МЕТОД ИТЕРАЦИЙ НЕЯВНОГО ТИПА РЕШЕНИЯ НЕКОРРЕКТНЫХ ЗАДАЧ

Матысик О.В., Козак И.П.

Брестский государственный университет им. А.С. Пушкина, г. Брест

1. Постановка задачи. В гильбертовом пространстве *H* решается линейное операторное уравнение:

$$Ax = y \tag{1}$$

с положительным ограниченным самосопряженным оператором *A*, для которого нуль не является собственным значением. Однако предполагается, что нуль принадлежит спектру оператора *A*, поэтому задача (1) неустойчива и, следовательно, некорректна. Для решения задачи предлагается неявный метод итерации

$$x_{n+1} = x_n + \alpha A^2 (y - Ax_{n+1}), \quad x_0 = 0.$$
 (2)

Предполагая существование единственного точного решения x уравнения (1) при точной правой части y, ищем его приближение $x_{n,\delta}$ при приближенной правой части y_{δ} , $\|y-y_{\delta}\| \leq \delta$. В этом случае метод (2) примет вид

$$x_{n+1,\delta} = x_{n,\delta} + \alpha A^2 (y_{\delta} - Ax_{n+1,\delta}), \quad x_{0,\delta} = 0.$$
 (3)

Ниже, под сходимостью метода (3) понимается утверждение о том, что приближения (3) сколь угодно близко подходят к точному решению x уравнения (1) при подходящем выборе n и достаточно малых δ .

2. Сходимость метода при точной правой части уравнения.

Теорема 1. Итерационный метод (2) при условии $\alpha > 0$ сходится в исходной норме гильбертова пространства.

Доказательство. По индукции нетрудно показать справедливость равенства: $x_n = A^{-1} \Big[E - \left(E + \alpha A^3 \right)^{-n} \Big] y$. Используя интегральное представление самосопря-

женного оператора
$$A = \int_{0}^{M} \lambda dE_{\lambda}$$
 ($M = \|A\|$, E_{λ} – спектральная функция), имеем

$$x - x_{n} = A^{-1}y - A^{-1} \left[E - \left(E + \alpha A^{3} \right)^{-n} \right] y =$$

$$= \int_{0}^{M} \lambda^{-1} (1 + \alpha \lambda^{3})^{-n} dE_{\lambda} y = \int_{0}^{\varepsilon} \lambda^{-1} (1 + \alpha \lambda^{3})^{-n} dE_{\lambda} y + \int_{\varepsilon}^{M} \lambda^{-1} (1 + \alpha \lambda^{3})^{-n} dE_{\lambda} y.$$

Потребуем, чтобы при $\lambda \in (0,M]$ выполнялось неравенство: $\alpha > 0$. Тогда $\left(1 + \alpha \lambda^3\right)^{-1} \leq q < 1$ и, следовательно, выполняется:

$$\left\|\int\limits_{\epsilon}^{M}\lambda^{-1}\left(1+\alpha\lambda^{3}\right)^{-n} \ dE_{\lambda}y\right\| \leq q^{n}\left\|\int\limits_{\epsilon}^{M}\lambda^{-1}dE_{\lambda}y\right\| = q^{n}\left\|\int\limits_{\epsilon}^{M}dE_{\lambda}x\right\| \leq q^{n}\|x\| \to 0, \ n\to\infty. \ \text{Kpo-}$$

ме этого
$$\left\|\int_{0}^{\epsilon} \lambda^{-1} \left(1 + \alpha \lambda^{3}\right)^{-n} dE_{\lambda} y\right\| \leq \left\|\int_{0}^{\epsilon} dE_{\lambda} x\right\| = \|E_{\epsilon} x\| \to 0$$
, так как при $\epsilon \to 0$ E_{ϵ} сильно

стремится к нулю в силу свойств спектральной функции. Таким образом, доказано, что метод (2) при $\alpha > 0$ сходится.

3. Оценка скорости сходимости. Скорость убывания к нулю $\|x-x_n\|$ неизвестна и может быть сколь угодно малой. Для её оценки предположим, что точное решение уравнения (1) истокообразно представимо, т. е. $x=A^sz$, s>0. Тогда $x-x_n=\int\limits_0^M \lambda^s \left(1+\alpha\lambda^3\right)^{-n} dE_\lambda z$. Найдём максимум подынтегральной функции $f(\lambda)=\lambda^s \left(1+\alpha\lambda^3\right)^{-n}$. Приравняв нулю производную от $f(\lambda)$, получим уравнение для нахождения стационарных точек функции $f(\lambda)$: $\lambda^{s-1} \left(1+\alpha\lambda^3\right)^{-n-1} \left[s\left(1+\alpha\lambda^3\right)-3n\alpha\lambda^3\right]=0$. Здесь $\lambda\neq0$, так как в противном случае $f(\lambda)=0$. Поэтому $s\left(1+\alpha\lambda^3\right)-3n\alpha\lambda^3=0$. Отсюда $\lambda_*=\left(\frac{s}{(3n-s)\alpha}\right)^{1/3}-$ стационарная точка функции $f(\lambda)$ при 3n>s. Поскольку $f''(\lambda_*)<0$, то λ_*- точка максимума для $f(\lambda)$. Найдём его:

