + xy$, $y(0) = 0$.	28. $y' = 2x - 0.1y^2$, $y(0) = 1$.
29. $y' = 2x^2 - xy$, $y(0) = 0$.	30. $y' = 0.2x + y^2$, $y(0) = 1$.

Задание 8. Разложить в ряд Фурье периодическую (с периодом $\omega = 2\pi$) функцию f(x), заданную на отрезке $[-\pi;\pi]$

1.
$$f(x) = \begin{cases} 6x - 2, & -\pi \le x \le 0, \\ 0, & 0 < x \le \pi. \end{cases}$$
 2. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 4 - 9x, & 0 < x \le \pi. \end{cases}$ 3. $f(x) = \begin{cases} -x + \frac{1}{2}, & -\pi \le x \le 0, \\ 0, & 0 < x \le \pi. \end{cases}$ 4. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ \frac{\pi - x}{2}, & 0 < x \le \pi. \end{cases}$

5. $f(x) = \begin{cases} 5x + 1, \\ 0, \end{cases}$	$-\pi \le x \le 0,$ $0 < x \le \pi.$	6. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 1 - 4x, & 0 \le x \le \pi. \end{cases}$
7. $f(x) = \begin{cases} 2x - 1, \\ 0, \end{cases}$	$-\pi \le x \le 0,$	8. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 10x - 3, & 0 \le x \le \pi. \end{cases}$
(0,	$0 < x \le \pi.$	
$9. f(x) = \begin{cases} 3x + 2, \end{cases}$	$-\pi \le x \le 0,$	$\int_{0}^{\pi} f(x) = \begin{cases} 0, & -\pi \le x < 0, \end{cases}$
$9. \ f(x) = \begin{cases} 3x + 2, \\ 0, \end{cases}$	$-\pi \le x \le 0,$ $0 < x \le \pi.$	10. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ x - 1, & 0 \le x \le \pi. \end{cases}$
($-\pi < v < 0$	
$\begin{array}{ c c } 11. \ f(x) = \begin{cases} 1 - \frac{x}{4}, \\ 0, \end{cases}$	$-n \leq x \leq 0,$	12. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ \frac{x}{2} + 1, & 0 < x \le \pi. \end{cases}$
[0,	$-\pi \le x \le 0,$ $0 < x \le \pi.$	$\left[\frac{-+1}{2}, 0 < x \le \pi.\right]$
3-2x,	$-\pi \le x \le 0,$	$ \begin{array}{ccc} & & & & & & & \\ & & & & & & \\ & & & &$
13. $f(x) = \begin{cases} 3 - 2x, \\ 0, \end{cases}$	$-\pi \le x \le 0,$ $0 < x \le \pi.$	14. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ x + 2, & 0 \le x \le \pi. \end{cases}$
(_		16. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 4 - 2x, & 0 \le x \le \pi. \end{cases}$
15. $f(x) = \begin{cases} x + \frac{\pi}{2}, \\ 0, \end{cases}$	$-\pi \le x \le 0,$	10. $f(x) = 4 - 2x, 0 \le x \le \pi.$
[0,	$0 < x \le \pi.$	
2x+3,	$-\pi < x \le 0,$	$0, -\pi \le x < 0,$
17. $f(x) = \begin{cases} 2x + 3, \\ 0, \end{cases}$	$0 < x \le \pi.$	18. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 3 - x, & 0 \le x \le \pi. \end{cases}$
7-3x	$-\pi \le x \le 0,$	
19. $f(x) = \begin{cases} 7 - 3x, \\ 0, \end{cases}$	$0 < x \le \pi.$	20. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 6x - 5, & 0 \le x \le \pi. \end{cases}$
$\int x-2$	$-\pi \le x \le 0,$	
21. $f(x) = \begin{cases} x-2, \\ 0, \end{cases}$	$0 < x \le \pi.$	22. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 4x - 3, & 0 \le x \le \pi. \end{cases}$
x-2,	$-\pi \le x \le 0,$	$0, -\pi \leq x < 0,$
23. $f(x) = \begin{cases} x - 2, \\ 0, \end{cases}$	$0 < x \le \pi.$	24. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 3x - 1, & 0 \le x \le \pi. \end{cases}$
5-x	$-\pi \le x \le 0,$	$2x - 11, -\pi \le x \le 0,$
25. $f(x) = \begin{cases} 5 - x, \\ 0, \end{cases}$	$0 < x \le \pi$.	26. $f(x) = \begin{cases} 2x - 11, & -\pi \le x \le 0, \\ 0, & 0 < x \le \pi. \end{cases}$
[0,	$-\pi \le x < 0,$	$ \begin{cases} 0, & -\pi \leq x < 0, \end{cases} $
27. $f(x) = \begin{cases} 0, \\ \frac{\pi}{4} - \frac{x}{2}, \end{cases}$	$0 \le x \le \pi$.	28. $f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ \frac{x}{5} - 2, & 0 \le x \le \pi. \end{cases}$
2x-11,	$-\pi \le x \le 0,$	$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$
29. $f(x) = \begin{cases} 0, & t = 1 \end{cases}$	$0 < x \le \pi$.	30. $f(x) = \begin{cases} 0, & -\pi \le x \le 0, \\ 3 - 8x, & 0 < x \le \pi. \end{cases}$

V. Решение типового варианта АР «Ряды»

Задание 1. Доказать сходимость ряда и найти его сумму

$$\sum_{n=2}^{\infty} \frac{2}{4n^2 - 8n + 3}$$

Решение:

Ряд называется сходящимся, если существует конечный предел последовательности частных сумм, $\lim_{n\to\infty}S_n=S\neq\infty$.

Найдем S_n , предварительно преобразовав общий член ряда

$$u_n = \frac{2}{4n^2 - 8n + 3}.$$

$$\frac{2}{4n^2 - 8n + 3} = \frac{2}{4\left(n - \frac{3}{2}\right)\left(n - \frac{1}{2}\right)} = \frac{2}{(2n - 3)(2n - 1)},$$

$$\frac{2}{(2n - 3)(2n - 1)} = \frac{A}{2n - 3} + \frac{B}{2n - 1},$$

$$2 = A(2n - 1) + B(2n - 3),$$

$$n = \frac{1}{2}, \quad 2 = -2B \implies B = -1,$$

$$n = \frac{3}{2}, \quad 2 = 2A \implies A = 1,$$

$$\frac{2}{(2n - 3)(2n - 1)} = \frac{1}{2n - 3} - \frac{1}{2n - 1}.$$

Тогда

$$S_n = \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \dots + \left(\frac{1}{2n - 5} - \frac{1}{2n - 3}\right) + \left(\frac{1}{2n - 3} - \frac{1}{2n - 1}\right) = 1 - \frac{1}{2n - 1}.$$

$$\lim S_n = \lim_{n \to \infty} \left(1 - \frac{1}{2n - 1} \right) = 1.$$

Следовательно, данный ряд сходится и его сумма S=1.

Задание 2. Исследовать на сходимость ряды

a)
$$\sum_{n=1}^{\infty} \frac{n+2}{\sqrt{n^4+8}};$$
 δ) $\sum_{n=1}^{\infty} \frac{(n+1)!}{(n+3)\cdot 3^n};$ ϵ) $\sum_{n=2}^{\infty} \left(\frac{2n+1}{2n-3}\right)^{n^2}.$

Решение:

а) Исследуем по признаку сравнения. Пусть $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n}$ - гармонический ряд, который расходится. Сравним v_n с n-ым членом исходного ряда

$$\sum_{n=1}^{\infty} \frac{n+2}{\sqrt{n^4+8}}.$$

$$\lim_{n \to \infty} \frac{v_n}{u_n} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{n+2}{\sqrt{n^4+8}}} = \lim_{n \to \infty} \frac{\sqrt{n^4+8}}{n(n+2)} = \lim_{n \to \infty} \frac{n^2 \sqrt{1+\frac{8}{n^4}}}{n^2 \left(1+\frac{2}{n}\right)} = \lim_{n \to \infty} \frac{\sqrt{1+\frac{8}{n^4}}}{1+\frac{2}{n}} = 1.$$

Согласно предельному признаку сравнения, если $\lim_{n\to\infty}\frac{v_n}{u_n}=l\neq 0$, то оба ряда сходятся или расходятся одновременно, поэтому ряд $\sum_{n=1}^{\infty}\frac{n+2}{\sqrt{n^4+8}}$ расходится, так как расходится ряд $\sum_{n=1}^{\infty}\frac{1}{n}$.

б) Исследуем по признаку Даламбера.

$$l = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+2)!(n+3) \cdot 3^n}{(n+4) \cdot 3^{n+1}(n+1)!} = \lim_{n \to \infty} \frac{(n+1)!(n+2)(n+3) \cdot 3^n}{(n+4) \cdot 3^n \cdot 3(n+1)!} =$$

$$= \frac{1}{3} \lim_{n \to \infty} \frac{(n+2)(n+3)}{n+4} = \frac{1}{3} \lim_{n \to \infty} \frac{\left(1 + \frac{2}{n}\right)\left(1 + \frac{3}{n}\right)}{\frac{1}{n} + \frac{4}{n}} = \infty.$$

Так как l > 1, то ряд расходится.

в) К данному ряду применим радикальный признак Коши.

$$l = \lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2n+1}{2n-3}\right)^{n^2}} = \lim_{n \to \infty} \left(\frac{2n+1}{2n-3}\right)^n = \lim_{n \to \infty} \left(\frac{(2n-3)+4}{2n-3}\right)^n =$$

$$= \lim_{n \to \infty} \left(1 + \frac{4}{2n - 3} \right)^n = \lim_{n \to \infty} \left(1 + \frac{4}{2n - 3} \right)^{\frac{2n - 3}{4} \cdot \frac{4}{2n - 3} \cdot \frac{n}{1}} =$$

$$= \left(\lim_{n \to \infty} \left(1 + \frac{4}{2n - 3} \right)^{\frac{2n - 3}{4}} \right)^{\frac{1 \text{lim}}{n \to \infty} \frac{4n}{2n - 3}} = e^{2} > 1.$$

Так как $l = e^2 > 1$, то данный ряд расходится.

Задание 3. Исследовать на абсолютную и условную сходимость

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2n^2 + 3}$$

Решение:

Исследуем ряд на абсолютную сходимость. Для ряда $\sum_{n=1}^{\infty} \frac{n}{2n^2 + 3}$ используем интегральный признак Коши.

$$\int_{1}^{\infty} \frac{x dx}{2x^2 + 3} = \lim_{a \to \infty} \frac{x dx}{2x^2 + 3} = \frac{1}{4} \lim_{a \to \infty} \int_{1}^{a} \frac{d(2x^2 + 3)}{2x^2 + 3} = \frac{1}{4} \lim_{a \to \infty} \left(\ln(2x^2 + 3) \Big|_{1}^{a} \right) = \frac{1}{4} \lim_{a \to \infty} \left(\ln(2a^2 + 3) - \ln 5 \right) = \infty.$$

Ряд из абсолютных величин членов исходного ряда расходится.

Исследуем ряд на условную сходимость. Применим признак Лейбница для знакочередующихся рядов.

Так как

a)
$$\frac{1}{5} > \frac{2}{11} > \frac{4}{35} > \dots$$

6)
$$\lim_{n \to \infty} \frac{n}{2n^2 + 3} = \lim_{n \to \infty} \frac{\frac{1}{n}}{2 + \frac{3}{n^2}} = 0$$
,

то условия признака Лейбница выполняются и, следовательно, данный знакочередующийся ряд сходится. Поскольку ряд из абсолютных величин членов знакочередующегося ряда расходится, то имеет место условная сходимость. Данный знакочередующийся ряд сходится условно.

