Итак, доказана

Теорема 3. Если точное решение x уравнения (1) истокопредставимо, то при условии (4) для метода (3) справедлива оценка погрешности $\|x-x_{n,\delta}\| \le s^{s/2} (4n\alpha)^{-s/2} \|z\| + 2\sqrt{n\alpha} \, \delta$.

Оптимизировав по n полученную оценку погрешности, найдем значение $n_{\text{опт}} = 2^{-s/(s+1)} \left(\frac{s}{2}\right)^{(s+2)/(s+1)} \alpha^{-1} \|z\|^{2/(s+1)} \delta^{-2/(s+1)}$, подставив которое в искомую оценку, получим её оптимальное значение $\|x-x_{n,\delta}\|_{\text{опт}} \leq (1+s) \cdot 2^{-s/(2(s+1))} \left(\frac{s}{2}\right)^{-s/(2(s+1))} \delta^{s/(s+1)} \|z\|^{1/(s+1)}$.

Оптимальная оценка погрешности метода (3) не зависит от α , но от α зависит $n_{\text{опт}}$ и, значит, объём вычислительной работы. Поэтому для уменьшения $n_{\text{опт}}$ следует брать α по возможности большим, удовлетворяющим условию (4), и так, чтобы $n_{\text{опт}} \in \mathbb{Z}$.

СХОДИМОСТЬ НЕЯВНОЙ ИТЕРАЦИОННОЙ ПРОЦЕДУРЫ В СЛУЧАЕ НЕЕДИНСТВЕННОГО РЕШЕНИЯ ОПЕРАТОРНОГО УРАВНЕНИЯ

Наумовец С.Н., Матысик О.В.

Брестский государственный университет им. А.С.Пушкина, г.Брест

1. Введение

В последние десятилетия математическая наука обогатилась важным разделом – теорией некорректно поставленных задач и методов их приближенного решения.

Развитие этого раздела математики вызвано многочисленными приложениями в технике, физике, экономике и других естественных науках, поскольку, прежде всего, в приложениях возникают и имеют большое значение подобные некорректные задачи. Потребности практики приводят к необходимости решения некорректно поставленных задач, которые во многих случаях описываются операторными уравнениями первого рода.

Для их решения широко используются итерационные схемы. Поэтому большое значение имеют разработка и изучение итерационных методов, получение условий их сходимости, нахождение оценок погрешности. Важность изучения таких методов решения операторных уравнений объясняется также и тем, что эти методы легко реализуются на ПЭВМ.

2. Постановка задачи

Будем рассматривать в гильбертовом пространстве H операторное уравнение

$$Ax = y \tag{1}$$

с положительным ограниченным самосопряженным оператором A, для которого нуль является собственным значением, т.е. задача (1) имеет неединственное решение. Предположим, что $y \in R(A)$, т.е. при точной правой части y уравнения решение (неединственное) задачи (1) существует. Для его отыскания используем неявную итерационную процедуру

$$(E + \alpha A^2)x_{n+1} = x_n + \alpha Ay, \quad x_0 = 0.$$
 (2)

Докажем сходимость итерационной процедуры (2) к решению операторного уравнения (1) в случае неединственного решения. Более того, покажем, что в этом случае итерационный процесс (2) сходится к решению с минимальной нормой.

3. Сходимость метода в случае неединственного решения

Обозначим через $N(A) = \{x \in H | Ax = 0\}$, а через M(A) – ортогональное дополнение ядра N(A) до H. Пусть P(A)x – проекция $x \in H$ на N(A), а $\Pi(A)x$ – проекция $x \in H$ на M(A). Справедлива

Теорема. Пусть $A \ge 0$, $y \in H$, $\alpha > 0$. Тогда для итерационного процесса (2) верны следующие утверждения:

а) $Ax_n \to \Pi(A)y, \ \|Ax_n - y\| \to I(A,y) = \inf_{x \in H} \|Ax - y\|;$ б) итерационный метод (2) сходится тогда и только тогда, когда уравнение $Ax = \Pi(A)y$ разрешимо. В последнем случае $x_n \to P(A)x_0 + x^*$, где $x^* - Mu$ нимальное решение уравнения.

Доказательство

Применив оператор A к (2), получим $A(E + \alpha A^2)x_n = Ax_{n-1} + \alpha A^2y$, где $y = P(A)y + \Pi(A)y$. Так как в нашем случае AP(A)y = 0, то получим $(E + \alpha A^2)(Ax_n - \Pi(A)y) = Ax_{n-1} - \Pi(A)y.$

Обозначим $Ax_n - \Pi(A)y = v_n$, $v_n \in M(A)$, тогда $(E + \alpha A^2)v_n = v_{n-1}$. Отсюда $v_n = (E + \alpha A^2)^{-1} v_{n-1}$, следовательно, $v_n = (E + \alpha A^2)^{-n} v_0$. Имеем $A \ge 0$ и A – положительно определён в M(A), т.е. (Ax, x) > 0 $\forall x \in M(A)$. Так как $\alpha > 0$, то $\|(E + \alpha A^2)^{-1}\| \le 1$, и поэтому справедлива цепочка неравенств

$$\|v_{n}\| = \left\| \left(E + \alpha A^{2} \right)^{-n} v_{0} \right\| = \left\| \int_{0}^{|A|} \frac{1}{\left(1 + \alpha \lambda^{2} \right)^{n}} dE_{\lambda} v_{0} \right\| \leq \left\| \int_{0}^{\varepsilon_{0}} \frac{1}{\left(1 + \alpha \lambda^{2} \right)^{n}} dE_{\lambda} v_{0} \right\| + \left\| \int_{\varepsilon_{0}}^{|A|} \frac{1}{\left(1 + \alpha \lambda^{2} \right)^{n}} dE_{\lambda} v_{0} \right\| \leq \left\| \int_{0}^{\varepsilon_{0}} dE_{\lambda} v_{0} \right\| + q^{n} (\varepsilon_{0}) \left\| \int_{\varepsilon_{0}}^{|A|} dE_{\lambda} v_{0} \right\| \leq \left\| E_{\varepsilon_{0}} v_{0} \right\| + q^{n} (\varepsilon_{0}) \|v_{0}\| < \varepsilon$$