$$f(\lambda_*) = \left(rac{s}{3nlpha}
ight)^{s/3} \left(1 + rac{s}{3n-s}
ight)^{rac{-(3n-s)}{3}} < \left(rac{s}{3nlpha}
ight)^{s/3} 2^{-s/3} = \left(rac{s}{6nlpha}
ight)^{s/3}.$$
 Нетрудно проверить, что найденный для функции $f(\lambda)$ максимум является глобальным на отрезке $[0,M]$. Таким образом, $\|x-x_n\| \leq s^{s/3} (6nlpha)^{-s/3} \|z\|$.

4. Сходимость метода при приближённой правой части уравнения. Покажем, что при $\alpha>0$ метод (3) можно сделать сходящимся, если нужным образом выбрать число итераций n в зависимости от уровня погрешности δ приближенной правой части операторного уравнения (1). Рассмотрим разность $x-x_{n,\delta}=(x-x_n)+(x_n-x_{n,\delta})$. По доказанному в разделе 2 $x-x_n\to 0,\ n\to\infty$. Убедимся, что $x_n-x_{n,\delta}$ можно сделать сходящимся к нулю. Воспользовавшись интегральным представлением самосопряженного оператора, имеем

$$x_n - x_{n,\delta} = A^{-1} \Big[E - (E + \alpha A^3)^{-n} \Big] (y - y_{\delta}) = \int_0^M \lambda^{-1} \Big[1 - (1 + \alpha \lambda^3)^{-n} \Big] dE_{\lambda} (y - y_{\delta}).$$

Оценим сверху подынтегральную функцию $g_n(\lambda) = \lambda^{-1} \left[1 - \left(1 + \alpha \lambda^3 \right)^{-n} \right]$. Нетрудно

показать, что $g_n(\lambda) = |g_n(\lambda)| \le 3n^{1/3}\alpha^{1/3}$ при условии $\alpha > 0$. Отсюда $\|x_n - x_{n,\delta}\| \le 3n^{1/3}\alpha^{1/3}\delta$.

Поскольку $\|x-x_{n,\delta}\| \leq \|x-x_n\| + \|x_n-x_{n,\delta}\| \leq \|x-x_n\| + 3n^{1/3}\alpha^{1/3}\delta$ и $\|x-x_n\| \to 0$, $n \to \infty$, то для сходимости метода (3) достаточно выбрать $n(\delta)$, зависящим от δ так, чтобы $n^{1/3}\delta \to 0$, $n \to \infty$, $\delta \to 0$. Итак, доказана

Теорема 2. При условии $\alpha > 0$ итерационный метод (3) сходится, если число итераций n выбирать из условия $n^{1/3}$ $\delta \to 0$, $n \to \infty$, $\delta \to 0$.

<u>5. Оценка погрешности метода и ее оптимизация</u>. Запишем теперь общую оценку погрешности метода (3)

$$\|x - x_{n,\delta}\| \le \|x - x_n\| + \|x_n - x_{n,\delta}\| \le s^{s/3} (6n\alpha)^{-s/3} \|z\| + 3(n\alpha)^{1/3} \delta.$$
 (4)

Следовательно, справедлива

Теорема 3. Если решение *х* уравнения (1) истокообразно представимо, то при условии $\alpha > 0$ для метода (3) справедлива оценка погрешности (4).

Для минимизации полученной оценки погрешности вычислим правую часть оценки (4) в точке, в которой производная от неё равна нулю; в результате получим априорный момент останова

$$n_{\text{опт}} = 2^{-s/(s+1)} \left(\frac{s}{3}\right)^{(s+3)/(s+1)} \alpha^{-1} \|z\|^{3/(s+1)} \delta^{-3/(s+1)}$$
. Подставив $n_{\text{опт}}$ в оценку (4), име-

$$\text{ em } \left\| x - x_{n,\delta} \right\|_{\text{OUT}} \leq (1+s) \cdot 2^{-s/(3(s+1))} \left(\frac{s}{3} \right)^{-2s/(3(s+1))} \delta^{s/(s+1)} \left\| z \right\|^{1/(s+1)}.$$

Замечание 1. Оптимальная оценка погрешности метода (3) имеет порядок $O(\delta^{s/(s+1)})$, и как следует из [1], он является оптимальным в классе задач с истокопредставимыми решениями $x=A^sz$, s>0.

Замечание 2. Оптимальная оценка не зависит от α , но от параметра α зависит $n_{\text{опт}}$, поэтому для уменьшения объёма вычислительной работы следует брать α по возможности большим, удовлетворяющим условию $\alpha>0$ и так, чтобы $n_{\text{опт}}\in Z$.

Литература

1. Вайникко, Г. М. Итерационные процедуры в некорректных задачах / Г. М. Вайникко, А. Ю. Веретенников. – М.: Наука, 1986. – 178 с.