Задание 4. Найти область сходимости степенных рядов:

a)
$$\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{9^n \sqrt[6]{n}};$$
 σ) $\sum_{n=1}^{\infty} \frac{n! x^{2n-1}}{9n+5}.$

Решение:

а) Составим ряд из абсолютных величин членов данного ряда

$$\sum_{n=1}^{\infty} \frac{2^{n} |x-3|^{n}}{9^{n} \sqrt[6]{n}}$$

и к нему применим признак Даламбера.

$$\lim_{n \to \infty} \frac{2^{n+1} |x-3|^{n+1} \cdot 9^n \sqrt[6]{n}}{9^{n+1} \sqrt[6]{n+1} 2^n |x-3|^n} = \lim_{n \to \infty} \frac{2|x-3| \sqrt[6]{n}}{9 \sqrt[6]{n+1}} = \frac{2}{3} |x-3| \lim_{n \to \infty} \frac{\sqrt[6]{n}}{\sqrt[6]{n+1}} = \frac{2}{9} |x-3|.$$

Ряд $\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{9^n \sqrt[6]{n}}$ будет сходится абсолютно при условии

 $\frac{2}{9}|x-3| < 1$. Преобразуем последнее неравенство

$$2|x-3| < 9, |x-3| < \frac{9}{2}, -\frac{9}{2} < x-3 < \frac{9}{2}, -\frac{3}{2} < x < \frac{15}{2}.$$

Исследуем поведение ряда на концах интервала сходимости. Пусть $x=\frac{15}{2},$ тогда получим ряд

$$\sum_{n=1}^{\infty} \frac{2^n \left(\frac{9}{2}\right)^n}{9^n \sqrt[6]{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt[6]{n}}.$$

По интегральному признаку

$$\int_{1}^{\infty} \frac{dx}{\sqrt[6]{x}} = \lim_{a \to \infty} \int_{1}^{a} \frac{dx}{\sqrt[6]{x}} = \lim_{a \to \infty} \int_{1}^{a} x^{\frac{1}{6}} dx = \lim_{a \to \infty} \left(\frac{x^{\frac{5}{6}}}{\frac{5}{6}} \right|_{1}^{a} \right) = \frac{6}{5} \lim_{a \to \infty} \sqrt[6]{x^{\frac{5}{5}}} \Big|_{1}^{a} = \frac{6}{5} \lim_{a \to \infty} \left(\sqrt[6]{x^{\frac{5}{5}}} - 1 \right) = \infty.$$

Следовательно, в точке $x = \frac{15}{2}$ ряд сходится.

При $x = -\frac{3}{2}$ получим знакочередующийся ряд

$$\sum_{n=1}^{\infty} \frac{2^n \left(-\frac{9}{2}\right)^n}{9^n \sqrt[6]{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[6]{n}} ,$$

для которого соответствующий ряд из модулей $\sum_{n=1}^{\infty} \frac{1}{6\sqrt{n}}$ расходится.

Применим к знакочередующемуся ряду признак Лейбница.

Так как a) $\frac{1}{6\sqrt{1}} > \frac{1}{6\sqrt{2}} > \frac{1}{6\sqrt{3}} > \dots$

$$6) \quad \lim_{n \to \infty} \frac{1}{\sqrt[6]{n}} = 0,$$

то степенной ряд

$$\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{9^n \sqrt[6]{n}}$$

в точке $x = -\frac{3}{2}$ сходится условно.

Таким образом, областью сходимости степенного ряда является $\left[\frac{-3}{2};\frac{15}{2}\right]$.

б) Применим признак Даламбера к ряду из модулей

$$\sum_{n=1}^{\infty} \frac{n! |x|^{2n-1}}{9n+5}.$$

$$\lim_{n \to \infty} \frac{(n+1)! |x|^{2n+1} (9n+5)}{(9n+14) n! |x|^{2n-1}} = \lim_{n \to \infty} \frac{n! (n+1) |x|^{2n-1} |x|^2 (9n+5)}{(9n+14) n! |x|^{2n-1}} =$$

$$= \lim_{n \to \infty} \frac{(n+1)(9n+5)x^2}{9n+14} = x^2 \lim_{n \to \infty} \frac{(n+1)(9n+5)}{9n+14} = x^2 \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)\left(9 + \frac{5}{n}\right)}{\frac{9}{n} + \frac{14}{n^2}} =$$

$$=x^2\cdot\infty=\begin{cases}\infty,\ ecnu\ x\neq0,\\0,\ ecnu\ x=0.\end{cases}$$

Следовательно, степенной ряд сходится в точке x=0 .

Задание 5. Вычислить с точностью ε , пользуясь разложением функции в степенной ряд $\ln 1, 2, \quad \varepsilon = 0,001$.

Решение:

Воспользуемся разложением в степенной ряд функции $\ln(1+x)$.

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots, \qquad -1 < x \le 1$$

В нашем случае

$$\ln 1,2 = \ln \left(1 + \frac{1}{5}\right) = \frac{1}{5} - \frac{\left(\frac{1}{5}\right)^2}{2} + \frac{\left(\frac{1}{5}\right)^3}{3} + \frac{\left(\frac{1}{5}\right)^4}{4} + \dots = \frac{1}{5} - \frac{1}{25 \cdot 2} + \frac{1}{125 \cdot 3} - \frac{1}{625 \cdot 4} + \dots \approx \frac{1}{5} - \frac{1}{56} + \frac{1}{375} = 0,182.$$

Для того, чтобы вычислить значения функции с точностью $\varepsilon=0{,}001$, необходимо, чтобы первый отбрасываемый член был меньше $0{,}001$ (см. признак Лейбница). Так как $u_4=\frac{1}{2500}<0{,}001$, то для вычисления $\ln1{,}2$ взяли первые три члена ряда.

Задание 6. Вычислить приближенно значение интеграла с точностью ε .

$$\int_{0}^{1} \frac{dx}{\sqrt[3]{8x + x^3}}, \quad \varepsilon = 0.001$$

Решение:

Разложим подынтегральную функцию в степенной ряд и затем проинтегрируем почленно.

$$\int_{0}^{1} \frac{dx}{\sqrt[3]{8+x^{3}}} = \int_{0}^{1} \frac{dx}{\sqrt[3]{8\left(1+\frac{x^{3}}{8}\right)}} = \frac{1}{2} \int_{0}^{1} \frac{dx}{\sqrt[3]{1+\frac{x^{3}}{8}}} = \frac{1}{2} \int_{0}^{1} \left(1+\left(\frac{x}{2}\right)^{3}\right)^{-\frac{1}{3}} dx = A.$$

Воспользуемся биномиальным рядом

$$(1+x)^m = 1 + \frac{m}{1!}x + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \dots, \qquad -1 < x \le 1.$$

Заменив в нем m на $\frac{1}{3}$, а x на $\left(\frac{x}{2}\right)^3$, получим

$$A = \frac{1}{2} \int_{0}^{1} \left(1 - \frac{1}{3} \left(\frac{x}{2} \right)^{3} + \frac{1}{3} \cdot \frac{4}{3} \left(\frac{x}{2} \right)^{6} - \frac{1}{3} \cdot \frac{4}{3} \cdot \frac{7}{3} \left(\frac{x}{2} \right)^{9} + \dots \right) dx =$$

$$= \frac{1}{2} \int_{0}^{1} \left(1 - \frac{1}{3 \cdot 2^{3}} x^{3} + \frac{4}{3^{2} \cdot 2^{7}} x^{6} - \frac{4 \cdot 7}{3^{3} \cdot 6 \cdot 2^{9}} x^{9} + \dots \right) dx =$$

$$= \frac{1}{2} \left(x - \frac{x^{4}}{4} \cdot \frac{1}{32} + \frac{4}{1152} \cdot \frac{x^{7}}{7} - \frac{4 \cdot 7}{82944} \cdot \frac{x^{10}}{10} + \dots \right) \Big|_{0}^{1} =$$

$$= \frac{1}{2} (1 - 0,0078 + 0,0005 - 0,0000 + \dots) \approx \frac{1}{2} (1 - 0,0078) = 0,496.$$

Для достижения заданной точности достаточно взять два члена ряда, так как $u_3 = \frac{1}{2} \cdot 0,0005 < 0,001$.

Задание 7. Найти решение дифференциального уравнения в виде степенного ряда, записав первые три отличные от нуля члена разложения

$$y' = 2x^2y - \cos 5x$$
, $y(0) = 3$.

Решение:

Будем искать решение дифференциального уравнения в виде ряда Маклорена:

$$y = y(0) + \frac{y'(0)}{1!}x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \dots$$

По условию y(0) = 3. Подставляя в правую часть уравнения x = 0, y = 3, найдем: y'(0) = -1.

Продифференцируем обе части дифференциального уравнения по x

$$y'' = (2x^2y - \cos 5x)_x' = 2 \cdot 2xy + 2x^2y' + \sin 5x \cdot 5 = 4xy + 2x^2y' + 5\sin 5x.$$

При x = 0, y = 3, y' = -1 вычислим y''(0) = 0.

Найдем

$$y''' = (4xy + 2x^2y' + 5\sin 5x)_x' = 4y + 4xy' + 4xy' + 2x^2y'' + 25\cos 5x$$

и вычислим

$$y'''(0) = 4 \cdot 3 + 8 \cdot 0 \cdot (-1) + 2 \cdot 0 \cdot 0 + 25 = 37.$$

Получим решение уравнения $y = 3 - x + \frac{37}{3!}x^3 + ...$

Задание 8. Разложить в ряд Фурье периодическую (с периодом $\omega = 2\pi$) функцию f(x), заданную на отрезке $[-\pi;\pi]$

$$f(x) = \begin{cases} \pi + x, & -\pi \le x \le 0, \\ 0, & 0 < x \le \pi. \end{cases}$$

Решение:

Вычислим коэффициенты Фурье:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{0} (\pi + x) dx = \frac{1}{\pi} \frac{(\pi + x)^{2}}{2} \Big|_{-\pi}^{0} = \frac{1}{\pi} \cdot \frac{\pi^{2}}{2} = \frac{\pi}{2},$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{0} (\pi + x) \cos nx \, dx = \begin{vmatrix} u = \pi + x, & du = dx \\ dv = \cos nx \, dx, & v = \frac{1}{n} \sin nx \end{vmatrix} =$$

$$= \frac{1}{\pi} \left(\frac{\pi + x}{n} \sin x \Big|_{-\pi}^{0} - \frac{1}{n} \int_{-\pi}^{0} \sin nx \, dx \right) = \frac{1}{\pi} \frac{\cos nx}{n} \Big|_{-\pi}^{0} = \frac{1}{\pi} \frac{1}{n^{2}} (1 - (-1)^{n}) =$$

$$= \frac{2}{\pi (2n - 1)^{2}},$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{0} (\pi + x) \sin nx \, dx = \begin{vmatrix} u = \pi + x, & du = dx \\ dv = \sin nx \, dx, & v = \frac{1}{n} \cos nx \end{vmatrix} =$$

$$= \frac{1}{\pi} \left(-\frac{\pi + x}{n} \cos nx \Big|_{-\pi}^{0} + \frac{1}{n} \int_{-\pi}^{0} \cos nx \, dx \right) = \frac{1}{\pi} \left(-\frac{\pi}{n} + \frac{1}{n^{2}} \sin nx \Big|_{-\pi}^{0} \right) = -\frac{1}{n}.$$

Тогда ряд Фурье для данной функции запишется в виде

$$f(x) = \frac{\pi}{4} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)!} - \sum_{n=1}^{\infty} \frac{\sin x}{n}.$$

VI. Теоретические вопросы к защите АР «ТФКП»

- 1. Что называется производной функции комплексной переменной?
- 2. Запишите условия Коши-Римана.
- 3. В чем геометрический смысл модуля и аргумента производной функции комплексной переменной?
- 4. Сформулируйте интегральную теорему Коши.
- 5. Запишите интегральную формулу Коши и формулы для производных.
- 6. Что называется вычетом аналитической функции в изолированной точке?
- 7. Сформулируйте основную теорему о вычетах.

