ПРОГРАММА ДЛЯ ВЫЯВЛЕНИЯ ПЛАГИАТА КОДА НА ЯП РҮТНОМ

Е. С. Палто (студентка І курса)

Проблематика. Анализ текстов исходных кодов, поиск плагиата.

Цель работы. Программа предназначена для обнаружения случаев, когда один программный код сильно похож на другой, что может указывать на плагиат или несанкционированное копирование. А также повышение значимости интеллектуальной собственности.

Объект исследования. Исходный код программ.

Использованные методики. Расстояние Левенштейна, перевод кода в объект, далее в AST-строку.

Научная новизна. На данный момент не существует подобных продуктов в общем доступе.

Полученные научные результаты и выводы. Было несколько подходов для создания системы антиплагиата кода. Как показал анализ таблицы с результатами работ программ, наиболее эффективны оказался последний подход, который базируется на переводе кода в AST-строку.

Практическое применение полученных результатов. Данную программу актуально использовать в учреждениях образования, для контроля при написании дипломных, курсовых и лабораторных работ, олимпиадных работ и контестов.

БАЗОВЫЕ СРЕДСТВА СИМУЛЯТОРА СПУТНИКА ДЛЯ АНАЛИЗА ДАННЫХ

Е. С. Билитюк (студентка III курса), Н. В. Козел (студенты III курса)

Проблематика. Большинство миссий малых спутников нацелены на низкую околоземную орбиту. Из-за особенностей этой конкретной орбиты связь со спутником возможна только в течение нескольких минут в день для данного местоположения. В связи с этим возникает необходимость в нескольких наземных станциях в нескольких географических точках.

Хотя такая инфраструктура возможна, в большинстве случаев ее приобретение является сложным и дорогостоящим для исследовательских или образовательных организаций. Учитывая тот факт, что каждая наземная станция демонстрирует небольшую суточную загрузку для конкретного спутника, время простоя может быть использовано для приема других миссий.

Цель работы. Для коммуникационной подсистемы необходима связь с наземными станциями для загрузки информации и передачи указаний. Отношение несущей к шуму как в линии загрузки связи телеметрии, так и в линии выгрузки связи заказа определяется как показатель легитимности для пропускной способности станции соединения.

Объект исследования. Спутниковые линии связи используют микроволновые частоты выше $1\ \Gamma\Gamma \mu$ — в настоящее время для динамичных применений верхний предел ограничен примерно до $30\ \Gamma\Gamma \mu$.

Многочисленные достижения в области компьютеризированного управления, микроэлектроники, программирования и линий связи для приема сообщений открывают больше возможностей для новых применений.

Предлагаемая подсистема дополнительно позволяет клиенту выбирать, какие наземные станции являются динамическими, через меню наземных станций. Альтернативными параметрами в этом меню являются наземная станция: название, область видимости, долгота и высота над уровнем моря. В настоящее время насчитывается 6 охарактеризованных станций. Клиент может включить или стереть это краткое описание через это меню. Секция разделена на три этапа: этап 1 предназначен для обработки границы азимута, точки подъема и разделения между спутником и наземной станцией, в то время как этап 2 предназначен для регистрации параметров соединений загрузки и выгрузки. Этап 3 — это изолированная работа, и он управляет формированием таблиц запросов для информационных пакетов.

Использованные методики. Обсуждаются различные системы доступа, включая множественный доступ с частотным разделением (FDMA), множественный доступ с временным разделением (TDMA) и множественный доступ с кодовым разделением (CDMA), и определяются их сильные и слабые стороны. Известны группы повторений, используемые в спутниковом обмене, наряду с более высокими частотами и, дополнительно, оптические обмены.

Научная новизна. Предложена симуляция обмена по каналу связи с возможностью исследования параметров обмена.

Полученные научные результаты и выводы Клиент трекинговой системы это программа, которая запускается на компьютере наземной станции. Клиент ответственен за извлечение заданий наблюдения из сети и их выполнения. Когда новое задание получено из сети, оно помещается в очередь выполнения, отсортированную в хронологическом порядке на основе времени прохождения спутника в зоне досягаемости данной станции. Клиент постоянно отслеживает местное время наземной станции и время начала первого наблюдения в очереди. Когда приходит время, клиент удаляет задание наблюдения из очереди и готовится к его выполнению. В то же время клиент управляет вращением антенны, чтобы она могла отслеживать траекторию отслеживаемого спутника. Когда задача по наблюдению завершена, антенна возвращается в исходное положение.

Практическое применение полученных результатов. Исследование доказывает жизнеспособность и осуществимость разработки адаптируемой системы для малых спутников с использованием коммерческих готовых компонентов. Интерес представляет возможность трекинга космических объектов.