ДООЧИСТКА АРТЕЗИАНСКОЙ ВОДЫ МЕТОДОМ ОЗОНИРОВАНИЯ

И. Л. Шкодинский (студент курса), Е. В. Чоловская (студентка III курса)

Проблематика. Кокосовый активированный уголь служит для глубокой очистки воды. С задачей очистки воды до получения низкого значения цветности и низких концентраций железа и марганца кокосовый активированный уголь справляется хорошо. Однако раз в 2...3 месяца требуется полная замена всего объема активированного угля. Полная выгрузка и загрузка свежего активированного угля является трудоемким мероприятием, а также его стоимость очень высокая.

Цель работы. Исследовать возможность доочистки бутилированной воды методом озонирования до требуемых значений цветности, а также концентраций железа и марганца.

Объект исследования. Артезианская вода, прошедшая предварительную очистку на станции водоподготовки СП «Фрост и К» ООО.

Использованные методики. Озон вводили в обрабатываемую воду методом точного дозирования в виде водного раствора. Цветность вод, концентрацию железа и марганца в воде определяли по стандартным методикам. Цветность воды определялась по хромово-кобальтовой шкале по ГОСТ 31868-2012. Концентрация железа в воде определялась определялась по ГОСТ 4011-72 «Вода питьевая». Концентрация марганца в воде определялась фотометрическим методом по ГОСТ 4974-2014 «Вода питьевая».

Научная новизна. Применение озона для глубокого снижения цветности артезианской воды.

Полученные научные результаты и выводы. Проведенные исследования показали возможность применения озона для снижения цветности артезианской воды до очень низких значений. Определена оптимальная доза озона и оптимальная продолжительность реакции с озоном, что позволило подобрать озонаторную установку и запроектировать контактный резервуар реакции с озоном.

Практическое применение полученных результатов. Результаты будут использованы для проектирования доочистки бутилированной воды методом озонирования на станции водоподготовки СП «Фрост и К» ООО вместо существующей доочистки воды активированным углём.

РЕГУЛИРОВАНИЕ ОПТИМАЛЬНЫХ УСЛОВИЙ КОАГУЛЯЦИИ ПРИМЕСЕЙ ПРИРОДНЫХ ВОД

О. А. Мацкович (студентка III курса), К. И. Пацко (студент III курса)

Проблематика. Работа направлена на исследование показателей качества воды из поверхностных источников водоснабжения. Регулирование оптимальных условий коагулирования примесей поверхностных вод является важной задачей для подготовки воды, используемой для питьевых целей.

Цель работы. Изучение факторов, влияющих на процесс искусственного осветления и обесцвечивания природных вод коагулированием.

Объект исследования. Поверхностные водные источники, содержащие примеси органического и минерального происхождения, в том числе тонкая взвесь и коллоидно-дисперсные вещества, которые могут быть удалены из воды только путем ее реагентной обработки, в частности коагуляцией.

Использованные методики. Методики и методы определения показателей качества воды и показателей безопасности питьевой воды, технологические и математические методы с учетом действующих ТНПА.

Научная новизна. Получение новых экспериментальных и расчетных данных, представленных в виде зависимости эффекта по этапам очистки на водо-очистных сооружениях (снижение мутности, цветности, перманганатной окисляемости и др. показателей) от дозы высокоосновных алюминий-содержащих коагулянтов для различных периодов года.

Полученные научные результаты и выводы. В результате сравнительного анализа показателей качества воды (из поверхностных источников, воды после осветления в горизонтальных отстойниках и после фильтров) и экспериментальных данных изучены факторы, влияющие на процесс искусственного осветления и обесцвечивания природных вод коагулированием, и определена эффективность использовании солей алюминия в качестве коагулянтов. В зависимости от показателей качества воды рекомендуется постоянное или периодическое дозирование современных высокоосновных коагулянтов, предназначенных для обработки воды в питьевом водоснабжении, в том числе полиоксихлорида алюминия марки «АКВА-АУРАТ^{ТМ}», гидроксихлорида алюминия — «Pro-AQUA» марки «Pro-AQUA SB», полиалюминий гидрохлорида марки «БОПАК-Е», коагулянта для очистки воды ПОЛВАК марки 68. Эти реагенты требуют меньших доз, при этом не изменяют рН обрабатываемой воды, хорошо срабатывают при низких температурах воды (от 0°С до -4°С), образуют меньший объем осадка, который легко обезвоживается.

Практическое применение полученных результатов. Регулирование условий коагулирования примесей воды позволяет улучшить работу всех сооружений станции водоподготовки. Периодическая подача коагулянта целесообразна в холодный период года при температуре обрабатываемой воды менее 8 °C, когда снижается мутность поверхностной воды, но сохраняются более высокие значения показателей цветности, перманганатной окисляемости, количества клеток и биомассы фитопланктона. Это позволяет снизить содержание остаточного алюминия в очищенной воде.