VII. Тексты вариантов аттестационной работы «ТФКП»

Задание 1. Где расположены точки z, для которых

1.
$$a$$
) $|z-i| < 3$;

6)
$$|z-3-4i|=5$$
;

$$e$$
) Re $z > 2$.

2. a)
$$|z+2i| \ge 2$$

$$e$$
) Im $z < -1$.

3. *a*)
$$|z-3i|<1$$
;

a)
$$|z-3i| < 1;$$
 6) $|z-i| = |z+2|;$

$$e$$
) Re $z^2 = 1$.

4. *a*)
$$|z+4|=2$$
;

a)
$$|z+4|=2;$$
 6) $|z+i|=|z-2|;$

$$e$$
) Im $z^2 = 1$.

5. a)
$$|z-2|+|z+2|=5$$
; 6) $|z-3+i|<1$;

a)
$$|z+2-i| < 3;$$
 6) $|z-2+3i| = 5;$

6)
$$\operatorname{Re}(z+i)=1$$
.
6) $\operatorname{Re}(z-4) > 2$.

6. a)
$$|z+2-i| < 3$$

7. a) $|z+1| \ge 2$;

$$6) \quad |z+1-3i|=4;$$

$$e$$
) Im $z < 3$.

8. *a*)
$$|z-3+i|<1$$
;

a)
$$|z-3+i| < 1;$$
 6) $|z+2i| = |z-2|;$

$$e$$
) Re $z^2 = 4$.

9. a)
$$|z+3-2i|=2;$$
 6) $|z+i|=|z-3|;$

$$6) \quad |z+i| = |z-3|;$$

$$e) \quad \operatorname{Im} z^2 = 4.$$

10. a)
$$|z-5+3i|=2;$$
 6) $arctg z=-\frac{\pi}{4};$

$$\delta) \quad arctg \ z = -\frac{\pi}{4}$$

$$e) \quad |z+i|=4.$$

11. a)
$$2 < |z-1+2i| < 4$$
; 6) $|z+1-i| = 3$;

$$(5)$$
 $|2+1+|-3|$

$$e) \quad \text{Re } z = 4.$$

12.
$$u) |z+z-i| > 4$$

$$(s) |z-1| + |z-3| = 5$$

12. a)
$$|z+2-i| > 4$$
; b) $|z+1|+|z-i| = 2$; b) $0 \le \text{Im } z \le 3$.
13. a) $|z+1+i| > 1$; b) $-1 \le \text{Re } z \le 4$; b) $|z-1|+|z-3| = 5$.
14. a) $|z+3-5i| = 4$; b) $|z-i|+|z+i| = 4$; c) $|z-2| = 4$.

$$\delta$$
) $|z-i|+|z+i|=4$

$$e$$
) Re $z^2 = 4$.

15. a)
$$|z-2+i| < 2;$$
 6) $|z-1| + |z+3| = 5;$ 6) $\operatorname{Im} z^2 = 9.$

$$|z-1|+|z+3|=5;$$

$$e) \quad \operatorname{Im} z^2 = 9.$$

16. a)
$$|z+3i| > 2$$
;

$$\delta) \quad |z-1+i|=2;$$

$$e$$
) $0 \le \operatorname{Im} z \le 2$.

16. a)
$$|z+3i| > 2$$
; b) $|z-1+i| = 2$; b) $0 \le \text{Im } z \le 2$.
17. a) $|z-2-i| > 4$; b) $|z-1|+|z+2i| = 4$; b) $|z-2-i| > 4$.

$$0) |z-1|+|z+2i|=4$$

$$e) \quad \operatorname{Im} z^2 < 1.$$

18. a)
$$1 < |z-2+i| < 4$$
; b) $|z-i| + |z+i| = 3$; b) $1 \le \operatorname{Re} z^2 \le 4$.

6)
$$|z-i|+|z+i|=3$$
;

$$(B)$$
 $1 \le \operatorname{Re} z \le 4$

19. a)
$$2 < |z + 2i| < 3;$$
 6) $|z + 4 - 2i| = 1;$ 6) $-3 \le \text{Re } z \le 4.$

6)
$$|z+4-2i|=1$$
;

$$(8) \quad -3 \leq \operatorname{Re} z \leq 4.$$

20. a)
$$|z-1|+|z+2| \le 5$$
; 6) $|z-3+i| \le 2$; 'e) $0 \le \text{Re}(z+1-2i) \le 4$.

$$; \quad 0) \quad |z-3+i| \le 2$$

21. a)
$$|z+2i| < 3$$
; 6) $|z+4-3i| = 5$; 6) $1 \le \text{Re } z \le 2$.

22. a)
$$|z+3-3i| \ge 2$$
; 6) $|z+1-2i| = 2$; 6) $-1 \le \text{Im } z \le 1$.

$$|z+1-2i| = 2$$

$$e$$
) $-1 \le \operatorname{Im} z \le 1$

23. a)
$$|z-2+i| < 1$$
.

23. a)
$$|z-2+i| < 1;$$
 6) $|z+2i| = |z-2i|;$ 6) $|z+2i| = |z-2i|$

$$e$$
) Re $z^2 < 4$.

24. a)
$$2 < |z+4| < 3$$
; b) $|z+i| = |z-2|$; b) $|z+i| = |z-2|$;

6)
$$|z+i|-|z-2|$$
.

$$e$$
) Im $z^2 = 1$

25 a)
$$|z-1|+|z+1|=3$$

$$\delta$$
) $|z-4+i| \leq 2$;

25. a)
$$|z-1|+|z+1|=3$$
; 6) $|z-4+i| \le 2$; 6) $0 \le \text{Re}(z+2-i) < 3$.

$$\delta) \quad |z-1|=4;$$

$$(e)$$
 $\frac{\pi}{6} < \arg z < \frac{\pi}{2}$

$$(5) \quad |z+3-2i|=4;$$

$$e$$
) Im $z < -2$.

- **28.** a) |z-i| < 3; 6) |z+3-4i| = 2; 6) |z+3-4i| = 2;
- **29.** a) |z-3i| < 2; δ) |z-i| = |z+2|; ϵ) Re $z^2 = 1$.
- **30.** a) |z+4|=3; 6) |z+i|=|z-2|; 6) $|mz^2=1$.

Задание 2. Найти

- 1. $Arc \cos i$, z^i , tg z, sh z, Ln z, $e \cos i = -2 + 2i$.
- 2. $Arc \sin 3i$, 2^z , $\cos z$, sh z, Ln z, $\sec \pi z = -2 3i$.
- 3. Arsh(-2), e^z , $\sin z$, sh z, Ln z, $\sec z = -2 + 4i$.
- **4.** Arctg 5i, z^3 , sin z, sh z, Ln z, ctg z, если z = -2 i.
- 5. $Arc \sin 7i$, e^z , ctg z, ch z, Ln z, ecn z = -2 + i.
- **6.** Arc cos 9i, z^i , tg 4i, sh z, Ln z, если z = -1 + 4i.
- 7. $Arc\sin(-i)$, 2^z , $\cos z$, shz, Lnz, $\exp z = -1 3i$.
- **8.** Arsh 3, e^z , $\sin z$, $\sin z$, $\ln z$, ecли z = -1 + 2i.
- **9.** Arth 3, z^3 , $\sin z$, cth z, Ln z, ecnu z = -1 + i.
- **10.** $Arc \cos 3i$, e^z , ctg z, ch z, ecn z = -1 i.
- **11.** $Arc\sin 5i$, z^{1+i} , tg z, sh z, Ln z, ecn z = 1 + 4i.
- **12.** Arsh 2, 4^z , $\cos z$, sh z, Ln z, если z = 1 3i.
- **13.** $Arc\cos 2i$, $(1+i)^z$, tgz, chz, Lnz, ecn z = 1+2i.
- **14.** Arctg 6i, z^3 , $\sin z$, cth z, Ln z, ecn z = 1 + i.
- 15. Arctg z, e^z , ctg z, ch z, Ln z, если z = 1-i.
- **16.** Arch 4, z^{2-i} , tg z, sh z, Ln z, ecn u z = 3 + 4i.
- 17. $Ar sh 6, 4^z, cos z, sh z, Ln z,$ если z = 3-3i.
- **18.** $Arth 2, e^z, \sin z, sh z, Ln z,$ echiu z = 2 + 2i.
- **19.** $Arc\sin(-4i)$, z^3 , $\sin z$, cth z, Ln z, ecn z = 3 + i.
- **20.** Arctg 3i, e^z , ctg z, ch z, Ln z, ecли z = 2-i.
- **21.** $Arc\cos 7i$, z^{2-i} , tg z, sh z, Ln z, ecn z = 2 + 4i.
- **22.** $Arc\sin(-5i)$, e^z , ctgz, chz, Lnz, $ec\pi z = 2-3i$.
- **23.** Arsh(-3), e^z , $\sin z$, sh z, Ln z, ecn u z = 3 + 2i.
- **24.** $Arch 2, z^3, ctg z, sin z, Ln z,$ ecnu z = 2 + i.

25.
$$Arctg 3i$$
, e^z , $ctg z$, chz , Lnz , $ecnu z = 3-i$.

26. $Arth 9z^{1-i}$, $tg z$, shz , Lnz , $ecnu z = -3+i$.

27. $Arc \cos i$, z^i , $tg z$, shz , Lnz , $ecnu z = -2+2i$.

28. $Arsh(-2)$, e^z , $\sin z$, chz , Lnz , $ecnu z = -2+4i$.

29. $Arctg 5i$, z^3 , $\cos z$, shz , Lnz , $ecnu z = -2-i$.

30. $Arc \cos 9i$, z^i , $tg 4i$, shz , Lnz , $ecnu z = -1+4i$.

