Сравнивая графики оценки спектральной плотности, построенной для пересекающихся и непересекающихся интервалов наблюдений (при фиксированном прямоугольном окне просмотра данных) можно заметить, что меньшей дисперсией обладает статистика, построенная для пересекающихся интервалов наблюдений.

Список литературы

1. Welch, P.D. The use of FFT for the estimation of power spectra / P.D. Welch // IEEE Trans. Electroacoust. – 1967. – Vol. 15. – P.70-73.

УДК 535:621.373.8 ПРИМЕНЕНИЕ МЕТОДА МАТРИЦ ПЕРЕНОСА ДЛЯ РАСЧЕТОВ МНОГОСЛОЙНЫХ ВОЛНОВОДНЫХ СТРУКТУР

Н. П. Тарасюк, Е. Н. Тарасюк, В. А. Кузуб Брестский государственный технический университет, г. Брест

Для эффективного создания приборов оптоэлектроники необходимо применение сложных многослойных волноводов. Это осложняет использование аналитических расчетов. В данном случае для расчета используются численные методы. Для расчета оптических свойств слоистых гетероструктур применяется метод матриц переноса (ММП).

Рассмотрим многослойную волноводную структуру [1]. Рассмотрим случай TE – мод, распространяющихся в направлении оси z, направленной вдоль слоев. Выражение для напряженности электрического поля имеет вид:

$$E_{y}(x,z,t) = E_{y,j}(x) \exp[i(\omega t - \beta z)]$$
(1)

для *j*-го слоя. Амплитуда напряженности электрического вектора $E_{y,j}(x)$ удовлетворяет волновому уравнению:

$$\frac{\partial^2 E_{y,j}(x)}{\partial x^2} - (\beta^2 - k_0^2 \tilde{n}_j^2) E_{y,j}(x) = 0, \qquad (2)$$

где $\beta = \beta_{re} + i\beta_{im}$ – проекция волнового вектора $k_0 = \frac{2\pi}{\lambda}$ на плоскость структуры, $\tilde{n}_j = n + ik$ – комплексный показатель преломления *j*-го слоя. Решение уравнения (2) имеет вид

$$E_{y,j}(x) = A_j \exp[\gamma_j (x - L_j)] + B_j \exp[-\gamma_j (x - L_j)],$$
(3)

где $\gamma_j = \sqrt{\beta^2 - k_0^2 \tilde{n}_j^2}$, L_j – координаты границы между *j* и *j*+*l* слоями, A_j и B_j – комплексные коэффициенты, определяемые из граничных условий.

Граничные условия следуют из непрерывности тангенциальной составляющей вектора напряженности электромагнитного поля и его производной вдоль нормали к поверхности. В данном случае они будут выглядеть следующим образом:

$$A_{j} \exp[\gamma_{j}d_{j}] + B_{j} \exp[-\gamma_{j}d_{j}] = A_{j+1} + B_{j+1}$$

$$A_{j} \frac{\gamma_{j}}{\gamma_{j+1}} \exp[-\gamma_{j}d_{j}] - B_{j} \frac{\gamma_{j}}{\gamma_{j+1}} \exp[\gamma_{j}d_{j}] = A_{j+1} - B_{j+1},$$
(4)

где d_j – толщина *j*-го слоя. Выражения (4) можно представить в матричном виде:

$$\begin{bmatrix} A \\ B \end{bmatrix}_{j+1} = T_j \begin{bmatrix} A \\ B \end{bmatrix}_j,$$

$$T_j = \begin{bmatrix} (1 + \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[\gamma_j d_j]}{2} & (1 - \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[-\gamma_j d_j]}{2} \\ (1 - \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[\gamma_j d_j]}{2} & (1 + \frac{\gamma_j}{\gamma_{j+1}}) \frac{\exp[-\gamma_j d_j]}{2} \end{bmatrix}.$$
(5)

где

Рекурсивные соотношения для коэффициентов первого и последнего слоев имеют вид:

$$\begin{bmatrix} A \\ B \end{bmatrix}_{m} = T_{m-1}T_{m-2}\dots T_{3}T_{2}T_{1}\begin{bmatrix} A \\ B \end{bmatrix}_{1} = T_{tot}\begin{bmatrix} A \\ B \end{bmatrix}_{1}$$
(6)

Для направляемых мод напряженность электромагнитного поля на бесконечности стремится к нулю $E_y(x \to \pm \infty) \to 0$. Поэтому $B_1 = 0$, $A_m = 0$.

В результате получаем:

$$\begin{bmatrix} 0\\B_m \end{bmatrix} = T_{tot} \begin{bmatrix} A\\0 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12}\\t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} A\\0 \end{bmatrix}$$
(7)

В итоге граничные условия сводятся к уравнению:

$$t_{11}(\beta) = 0 \tag{8}$$

Для решения уравнения (8) использовался алгоритм скоростного спуска.

По известной величине β, определялся фактор оптического ограничения структуры. Он выражается следующей формулой [2]:

$$\Gamma = \frac{x_b}{\int E_y^2(x)dx}$$
(9)
$$\Gamma = \frac{x_a}{+\infty},$$
$$\int E_y^2(x)dx$$
$$-\infty$$

где в числителе интегрирование производится по области квантовых ям.

В качестве примера применения ММП [3, 4] покажем на расчете фактора оптического ограничения и удельного фактора оптического ограничения (фактора, приходящегося на одну яму) гетероструктур с активной областью, состоящей из одной, трех и пяти квантовых ям Al_xGa_{1-x}N шириной 1 нм с барьерами Al_yGa_{1-y}N шириной 10 нм, с характерными для MOVPE и MBE роста ширинами 1500 нм.

Расчет фактора оптического ограничения был выполнен для длины волны 300 нм. Результаты моделирования приведены на рисунках 1–2.

Из рисунков 1 и 2 видно, что у гетероструктур с пятью квантовыми ямами фактор оптического ограничения в 1,6 и 4,9 раз больше, чем у гетероструктуры соответственно с тремя и одной квантовыми ямами. Однако наибольший удельный фактор оптического ограничения соответствует гетероструктуре с тремя квантовыми ямами.

Увеличение фактора оптического ограничения позволит понизить порог генерации оптически накачиваемых лазеров.

Список литературы

1. Bergmann, M. J. Optical-field calculations for lossy multiple-layer $Al_xGa_{1-x}N/In_xGa_{1-x}N$ laser diodes / M. J. Bergmann, and H. C. Casey, Jr. // J. Appl. Phys. – 1998. – Vol. 84, Iss. 3. – P. 1196–1203.

2. Адамс, М. Введение в теорию оптических волноводов / М. Адамс. Москва: Мир, 1984. – 512 с.

3. Lutsenko, E. V. Investigation of photoluminescence, stimulated emission, photoreflectance and 2DEG properties of double heterojunction AlGaN/GaN/AlGaN HEMT heterostructures grown by ammonia MBE. / E. V. Lutsenko, M. V. Rzheutski, A. G. Vainilovich, I. E. Svitsiankou, N. P. Tarasuk, G. P. Yablonskii, A. Alyamani, S. I. Petrov, V. V. Mamaev, A. N. Alexeev // Phys. Stat. Sol. (a). –2018. –V.215, Iss.9. – 1700602.

4. Тарасюк, Н. П. Фактор оптического ограничения и пороговые условия генерации оптически накачиваемых полупроводниковых лазеров на квантоворазмерных структурах InGaN/GaN, выращенных на кремниевых подложках / Н. П. Тарасюк, А. А. Гладыщук, Е. В. Луценко // Вестник БГТУ. Физика, математика, химия. – 2002. – № 5. – С. 8–13.