Задание 3. Доказать тождество

1.	$sh z = -i \sin iz.$	16.	$ch^2 z - sh^2 z = 1.$
2.	$chz = \cos iz.$	17.	sh 2z = 2 sh z ch z.
3.	th z = -i tg iz.	18.	$ch (z_1 + z_2) = ch z_1 \cdot ch z_2 + sh z_1 \cdot sh z_2.$
4.	cth z = i ctg iz.	19.	$\sin z = \sin x \cdot ch y + i \cos x \cdot shy.$
5.	$ch^2 z + sh^2 z = ch 2z.$	20.	$\cos z = \cos x \cdot chy - i\sin x \cdot sh y.$
6.	$ch^2z - sh^2z = 1.$	21.	$sh z = -i \sin i z.$
7.	sh 2z = 2sh z ch z.	22.	$ch z = \cos i z.$
8.	$ch(z_1+z_2)=chz_1\cdot chz_2+shz_1\cdot shz_2.$	23.	th z = -i tg i z.
9.	$\sin z = \sin x ch y + i \cos x \cdot sh y.$	24.	cth z = i ctg i z.
10.	$\cos z = \cos x \cdot ch \ y - i \sin x \cdot sh \ y.$	25.	$ch^2z + sh^2x = ch2z.$
11.	$sh z = -i \sin i z.$	26.	$ch^2z - sh^2z = 1.$
12.	$ch z = \cos i z.$	27.	th z = -i tg i z.
13.	th z = -i tg i z.	28.	cth z = i ctg i z.
14.	cth z = i ctg i z.	29.	$ch^2z + sh^2z = ch2z.$
15.	$ch^2 z + sh^2 z = ch 2z.$	30.	sh 2z = 2 sh z ch z.

Задание 4. Проверить, является ли функция f(z) аналитической. Если да, то найти $f'(z_0)$.

	f(z)	z ₀		f(z)	z_0
1.	$(iz)^3$	-1+i	2.	$i(1-z^2)-2z$	-2+i
3.	e^{-z^2}	2-3i	4.	e^{1-2z}	$\frac{1}{2} + \frac{\pi i}{3}$

5.	z^3+3z-1	2+3i	6.	$\frac{1}{2z} + i z^2$	3-4i
7.	$\sin 2z$	$\frac{\pi}{4} + i\frac{\pi}{3}$	8.	$i \ln z + (3-i)z$	2-2i
9.	2^z	1+i	10.	$(2+i)e^z + (1-i)z$	1+i
11.	$\ln z + 3z^2 - 6z$	3-4i	12.	$2i\cos z$	$\frac{\pi}{4} + i\frac{\pi}{6}$
13.	$\cos 2z$	$\frac{\pi}{4} + i\frac{\pi}{6}$	14.	$z^3 + z(1+i)$	2-i
15.	ze^{2z}	$-1+i\frac{\pi}{2}$	16.	2shz + (3+i)z	πi
17.	$2z^3 - z + 4$	1-i	18.	$(2-i)z^2 - (1+3i)z$	3+2i
19.	3^z	2+2i	20.	$2z-iz^2$	1+2i
21.	e^{iz^2}	$\frac{\sqrt{\pi}}{2}i + 1$	22.	2ch z + i z	$\frac{\pi}{2}i$
23.	$z^2 + (3+2i)z$	2-i	24.	ze^{2z}	$2-i\frac{\pi}{2}$
25.	$2z-iz^2$	3+i	26.	$\cos 4z$	$\frac{\pi}{8} + i\frac{\pi}{6}$
27.	$\sin 2z$	$\frac{\pi}{4} + i\frac{\pi}{6}$	28.	$\ln z + 4z^2 - 3z$	4-3i
29.	$(5-i)z - \frac{i}{z}$	4 + 3 <i>i</i>	30.	2^z	2+2i

Задание 5. Найти аналитическую функцию f(z) по заданной действительной или мнимой части

1.
$$f(z) = u + iv$$
, $u(x, y) = x^2 - y^2 + 3x - 2y$.

2.
$$f(z) = u + iv$$
, $v(x, y) = e^{x} (x \sin y + y \cos y)$.

3.
$$f(z) = u + iv$$
, $u(x, y) = 5x + y - \frac{3y}{x^2 + y^2}$, $0 < |z| < \infty$.

4.
$$f(z) = u + iv$$
, $v(x, y) = 5y - x - \frac{3x}{x^2 + y^2}$, $0 < |z| < \infty$.

5.
$$f(z) = u + iv$$
, $v(x, y) = 2xy + 2x + 3y$.

6.
$$f(z) = u + iv$$
, $u(x, y) = 2xy + 2x$.

7.
$$f(z) = u + iv$$
, $u(x, y) = -\left(\frac{2y}{x^2 + y^2} + y + 2x\right)$, $0 < |z| < \infty$.

8.
$$f(z) = u + iv$$
, $u(x, y) = \frac{2x}{x^2 + y^2} - x + 2y$, $0 < |z| < \infty$.

9.
$$f(z) = u + iv$$
, $u(x, y) = e^{x}(x \cos y - y \sin y)$.

10.
$$f(z) = u + iv$$
, $u(x, y) = x^2 - y^2 + \sin x (e^y - e^{-y})$.

11.
$$f(z) = u + iv$$
, $v(x, y) = 2y + y^2 - x^2$.

12.
$$f(z) = u + iv$$
, $u(x, y) = \frac{x}{2(x^2 + y^2)} - 2xy$, $0 < |z| < \infty$.

13.
$$f(z) = u + iv$$
, $v(x, y) = 2xy + (e^y + e^{-y}) \cdot \cos x$.

14.
$$f(z) = u + iv$$
, $v(x, y) = x \cos x \cdot sh y + y \sin x \cdot ch y$.

15.
$$f(z) = u + iv$$
, $v(x, y) = x^2 - y^2 - \frac{y}{2(x^2 + y^2)}$, $0 < |z| < \infty$.

16.
$$f(z) = u + iv$$
, $v(x, y) = \frac{1}{2} \ln(x^2 + y^2) + 3y - x$, $0 < |z| < \infty$.

17.
$$f(z) = u + iv$$
, $v(x, y) = 3x^2y - y^3 + x + y$.

18.
$$f(z) = u + iv$$
, $u(x, y) = 3x + y - arctg \frac{y}{x}$, $0 < |z| < \infty$.

19.
$$f(z) = u + iv$$
, $u(x, y) = x^3 - 3xy + x - y$.

20.
$$f(z) = u + iv$$
, $u(x, y) = -2e^x \sin y + x + y$.

21.
$$f(z) = u + iv$$
, $u(x, y) = x \sin x \, chy - y \cos x \, shy$.

22.
$$f(z) = u + iv$$
, $v(x, y) = e^x \sin y + e^{-x} \sin y + 3y + x$.

23.
$$f(z) = u + iv$$
, $v(x, y) = 2e^x \cos y + y - x$.

24.
$$f(z) = u + iv$$
, $u(x, y) = \cos y \cdot (e^x - e^{-x}) + 3x - y$.

25.
$$f(z) = u + iv$$
, $v(x, y) = (e^x - e^{-x})\sin y + x$.

26.
$$f(z) = u + iv$$
, $u(x, y) = e^x \cos y + e^{-x} \cos y - y$.

27.
$$f(z) = u + iv$$
, $v(x, y) = 2y + y^2 - x^2$.

28.
$$f(z) = u + iv$$
, $u(x, y) = \frac{x}{2(x^2 + y^2)} - 2xy$.

29.
$$f(z) = u + iv$$
, $v(x, y) = e^{x}(x \sin y + y \cos y)$.

30.
$$f(z) = u + iv$$
, $u(x, y) = x^2 - y^2 + \sin x (e^y - e^{-y})$.

Задание 6. Вычислить

- $\int_{-\infty}^{\infty} \operatorname{Re}(z^2) dz$, где l дуга параболы $y = x^2$ от $z_1 = 0$ до $z_2 = 1 + i$.
- $\int\limits_{l}^{l} \operatorname{Im} z \cdot \operatorname{Re}(z^{2}) \, dz \,, \, \text{где} \ l \, \text{ отрезок прямой } y = 2 + x \, \text{ от } z_{1} = -1 + i \, \text{ до}$
- $\int\limits_{l} \operatorname{Re} z \cdot \operatorname{Re}(z^{2}) \, dz$, где $\, l \,$ дуга параболы $\, y = 1 x^{2} \,$ от $\, z_{1} = -1 \,$ до $z_2 = i$.
- $\int_{I} z \cdot \text{Re}(z^2) dz$, где l дуга параболы $y = -x^2$ от $z_1 = 0$ до $z_2 = 1 i$.
- $\int \operatorname{Re}(z^2) \cdot \operatorname{Im}(z+2-3i) dz$, где l отрезок прямой y=3-x от $z_1=3i$
- **6.** $\int_{1}^{-3} z^{3} dz$, где l дуга параболы $y = x^{2}$ от $z_{1} = 0$ до $z_{2} = 1 + i$.
- $\int_{l}^{\infty} z^{-2} \cdot \operatorname{Im} z \, dz$, где l отрезок прямой y = 2 + x от $z_1 = -1 + i$ до
- $\int\limits_{l}^{-2} {\rm cRe}\,z\,dz$, где l дуга параболы $y=1-x^2$ от $z_1=-1$ до $z_2=i$.
- 9. $\int_{l} z \cdot \overline{z}^{2} dz$, где l дуга параболы $y = -x^{2}$ от $z_{1} = 0$ до $z_{2} = 1 i$.

 10. $\int_{l} \overline{z}^{2} \cdot \operatorname{Im}(z + 2 3i) dz$, где l отрезок прямой y = 3 x от $z_{1} = 3i$ до
- **11.** $\int_{1}^{\infty} z \cdot \text{Im}(z^{2}) dz$, где l дуга параболы $y = x^{2}$ от $z_{1} = 0$ до $z_{2} = 1 + i$.
- $\int_{l} \operatorname{Im} z \cdot \operatorname{Im}(z^2) dz$, где l отрезок прямой y = 2 + x от $z_1 = -1 + i$ до $z_2 = 1 + 3i$.
- **13.** $\int \operatorname{Re} z \cdot \operatorname{Im}(z^2) dz$, где l дуга параболы $y = 1 x^2$ от $z_1 = -1$ до

$$z_2 = i$$

- **14.** $\int_{l} z \cdot \text{Im}(z^2) dz$, где l дуга параболы $y = -x^2$ от $z_1 = 0$ до $z_2 = 1 i$.
- **15.** $\int_{l} \text{Im}(z^2) \cdot \text{Im}(z+2-3i) dz$, где l отрезок прямой y=3-x от $z_1=3i$ до $z_2=3$.
- **16.** $\int_{l} z \cdot \overline{(z+1-i)} \, dz$, где l дуга параболы $y = x^2$ от $z_1 = 0$ до $z_2 = 1+i$.
- 17. $\int\limits_{l}\overline{z+1-i}\cdot \operatorname{Im}z\,dz$, где l дуга параболы y=2+x от $z_1=-1+i$ до $z_2=1+3i$.
- **18.** $\int\limits_{l}\overline{(z+1-i)}\cdot\operatorname{Re}z\,dz\,,$ где l дуга параболы $y=1-x^2$ от $z_1=-1$ до $z_2=i\,.$
- **19.** $\int\limits_{l}z\cdot\overline{(z+1-i)}\,dz$, где $\,l$ дуга параболы $\,y=-x^2\,$ от $\,z_1=0\,$ до $\,z_2=1-i\,$.
- **20.** $\int_{l} \overline{(z+1-i)} \cdot \operatorname{Im}(z+2-3i) \, dz$, где l отрезок прямой y=3-x от $z_1=3i$ до $z_2=3$.
- **21.** $\int\limits_{l} {\rm Im}\,z\cdot{\rm Re}(z^2)\,dz$, где l отрезок прямой y=2+x от $z_1=-1+i$ до $z_2=1+3i$.
- **22.** $\int_{l}^{-2} \cdot \operatorname{Re} z \, dz$, где l дуга параболы $y = 1 x^2$ от $z_1 = -1$ до $z_2 = i$.
- **23.** $\int_{l} z \cdot \overline{z}^{2} dz$, где l дуга параболы $y = -x^{2}$ от $z_{1} = 0$ до $z_{2} = 1 i$.
- **24.** $\int_{l} \text{Im}(z^2) \cdot \text{Im}(z+2-3i) dz$, где l отрезок прямой y=3-x от $z_1=3i$ до $z_2=3$.
- **25.** $\int\limits_{l}\overline{(z+1-i)}\cdot \operatorname{Im}z\,dz\,,$ где l дуга параболы $y=x^2$ от $z_1=0$ до $z_2=1+i\,.$

26.
$$\int\limits_{l}\overline{z-1+2i}\cdot \operatorname{Re}(z-i)\,dz\,,$$
 где l - дуга параболы $y=-x^2$ от $z_1=0$ до
$$z_2=1-i\,.$$

27.
$$\int\limits_{l} {{\rm Im}\,z\cdot {\rm Im}(z^2)\,dz}$$
 , где l - отрезок прямой $y=2+x$ от $z_1=-1+i$ до $z_2=1+3i$.

28.
$$\int_{l}^{\infty} z \cdot \text{Im}(z^2) dz$$
, где l - дуга параболы $y = x^2$ от $z_1 = 0$ до $z_2 = 1 + i$.

29.
$$\int_{l}^{\infty} z^{-3} dz$$
, где l - дуга параболы $y = x^2$ от $z_1 = 0$ до $z_2 = 1 + i$.

30.
$$\int_{l}^{l} z^{-2} \cdot \text{Re}(z+2-3i) \, dz$$
, где l - отрезок прямой $y=3-x$ от $z_1=3i$ до $z_2=3$.

Задание 7. Вычислить интегралы Коши:

1.
$$a) \oint_C \frac{e^z}{(z+3)(z-3i)} dz$$
, $z \partial e \quad C : |z+3| = 1$;

6)
$$\oint_C \frac{4z^5 + 2z^2 + 1}{(z+3i)^3} dz$$
, $z \partial e \ C : |z+3i| = 1$.

2.
$$a) \oint_C \frac{\cos z}{(z+2+3i)(z+3i)} dz$$
, $z \partial e \quad C : |z+2+3i| = 1$;

6)
$$\oint_C \frac{z^5 - z^4 + z^3}{6(z - 3i)^4} dz$$
, $\partial e C: |z - 3i| = 1$.

3.
$$a) \oint_C \frac{\sin z}{(z+2-4i)(z+2-2i)} dz$$
, $z \partial e \quad C : |z+2-4i| = 1$;

6)
$$\oint_C \frac{z^4 + 6z - 10}{(z - 2 + 2i)^3} dz$$
, $\partial e C: |z - 2 + 2i| = 1$.

4. a)
$$\oint_C \frac{ch z}{(z+2+i)(z+4+i)} dz$$
, $che C: |z+2+i| = 1$;

6)
$$\oint_C \frac{z^4 + 2z^2 + 3z}{12(z - 4 - i)^4} dz$$
, $\partial e C: |z - 4 - i| = 1$.

5.
$$a) \oint_C \frac{sh z}{(z+2-i)(z+2-3i)} dz$$
, $z \partial e \quad C : |z+2-i| = 1$;

6)
$$\oint_C \frac{z^4 + 3iz^2}{12(z-2+3i)^3} dz$$
, $\partial e C: |z-2+3i| = 1$.

6.
$$a) \oint_C \frac{e^z}{(z+1-4i)(z+5-4i)} dz$$
, $z \partial e \quad C : |z+1-4i| = 2$;

6)
$$\oint_C \frac{2z^4 - 3z^3 + z}{(z - 5 + 4i)^3} dz$$
, $z \partial e \quad C : |z - 5 + 4i| = 2$.

7.
$$a) \oint_C \frac{\cos z}{(z+1+4i)(z+1+8i)} dz$$
, $z \partial e \quad C: |z+1+4i| = 2$;

6)
$$\oint_C \frac{z^5 + z^4 - z^3}{12(z - 1 - 8i)^4} dz$$
, $\partial e C : |z - 1 - 8i| = 2$.

8.
$$a) \oint_C \frac{\sin z}{(z+1-2i)(z-3-2i)} dz$$
, $z \partial e \quad C : |z+1-2i| = 2$;

6)
$$\oint_C \frac{z^3 + 2z - 3}{(z + 3 + 2i)^3} dz$$
, $\partial e C: |z + 3 + 2i| = 2$.

9.
$$a) \oint_C \frac{ch z}{(z+1-i)(z+1-7i)} dz$$
, $z \partial e \quad C: |z+1-i| = 3$;

6)
$$\oint_C \frac{z^4 + 2z^2}{(z - 1 + 7i)^4} dz$$
, $\partial e C: |z - 1 + 7i| = 3$.

10. a)
$$\oint_C \frac{sh z}{(z+1+i)(z-5+i)} dz$$
, $c \partial e \quad C : |z+1+i| = 3$;

6)
$$\oint_C \frac{z^4 - 3z^2}{3(z + 5 - i)^3} dz$$
, $z \partial e \quad C : |z + 5 - i| = 7$.

11.
$$a) \oint_C \frac{e^z}{(z-1-4i)(z-1+2i)} dz$$
, $z \partial e \quad C : |z-1-4i| = 3$;

6)
$$\oint_C \frac{z^4 + 2z^2 + 1}{(z - 1 + 2i)^3} dz$$
, $z \partial e \quad C : |z - 1 + 2i| = 3$.

12. a)
$$\oint_C \frac{\cos z}{(z-1+3i)(z-7+3i)} dz$$
, $z \partial e \ C : |z-1+3i| = 3$;

6)
$$\oint_C \frac{z^5}{6(z+7-3i)^4} dz$$
, $z \partial e \ C : |z+7-3i| = 3$.

13. a)
$$\oint_C \frac{\sin z}{(z-1-2i)(z-1-10i)} dz$$
, $z \partial e \quad C : |z-1-2i| = 4$;

6)
$$\oint_C \frac{z^3 + z + 4}{3(z + 1 + 10i)^3} dz$$
, $z \partial e \quad C : |z + 1 + 10i| = 4$.

14. a)
$$\oint_C \frac{ch z}{(z-1-i)(z+7-i)} dz$$
, $\varepsilon \partial e \ C : |z-1-i| = 4$;

6)
$$\oint_C \frac{z^5 + z^3}{6(z - 7 + i)^4} dz$$
, $z \partial e \quad C : |z - 7 + i| = 4$.

15. a)
$$\oint_C \frac{sh z}{(z-1+i)(z-1+9i)} dz$$
, $z \partial e \quad C: |z-1+i| = 4$;

6)
$$\oint_C \frac{z^3 + 2iz + 6}{3(z + 1 - 9i)^3} dz$$
, $z \partial e \quad C : |z + 1 - 9i| = 4$.

16. a)
$$\oint_C \frac{e^z}{(z-3-4i)(z-11-4i)} dz$$
, $z \partial e \quad C : |z-3-4i| = 4$;

$$\oint_C \frac{z^4 - 3z^2 + 6}{(z + 11 + 4i)^3} dz, \quad z \partial e \quad C : |z + 11 + 4i| = 4.$$

17. a)
$$\oint_C \frac{\cos z}{(z-3+3i)(z-3-4i)} dz$$
, $z \partial e \quad C : |z-3+3i| = 5$;

6)
$$\oint_C \frac{z^5 - 2z^4 + z^3}{12(z+3+7i)^4} dz, \quad \text{rde} \quad C: |z+3+7i| = 5.$$

18. a)
$$\oint_C \frac{\sin z}{(z-2-2i)(z-12-2i)} dz$$
, $z \partial e \quad C : |z-2-2i| = 5$;

6)
$$\oint_C \frac{z^3 - z}{3(z + 12 + 2i)^3} dz$$
, $\partial e C : |z + 12 + 2i| = 5$.

19. a)
$$\oint_C \frac{ch z}{(z-3-i)(z-3+9i)} dz$$
, $z \partial e \quad C : |z-3-i| = 5$;

6)
$$\oint_C \frac{z^5 - z^3}{6(z + 3 - 9i)^3} dz$$
, $\partial e C: |z + 3 - 9i| = 5$.

20. a)
$$\oint_C \frac{sh z}{(z-2+i)(z+8+i)} dz$$
, $z \partial e \quad C : |z-2+i| = 5$;

6)
$$\oint_C \frac{z^3 + iz - 7}{3(z - 8 - i)^3} dz$$
, $z \partial e \quad C : |z - 8 - i| = 5$.

21.
$$a) \oint_C \frac{e^z}{(z-2-4i)(z-2-16i)} dz$$
, $z \partial e \quad C : |z-2-4i| = 3$;

6)
$$\oint_C \frac{z^4 - z^3 + z}{(z + 2 + 16i)^3} dz$$
, $\partial e C : |z + 2 + 16i| = 6$.

22. a)
$$\oint_C \frac{\cos z \ dz}{(z-2+3i)(z-14+3i)}$$
, $\varepsilon \partial e \ C: |z-2+3i| = 6$;

6)
$$\oint_C \frac{z^5}{6(z+14-3i)^4} dz$$
, $z \partial e \quad C : |z+14-3i| = 6$.

23. a)
$$\oint_C \frac{\sin z}{(z-3-2i)(z-3+10i)} dz$$
, $z \partial e \quad C : |z-3-2i| = 6$;

6)
$$\oint_C \frac{z^3 + z}{(z - 3 + 10i)^3} dz$$
, $\partial e C: |z - 3 + 10i| = 6$.

24. a)
$$\oint_C \frac{ch z}{(z-2-i)(z+10-i)} dz$$
, $z \partial e \quad C : |z-2-i| = 6$;

$$6) \oint_C \frac{z^5}{6(z-10+i)} dz, \quad \partial e \quad C: |z-10+i| = 6.$$

25. a)
$$\oint_C \frac{sh z}{(z-3+i)(z-3-4i)} dz$$
, $z \partial e \quad C : |z-3+i| = 1$;

6)
$$\oint_C \frac{z^3 - 2z + i}{(z - 3 - 4i)^3} dz$$
, $z \partial e \quad C : |z - 3 - 4i| = 1$.

26. a)
$$\oint_C \frac{e^z}{(z+3-i)(z+3-3i)} dz$$
, $z \partial e \quad C : |z+3-i| = 1$;

6)
$$\oint_C \frac{z^3 + 2z^2 + 1}{(z - 3 + 3i)^3} dz$$
, $z \partial e \quad C : |z - 3 + 3i| = 1$.

27. a)
$$\oint_C \frac{sh z}{(z+1+i)(z-5+i)} dz$$
, $z \partial e \quad C : |z+1+i| = 3$;

6)
$$\oint_C \frac{z^4 - 3z^2}{(z + 5 - i)^3} dz$$
, $z \partial e \quad C : |z + 5 - i| = 1$.

28. a)
$$\oint_C \frac{ch z}{(z+1-i)(z+1-7i)} dz$$
, $z \partial e \quad C : |z+1-i| = 3$;

6)
$$\oint_C \frac{z^4 + 2z^3}{3(z-1+7i)^4} dz$$
, $\partial e C: |z-1+7i| = 3$.

29. a)
$$\oint_C \frac{sh z}{(z+2-i)(z+2-3i)} dz$$
, $z \partial e \quad C : |z+2-i| = 1$;

6)
$$\oint \frac{z^4 + 3iz^2}{(z - 2 + 3i)^2} dz$$
, $z \partial e \quad C : |z - 2 + 3i| = 1$.

30. a)
$$\oint_C \frac{\cos z}{(z+1+4i)(z+1+8i)} dz$$
, $z \partial e \quad C: |z+1+4i| = 2$;

6)
$$\oint_C \frac{z^5 + z^4 - z^3}{(z - 1 - 8i)^4} dz$$
, $\partial e C: |z - 1 - 8i| = 2$.

Задание 8. Найти вычеты функции относительно всех изолированных особых точек

1.
$$f(z) = \frac{3z^2 - 4z + 1}{z^2 - z^4}.$$
2.
$$f(z) = \frac{z^2 - 5z + 4}{(z^2 - 1)^2}.$$
3.
$$f(z) = \frac{z^6 + 2z - i}{(z + 1)^4 \cdot z^2}.$$
4.
$$f(z) = \frac{\cos 3z}{(z - 2)^4}.$$
5.
$$f(z) = \frac{2z^2 - 3z + 6}{z(1 + z^2)}.$$
6.
$$f(z) = \frac{z + 2}{z(z + 1)(z - 1)^3}.$$

7.	$f(z) = \frac{z^2 + z - 4}{z^2(z - 1)}.$	8.	$f(z) = \frac{z^2 + 1}{(z - 3)^2 (z^2 + 4)}.$
9.	$f(z) = \frac{\sin 2z}{z(z+1)^3}.$	10.	$f(z) = \frac{e^z}{z(z^2+1)^2}.$
11.	$f(z) = \frac{e^z}{z^2(z^2 + 16)}.$	12.	$f(z) = \frac{z^3 - 2z^2 + 4z - 1}{z^5 - z^2}.$
13.	$f(z) = \frac{z^2 + 4z + 6}{(z+i)(z-2)^2}.$	14.	$f(z) = \frac{2z^2 - 5z + 1}{z^2 (z^2 + 4)}.$
15.	$f(z) = \frac{z^2 + 4z - 1}{(z+3)^2}.$	16.	$f(z) = \frac{\sin 2z}{z(z^2 + 1)}.$
17.	$f(z) = \frac{z^3}{(z^2 + 1)^2}.$	18.	$f(z) = \frac{3z^2 - 2z + 4}{z^6 + z^4}.$
19.	$f(z) = \frac{z^2 + 1}{(z - 3)^2 (z^2 + 4)}.$	20.	$f(z) = \frac{e^z}{z(z^2 - 1)}.$
21.	$f(z) = \frac{\sin 2z}{(z^2+1)z^2}.$	22.	$f(z) = \frac{1 - \cos z}{z^2 (z^2 + 1)}.$
23.	$f(z) = \frac{\cos^2 z}{z^2(z+i)}.$	24.	$f(z) = \frac{z^2 + 4z + 6}{(z+i)(z-2)^2}.$
25.	$f(z) = \frac{z^2 + 6z - 1}{(z+1)^2(z-3)}.$	26.	$f(z) = \frac{z^2 + 4z - 1}{(z+3)^2}.$
27.	$f(z) = \frac{\cos 2z}{z(z-1)^2}.$	28.	$f(z) = \frac{z^2 + z - 4}{z^2(z - 1)}.$ $f(z) = \frac{\sin 2z}{z(z + 1)^3}.$
29.	$f(z) = \frac{z + 2 - 3i}{z^2 - z^5}.$	30.	$f(z) = \frac{\sin 2z}{z(z+1)^3}.$

Задание 9. Вычислить интеграл с помощью теорем о вычетах

1.
$$\frac{1}{2\pi i} \oint_C \frac{z^6 + 2z^5 - i}{(z+i)^4 z^2} dz$$
, $z \partial e \quad C : |z| = 2$.

1.
$$\frac{1}{2\pi i} \oint_C \frac{z^6 + 2z^5 - i}{(z+i)^4 z^2} dz, \quad z \partial e \quad C : |z| = 2.$$
2.
$$\oint_C \frac{2z^2 - 3z + 6}{z(1+z^2)} dz, \quad z \partial e \quad C : |z| = 3.$$

3.
$$\oint_C \frac{z^2 + z - 4}{z^2(z - 1)} dz, \quad z \partial e \quad C: |z - 1| = \frac{1}{4}.$$

4.
$$\frac{1}{2\pi i} \oint_C \frac{\sin 2z}{z(z-1)^2} dz, \quad z \partial e \quad C: |z| = 2.$$

5.
$$\frac{1}{2\pi i} \oint_C \frac{e^z}{z^2 (z^2 + 16)} dz, \quad \varepsilon \partial e \quad C: |z| = 5.$$

6.
$$\oint_C \frac{z^2 + 4z + 6}{(z - 2)^2 (z + i)} dz, \quad \text{ide} \quad C: |z + i| = 1.$$

7.
$$\oint_C \frac{z^2 + 3z - 2}{(z^2 + 1)(z - 1)} dz, \quad z \partial e \quad C : |z| = 2.$$

8.
$$\oint_C \frac{z^2 + 3z - 2}{(z^2 + 1)(z - 1)} dz, \quad e \partial e \quad C: |z| = 2.$$

9.
$$\frac{1}{2\pi i} \oint_C \frac{e^z}{z(z^2+1)} dz, \quad \varepsilon \partial e \quad C: |z+i| = \frac{1}{2}.$$

10.
$$\oint_C \frac{3z^2 - 2z + 4}{z^6 + z^2} dz, \quad \varepsilon \partial e \quad C: |z - i| = \frac{1}{4}.$$

11.
$$\oint_C \frac{\sin 2z}{z(z^2+1)} dz, \quad z \partial e \quad C: |z| = 2.$$

12.
$$\frac{1}{2\pi i} \oint_C \frac{2z^2 - 5z + 1}{z^2 (z^2 + 4)} dz$$
, $z \partial e \ C : |z| = 3$.

13.
$$\frac{1}{2\pi i} \oint_C \frac{z^3 - 2z^2 + 4z - 1}{z^5 - z^2} dz$$
, $z \partial e \quad C : |z| = 0,5$.

14.
$$\frac{1}{2\pi i} \oint_C \frac{e^z}{z(z^2-1)^2} dz$$
, $z \partial e \ C : |z-i| = \frac{1}{4}$.

15.
$$\oint_C \frac{z^2 + z - 2}{(z^2 + i)(z - 1)} dz, \quad z \partial e \quad C : |z - 1| = 1.$$

16.
$$\frac{1}{2\pi i} \oint_C \frac{1-\cos z}{z^2 (z^2+1)} dz$$
, $z \partial e \ C : |z+i| = 0,5$.

17.
$$\oint_C \frac{z^2 + 4z - 1}{(z+3)^2} dz, \quad z \partial e \quad C: |z+3| = 1.$$

18.
$$\frac{1}{2\pi i} \oint_C \frac{z^3}{(z^2+1)^2} dz$$
, $z \partial e \ C : |z| = 4$.

19.
$$\oint_C \frac{\cos 4z}{z^3(z+2i)} dz, \quad z\partial e \quad C: |z+2i| = 0,5.$$

20.
$$\oint_C \frac{z^2 - 5z + 4}{(z^2 - 1)^2} dz, \quad \text{roe} \quad C: |z + 1| = \frac{1}{2}.$$

21.
$$\oint_C \frac{\cos^2 z}{z^2(z+i)} dz, \quad z \partial e \quad C: |z| = 2.$$

22.
$$\frac{1}{2\pi i} \oint_C \frac{\cos 2z}{(z-1)^2 z} dz, \quad \varepsilon \partial e \quad C: |z-1| = 0,5.$$

23.
$$\frac{1}{2\pi i} \oint_C \frac{3z^2 - 4z + 1}{z^3 - z^5} dz, \quad \varepsilon \partial e \quad C: |z + 1| = \frac{1}{4}.$$

24.
$$\oint_C \frac{z+2-3i}{z^2-z^5} dz, \quad \varepsilon \partial e \quad C: |z| = \frac{1}{2}.$$

25.
$$\frac{1}{2\pi i} \oint_C \frac{\cos 3z}{(z-2)^4} dz, \quad \varepsilon \partial e \quad C: |z-2| = 1.$$

26.
$$\oint_C \frac{z+2}{z(z+1)(z-1)^3} dz, \quad \varepsilon \partial e \quad C: |z| = 2.$$

27.
$$\oint_C \frac{z^2 + 3z - 2}{(z^2 + 1)(z - 1)} dz, \quad z \partial e \quad C : |z| = 2.$$

28.
$$\oint_C \frac{z^2 + 4z + 6}{(z - 2)^2 (z + i)} dz, \quad z \partial e \quad C : |z + i| = 1.$$

29.
$$\frac{1}{2\pi i} \oint_C \frac{\sin 2z}{z(z+1)^2} dz, \quad z \partial e \quad C: |z| = 2.$$

30.
$$\frac{1}{2\pi i} \oint_C \frac{e^z}{z(z^2+4)} dz, \quad z \partial e \quad C: |z| = 4.$$

VIII. Решение типового варианта АР «ТФКП»

Задание 1. Где расположены точки z, для которых

a)
$$|z-3i| \le 2$$
; 6) $|z+i| = |z-2|$; 6) $-1 < \text{Re } z < 3$.

Решение:

$$a) |z-3i| \leq 2$$

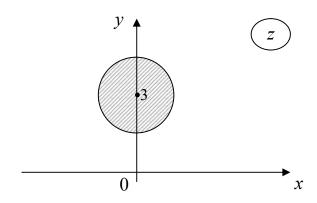
Так как
$$z = x + iy$$
, то $z - 3i = x + iy - 3i = x + i(y - 3)$.

$$\left| x + i \left(y - 3 \right) \right| \le 2$$

$$\sqrt{x^2 + (y-3)^2} \le 2$$

$$x^2 + (y - 3)^2 \le 4$$

Этому неравенству удовлетворяют точки, расположенные внутри круга, с центром в точке (0;3) и радиусом R=2, включая точки, лежащие на окружности.



6)
$$|z+i| = |z-2|$$

 $|z+i| = |x+iy+i| = |x+i(y+1)| = \sqrt{x^2 + (y+1)^2}$
 $|z-i| = |x+iy-2| = |(x-2)+iy| = \sqrt{(x-2)^2 + y^2}$

Подставив в исходное равенство, получим

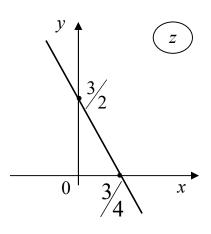
$$\sqrt{x^2 + (y+1)^2} = \sqrt{(x-2)^2 + y^2}$$

$$x^2 + (y+1)^2 = (x-2)^2 + y^2$$

$$x^2 + y^2 + 2xy + 1 = x^2 - 4x + 4xy + y^2$$

$$2y + 1 = -4x + 4$$

$$4x + 2y - 3 = 0$$



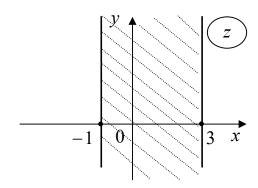
Точки расположены на прямой, которая задается уравнением $y = -2x + \frac{3}{2}$;

$$6) -1 < \text{Re } z < 3$$

$$z = x + iy$$

$$\text{Re } z = x$$

$$-1 < x < 3$$



Неравенству удовлетворяют точки, расположенные в вертикальной полосе между прямыми x = -1 и x = 3, исключая точки на самих прямых.

Задание 2.

Найти: a) $Arc \cos 3i$;

$$\delta$$
) cos z, sh z, если $z = \frac{\pi}{6} - i$;

в)
$$Ln z, 2^z, ecлu z = -1 + i\sqrt{3}$$

Решение:

a) Воспользуемся формулой $Arc\cos z = -i Ln \left(z + \sqrt{z^2 - 1}\right)$ для вычисления $Arc\cos 3i$.

$$Arc\cos 3i = -i Ln \left(3i + \sqrt{(3i)^2 - 1}\right) = -i Ln (3i + \sqrt{-10}).$$

$$\sqrt{-10} = \sqrt{10\cos(-\pi) + i\sin(-\pi)} = \sqrt{10} \left(\cos\frac{-\pi + 2k\pi}{2} + i\sin\frac{-\pi + 2k\pi}{2}\right), \ k = 0,1$$
$$\left(\sqrt{-10}\right)_1 = -\sqrt{10}i, \quad \left(\sqrt{-10}\right)_2 = \sqrt{10}i$$

$$\begin{aligned} & \left(Arc \cos 3i \right)_{1} = -i \, Ln \left(3i - \sqrt{10} \, i \right) = -i \, Ln \left((3 - \sqrt{10}) \, i \right) = \\ & = -i \left(\ln \left| (3 - \sqrt{10}) \, i \right| + i \, \arg \left((3 - \sqrt{10}) \, i \right) + i \, 2k\pi \right) = -i \left(\ln (\sqrt{10} - 3) - \frac{\pi}{2} \, i + i \, 2k\pi \right) = \\ & = 2k\pi - \frac{\pi}{2} - i \ln (\sqrt{10} - 3), \quad k \in \mathbb{Z}. \end{aligned}$$

$$(Arc\cos 3i)_{2} = -i Ln (3i + \sqrt{10}i) = -i Ln ((3 + \sqrt{10})i) =$$

$$= -i \left(\ln \left| (3 + \sqrt{10})i \right| + i \arg \left((3 + \sqrt{10})i \right) + i 2k\pi \right) = -i \left(\ln(\sqrt{10} + 3) + \frac{\pi}{2}i + i 2k\pi \right) =$$

$$= 2k\pi + \frac{\pi}{2} - i \ln(\sqrt{10} + 3), \quad k \in \mathbb{Z}.$$

$$Arc\cos 3i = \begin{cases} \frac{\pi}{2} - i \ln(3 + \sqrt{10}), \\ -\frac{\pi}{2} - i \ln(\sqrt{10} - 3). \end{cases}$$

б) Тригонометрическая функция $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

Вычислим ее значение при $z = \frac{\pi}{6} - i$

$$\cos\left(\frac{\pi}{6} - i\right) = \frac{e^{i\left(\frac{\pi}{6} - i\right)} + e^{-i\left(\frac{\pi}{6} - i\right)}}{2} = \frac{e^{\frac{\pi}{6}i - i^{2}} + e^{-\frac{\pi}{6}i + i^{2}}}{2} = \frac{e^{1 + \frac{\pi}{6}i} + e^{-1 - \frac{\pi}{6}i}}{2} = \frac{1 + \frac{\pi}{6}i + e^{-1 - \frac{\pi}{6}i}}{2} = \frac{1 + \frac{\pi}{6}i + e^{-1 - \frac{\pi}{6}i}}{2} = \frac{1}{2}\left(e^{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) + e^{-1}\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)\right) = \frac{1}{2}\left(e^{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) + e^{-1}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)\right) = \frac{1}{2}\left(\frac{\sqrt{3}}{2}(e + e^{-1}) + \frac{1}{2}(e - e^{-1})i\right) = \frac{\sqrt{3}}{2} \cdot \frac{e + e^{-1}}{2} + \frac{1}{2} \cdot \frac{e - e^{-1}}{2}i = \frac{\sqrt{3}}{2}ch1 + \frac{1}{2}sh1i.$$

Второй способ.

Для вычисления $\cos\left(\frac{\pi}{6}-i\right)$ воспользуемся формулой $\cos z = \cos x \, chy - i \sin x \, sh \, y$.

$$\cos\left(\frac{\pi}{6} - i\right) = \cos\frac{\pi}{6}ch(-1) - i\sin\frac{\pi}{6}sh(-1) = \frac{\sqrt{3}}{2}ch1 + \frac{1}{2}sh1i.$$

Гиперболическая функция $shz = \frac{e^z - e^{-z}}{2}$.

Вычислим ее значение при $z = \frac{\pi}{6} - i$.

Имеют место следующие соотношения:

$$sh z = -i \sin{(i z)}$$

$$\sin{z} = \sin{x} ch y + i \cos{x} sh y$$
Тогда
$$sh\left(\frac{\pi}{6} - i\right) = -i \sin{\left(i\left(\frac{\pi}{6} - i\right)\right)} = -i \sin{\left(1 + \frac{\pi}{6}i\right)} =$$

$$= -i \left(\sin{1} ch \frac{\pi}{6} + i \cos{1} sh \frac{\pi}{6}\right) = \cos{1} sh \frac{\pi}{6} - i \sin{1} ch \frac{\pi}{6}.$$

в) Логарифмическая функция $Ln z = \ln |z| + i \arg z + i 2k\pi$, $k \in \mathbb{Z}$.

Тогда
$$Ln(-1+i\sqrt{3})=\ln\left|-1+i\sqrt{3}\right|+i\arg\left(-1+i\sqrt{3}\right)+i2k\pi,\quad k\in Z.$$
 Поскольку $\left|-1+i\sqrt{3}\right|=\sqrt{1+3}=2,\quad \arg\left(-1+i\sqrt{3}\right)=\frac{2\pi}{3},\quad \text{то}$
$$Ln(-1+i\sqrt{3})=\ln 2+i\left(\frac{2\pi}{3}+2k\pi\right),\quad k\in Z.$$

Общая показательная функция $a^z = e^{z L n a}$. Следовательно, $2^z = e^{z L n 2} = e^{z (\ln 2 + i 2 k \pi)}$.

$$2^{-1+i\sqrt{3}} = e^{(-1+i\sqrt{3})(\ln 2 + i2k\pi)} = e^{-\ln 2 - i2k\pi + i\sqrt{3}\ln 2 - 2\sqrt{3}k\pi} =$$

$$= e^{-\ln 2 - 2\sqrt{3}k\pi + i\left(\sqrt{3}\ln 2 - 2k\pi\right)} = e^{-\ln 2 - 2\sqrt{3}k\pi} \left(\cos\left(\sqrt{3}\ln 2 - 2k\pi\right) + i\sin\left(\sqrt{3}\ln 2 - 2k\pi\right)\right) = \frac{1}{2}e^{-2\sqrt{3}k\pi} \left(\cos\left(\sqrt{3}\ln 2 - 2k\pi\right) + i\sin\left(\sqrt{3}\ln 2 - 2k\pi\right)\right),$$

$$k \in \mathbb{Z}.$$

Задание 3. Доказать тождество $ch^2z + sh^2z = ch2z$.

$$ch^{2}z + sh^{2}z = \left(\frac{e^{z} + e^{-z}}{2}\right)^{2} + \left(\frac{e^{z} - e^{-z}}{2}\right)^{2} = \frac{1}{4}\left(e^{2z} + 2 + e^{-2z}\right) + \frac{1}{4}\left(e^{2z} - 2 + e^{-2z}\right) = \frac{1}{2}e^{2z} + \frac{1}{2}e^{-2z} = \frac{e^{2z} + e^{-2z}}{2} = ch2z$$

Задание 4. Доказать, что функция $f(z) = \sin 3z - i z^2$ аналитическая и найти f'(1-i).

Решение:

Для того, чтобы f(z) была аналитической в области D необходимо и достаточно существование в D непрерывных частных производных от функций u(x,y) u v(x,y), удовлетворяющих условиям Коши-Римана. Проверим их выполнение.

$$f(z) = \sin 3z - i z^2 = \sin (3x + 3y i) - i (x + i y)^2 = \sin 3x ch 3y + i \cos 3x sh 3y - i (x^2 + 2xyi - y^2) = \sin 3x ch 3y + 2xy + i (\cos 3x sh 3y - x^2 + y^2).$$

Тогда
$$u(x, y) = \sin 3x \, ch \, 3y + 2xy;$$
 $v(x, y) = \cos 3x \, sh \, 3y - x^2 + y^2$

$$u'_{x} = 3\cos 3x \, ch \, 3y + 2y;$$
 $v'_{x} = -3\sin 3x \, sh \, 3y - 2x;$
 $u'_{y} = 3\sin 3x \, sh \, 3y + 2x;$ $v'_{y} = 3\cos 3x \, ch \, 3y + 2y;$
 $u'_{x} = v'_{y}, \quad u'_{y} = -v'_{x}, \quad \forall z \in C.$

Так как условия Коши-Римана выполняются, то функция аналитическая $\forall z \in C$.

$$f'(z) = u'_x + iv'_x = (3\cos 3x \, ch \, 3y + 2y) + i(-3\sin 3x \, sh \, 3y - 2x) =$$

$$= 3\cos 3x \, ch \, 3y - i \, 3\sin 3x \, sh \, 3y + 2y - 2x \, i = 3\cos(3x + 3y \, i) - 2(x + iy) \, i =$$

$$= 3\cos 3z - 2z \, i.$$

$$f'(1-i) = (3\cos 3ch \, 3 - 2) + i(3\sin 3sh \, 3 - 2).$$

Задание 5. Найти аналитическую функцию f(z) = u(x, y) + iv(x, y) по заданной мнимой части $v(x, y) = e^x(x \sin y + y \cos y)$

Решение:

Составим оператор Лапласа Δv .

$$v'_{x} = e^{x} (x \sin y + y \cos y) + e^{x} \sin y = e^{x} x \sin y + e^{x} y \cos y + e^{x} \sin y$$

$$v''_{xx} = e^{x} x \sin y + e^{x} \sin y + e^{x} y \cos y + e^{x} \sin y = e^{x} x \sin y + 2e^{x} \cos y$$

$$v'_{y} = e^{x} x \cos y + e^{x} \cos y - e^{x} y \sin y$$

$$v''_{yy} = -xe^{x} \sin y - e^{x} \sin y - e^{x} \sin y - e^{x} y \cos y = -xe^{x} \sin y - 2e^{x} \sin y - 2e^{$$

Так как $\Delta v = 0$, то v является гармонической функцией. Найдем сопряженную ей гармоническую функцию u. Воспользуемся тем, что известен полный дифференциал

$$(x,y)$$

$$(x_0,y_0)$$

$$0$$

$$du = u'_x dx + u'_y dy = v'_y dx - v'_x dy.$$

Тогда

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} v_y' dx - v_x' dy = \int_{(x_0,y_0)}^{(x,y)} (xe^x \cos y + e^x \cos y - e^x y \sin y) dx -$$

$$-(e^x x \sin y + e^x y \cos y + e^x \sin y) dy = \int_{x_0}^{x} (xe^x \cos y_0 + e^x \cos y_0 - e^x y_0 \sin y_0) dx -$$

$$-\int_{y_0}^{y} (e^x x \sin y + e^x y \cos y + e^x \sin y) dy =$$

$$= \left((xe^x - e^x) \cos y_0 + e^x \cos y_0 - e^x y_0 \sin y_0 \right)_{x_0}^{x} -$$

$$-\left(-e^x x \cos y + e^x y \sin y + e^x \cos y - e^x \cos y \right)_{y_0}^{y} = xe^x \cos y_0 - e^x y_0 \sin y_0 -$$

$$-x_0 e^{x_0} \cos y_0 + e^{x_0} y_0 \sin y_0 + xe^x \cos y - ye^x \sin y - xe^x \cos y_0 +$$

$$+e^x y_0 \sin y_0 = xe^x \cos y - ye^x \sin y + e^{x_0} y_0 \sin y_0 - x_0 e^{x_0} \cos y_0 =$$

$$= xe^x \cos y - ye^x \sin y + C.$$

$$u(x, y) = xe^x \cos y - ye^x \sin y + C, \qquad C = y_0 e^{x_0} \sin y_0 - x_0 e^{x_0} \cos y_0.$$
Torga
$$f(z) = xe^x \cos y - ye^x \sin y + C + (xe^x \sin y + ye^x \cos y)i = xe^x \cos y -$$

$$-ye^x \sin y + C + xe^x \sin yi + ye^x \cos yi = xe^x (\cos y + i \sin y) +$$

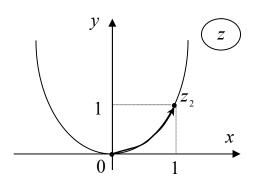
$$+ ye^x (\cos y + i \sin y)i + C = xe^x + ye^x i + C = e^x (x + i y) + C = ze^x + C.$$

Задание 6. Вычислить $\int_{l}^{z} z^{2} \operatorname{Im} z \, dz$, где l – дуга параболы $y = x^{2}$ от

$$z_1 = 0$$
 до $z_2 = 1 + i$.

$$\overline{z} = x - i y;$$

$$\overline{z}^{2} = (x - i y)^{2} = x^{2} - y^{2} - 2xy i = x^{2} - x^{4} - 2x^{3}i;$$



x

Im $z = \text{Im}(x + iy) = y = x^2;$ $z = x + ix^2;$ z = x + iy; dz = (1 + 2xi) dx

$$\int_{l}^{-2} z^{2} \operatorname{Im} z \, dz = \int_{0}^{1} (x^{2} - x^{4} - 2x^{3}i) \, x^{2} (1 + 2xi) \, dx = \int_{0}^{1} (x^{4} - x^{6} - 2x^{5}i + 2x^{5}i - 2x^{7}i + 4x^{6}) \, dx = \int_{0}^{1} (x^{4} + 3x^{6}) \, dx - i \int_{0}^{1} 2x^{7} \, dx = \left(\frac{x^{5}}{5} + \frac{3x^{7}}{7}\right) \Big|_{0}^{1} - \left(\frac{x^{8}}{4}\right) \Big|_{0}^{1} = 0$$

$$= \left(\frac{1}{5} + \frac{3}{7}\right) - \frac{1}{4}i = \frac{22}{35} - \frac{1}{4}i.$$

Задание 7. Вычислить интегралы Коши:

a)
$$\oint_C \frac{\cos z}{(z+1+4i)(z+1+8i)} dz$$
; $C: |z+1+4i| = 2$

6)
$$\oint_C \frac{z^4 + 3iz^2}{(z - 2 + 3i)^3} dz; \qquad C: |z - 2 + 3i| = 1$$

а) Контур интегрирования представляет собой окружность с центром в точке $z_0 = -1 - 4i$ радиуса 2.

Так как функция

$$\frac{\cos z}{z+1+8i}$$

 $ilde{z}_0$

аналитическая в области, ограниченной контуром С,

то можно применить интегральную формулу Коши:

$$\oint_C \frac{f(z)}{z-a} dz = 2\pi i f(a); \qquad C: |z-a| = \rho$$

Тогда

$$\oint_C \frac{\cos z}{(z+1+4i)(z+1+8i)} dz = \oint_C \frac{\frac{\cos z}{z+1+8i}}{z+1+4i} dz = 2\pi i \left(\frac{\cos z}{z+1+8i}\right)_{z=-1-4i} = 2\pi i \frac{\cos(-1-4i)}{-1-4i+1+8i} = \frac{\pi}{2}\cos(-1-4i) = \frac{\pi}{2}(\cos(-1)ch(-4) - i\sin(-1)sh(-4)) = \frac{\pi}{2}\cos 1ch - i\frac{\pi}{2}\sin 1sh + 4.$$

б) Функция $f(z) = z^4 + 3iz^2$ аналитическая в круге $|z - 2 + 3i| \le 1$.

$$\oint_{C} \frac{z^{4} + 3iz^{2}}{(z - 2 + 3i)^{3}} dz = \frac{2\pi i}{2!} (z^{4} + 3iz^{2})''_{z=2-3i} =
= \pi i (4z^{3} + 6zi)'_{z=2-3i} = \pi i (12z^{2} + 6i)_{z=2-3i} =
= \pi i (12(2 - 3i)^{2} + 6i) = \pi i (-60 - 138i) =
= 138\pi - 60\pi i.$$

Задание 8. Найти вычеты функции относительно всех изолированных особых точек

$$f(z) = \frac{2z^2 - 3z + 1}{z^2(z^2 + 4)}$$

Решение:

Особые точки: $z=0,\ z=2i,\ z=-2i.$ Так как $\lim_{z\to 0} f(z)=\infty$ и

$$f(z) = \frac{\varphi(z)}{z^2}$$
, где $\varphi(z) = \frac{2z^2 - 3z + 1}{z^2 + 4}$ аналитическая функция в точке $z = 0$, причем $\varphi(0) \neq 0$, то точка $z = 0$ есть полюс второго порядка.

Аналогично, $z=2i,\ z=-2i$ есть полюсы первого порядка. Если z=a - полюс первого порядка, то

$$\operatorname{Re}_{z=a} f(z) = \lim_{z \to a} ((z-a) f(z)).$$

Итак,

$$\operatorname{Re}_{z=2i} f(z) = \lim_{z \to 2i} \left((z - 2i) \cdot \frac{2z^2 - 3z + 1}{z^2 (z - 2i)(z + 2i)} \right) = \lim_{z \to 2i} \left(\frac{2z^2 - 3z + 1}{z^2 (z + 2i)} \right) =$$

$$= \frac{-8 - 6i + 1}{-4(2i + 2i)} = \frac{-7 - 6i}{-16i} = \frac{6 - 7i}{16} = \frac{6}{16} - \frac{7}{16}i = \frac{3}{8} - \frac{7}{16}i;$$

$$\operatorname{Re}_{z=-2i} f(z) = \lim_{z \to -2i} \left((z+2i) \cdot \frac{2z^2 - 3z + 1}{z^2 (z+2i)(z-2i)} \right) = \lim_{z \to -2i} \left(\frac{2z^2 - 3z + 1}{z^2 (z-2i)} \right) = \\ = \frac{-8 + 6i + 1}{-4(-4i)} = \frac{-7 + 6i}{-16i} = \frac{-7i - 6}{-16} = \frac{6}{16} + \frac{7}{16}i = \frac{3}{8} + \frac{7}{16}i;$$

$$\operatorname{Res}_{z=0} f(z) = \frac{1}{1!} \lim_{z \to 0} \left(z^2 \cdot \frac{2z^2 - 3z + 1}{z^2 (z^2 + 4)} \right)' = \lim_{z \to 0} \left(\frac{2z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{4z - 3(z^2 + 4) - (2z^2 - 3z + 1) \cdot 2z}{(z^2 + 4)^2} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to 0} \left(\frac{-12z^2 - 3z + 1}{z^2 + 4} \right)' = \lim_{z \to$$

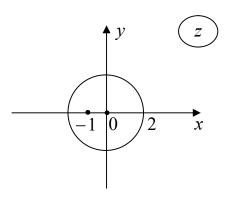
$$\operatorname{Re}_{z=\infty} f(z) = -\left(\frac{6}{16} - \frac{7}{16}i + \frac{6}{16} + \frac{7}{16}i - \frac{3}{4}\right) = -\left(\frac{12}{16} - \frac{3}{4}\right) = 0.$$

Задание 9. Используя теоремы о вычетах, вычислить интеграл

$$\frac{1}{2\pi i} \oint_C \frac{\sin 2z}{z(z+1)^2} dz, \quad C: |z| = 2$$

Решение:

Особые точки z = 0, z = -1 попадают внутрь круга |z| < 2.



 $z=0\,$ - устранимая особая точка функции f(z), так как

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sin 2z}{z(z+1)^2} = \lim_{z \to 0} \frac{2}{(z+1)^2} = 2.$$

z=-1 - полюс второго порядка, так как $\lim_{z\to -1} f(z)=\infty$ и $f(z)=\frac{\varphi(z)}{\left(z+1\right)^2}$,

где $\varphi(z) = \frac{\sin 2z}{z}$ аналитическая функция в точке z = -1, причем $\varphi(-1) \neq 0$.

$$\oint_C \frac{\sin 2z}{z(z+1)^2} dz = 2\pi i \left(\text{Re } s f(z) + \text{Re } s f(z) \right); \quad \text{Re } s f(z) = 0;$$

Тогда

$$\frac{1}{2\pi i} \oint_C \frac{\sin 2z}{z(z+1)^2} dz = \frac{1}{2\pi i} (2\pi i (\sin 2 - 2\cos 2)) = \sin 2 - 2\cos 2.$$

Литература

- 1. Жевняк Р.М., Карпук А.А. Высшая математика, Ч IV.- Мн. Высш. шк. 1987.
- 2. Пискунов Н.С. Дифференциальное и интегральное исчисления. М:- Наука, 1985.
- 3. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисления. М.: Наука, 1988.
- 4. Краснов М.А., Киселев А.Н., Макаренко Г.И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М., Наука, 1981.
- 5. Рябушко А.П., Бархатов В.В. и др. Сборник индивидуальных заданий по высшей математике. Ч. 3. Мн.: Вышэйшая школа, 1991.
- 6. Тузик А.И. Высшая математика. Интегрирование функций одной и нескольких переменных. Брест, изд. БГТУ, 2000.
- 7. Гладкий И.И., Сидоревич М.П., Тузик Т.А. Элементы теории функций комплексного переменного и операционного исчисления: методические указания для студентов технических специальностей. Брест, Изд. БГТУ, 2000.

СОДЕРЖАНИЕ

1.	Вопросы учебной программы	3
2.	Перечень типовых задач	4
3.	Теоретические вопросы к защите АР «Ряды»	6
4.	Тексты вариантов АР «Ряды»	7
5.	Решение типового варианта АР «Ряды»	17
6.	Теоретические вопросы к защите АР «ТФКП»	24
7.	Тексты вариантов АР «ТФКП»	25
8.	Решение типового варианта АР «ТФКП»	40
9.	Литература	50

УЧЕБНОЕ ИЗДАНИЕ

Лизунова Ирина Владимировна Емельянова Галина Романовна Денисович Ольга Константиновна

ВЕКТОРНЫЙ АНАЛИЗ. РЯДЫ. ЭЛЕМЕНТЫ ТФКП

Методические указания по дисциплине «Высшая математика» для студентов технических специальностей

Ответственный за выпуск: Лизунова И.В.

Редактор: Строкач Т.В. Корректор: Никитчик Е.В.

T 10.05.00 & (0.04/16 E H.Y

Подписано к печати 10.05.02. Формат 60х84/16. Бумага «Чайка». Усл. п.л. 3,5. Уч. изд. л. 3,75. Тираж 200 экз. Заказ № 599. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, Брест, ул. Московская, 267.