при $n \to \infty$, $\epsilon_0 \to 0$. Здесь $\frac{1}{1+\alpha\lambda^2} \le q(\epsilon_0) < 1$ при $\lambda \in \left[\epsilon_0, \|A\|\right]$. Следовательно, ${f v}_n o {f 0}$, откуда получим $\stackrel{\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot}{A} {f x}_n o {m \Pi}(A) {f y}$ и ${m \Pi}(A) {f y} \in {m A}(H)$. $||Ax_n - y|| \to ||\Pi(A)y - y|| = ||P(A)y|| = I(A, y)$ (см. [1]). Итак, утверждение а) доказано.

Докажем б). Пусть итерационный процесс (2) сходится. Покажем, что уравнение $Ax = \Pi(A)y$ разрешимо. Из сходимости $\{x_n\} \in H$ к $z \in H$ и из а) следует, что $Ax_n \to Az = \Pi(A)y$, следовательно, $\Pi(A)y \in A(H)$ и уравнение $\Pi(A)y = Ax$ разрешимо.

Пусть теперь $\Pi(A)y \in A(H)$ (уравнение $\Pi(A)y = Ax$ разрешимо), следовательно $\Pi(A)y = Ax^*$, где x^* – минимальное решение уравнения Ax = y (оно единственно в M(A)). Тогда итерационная процедура (2) примет следующий вид

$$(E + \alpha A^{2})x_{n} = x_{n-1} + \alpha A\Pi(A)y = x_{n-1} + \alpha A^{2}x^{*} =$$

$$= (E + \alpha A^{2})x_{n-1} - \alpha A^{2}x_{n-1} + \alpha A^{2}x^{*} = (E + \alpha A^{2})x_{n-1} + \alpha A^{2}(x^{*} - x_{n-1}).$$

Отсюда запишем $x_n = x_{n-1} + \alpha A^2 (E + \alpha A^2)^{-1} (x^* - x_{n-1}).$ Последнее равенство разобьём на два:

$$P(A)x_{n} = P(A)x_{n-1} + \alpha(E + \alpha A^{2})^{-1}A^{2}P(A)(x^{*} - x_{n-1}) = P(A)x_{n-1} = P(A)x_{0};$$

$$\Pi(A)x_{n} = \Pi(A)x_{n-1} + \alpha A^{2}(E + \alpha A^{2})^{-1}\Pi(A)(x^{*} - x_{n-1}) =$$

$$= \Pi(A)x_{n-1} + \alpha A^{2}(E + \alpha A^{2})^{-1}(\Pi(A)x^{*} - \Pi(A)x_{n-1}) =$$

$$= \Pi(A)x_{n-1} + \alpha A^{2}(E + \alpha A^{2})^{-1}(x^{*} - \Pi(A)x_{n-1}),$$

так как $x^* \in M(A)$.

Обозначим через $w_n = \Pi(A)x_n - x^*$, тогда из равенства

$$\Pi(A)x_n - x^* = \Pi(A)x_{n-1} - x^* + \alpha A^2 (E + \alpha A^2)^{-1} (x^* - \Pi(A)x_{n-1})$$

получим $w_n = w_{n-1} - \alpha A^2 (E + \alpha A^2)^{-1} w_{n-1}$.

Следовательно, $w_n = (E + \alpha A^2)^{-1} w_{n-1} = = (E + \alpha A^2)^{-n} w_0$. А так как $\alpha > 0$, то справедливо:

$$||w_{n}|| = ||(E + \alpha A^{2})^{-n} w_{0}|| = ||\int_{0}^{|A|} \frac{1}{(1 + \alpha \lambda^{2})^{n}} dE_{\lambda} w_{0}|| \le ||\int_{0}^{\epsilon_{0}} \frac{1}{(1 + \alpha \lambda^{2})^{n}} dE_{\lambda} w_{0}|| + ||\int_{\epsilon_{0}}^{|A|} \frac{1}{(1 + \alpha \lambda^{2})^{n}} dE_{\lambda} w_{0}|| \le ||\int_{0}^{\epsilon_{0}} dE_{\lambda} w_{0}|| + ||q^{n}(\epsilon_{0})|| \int_{\epsilon_{0}}^{|A|} dE_{\lambda} w_{0}|| \le ||E_{\epsilon_{0}} w_{0}|| + ||q^{n}(\epsilon_{0})||w_{0}|| < \epsilon$$

при $n\to\infty$, $\epsilon_0\to 0$ и, следовательно, $w_n\to 0$, $n\to\infty$. Таким образом, $\Pi(A)x_n\to x^*$. Отсюда $x_n=P(A)x_n+\Pi(A)x_n\to P(A)x_0+x^*$. Теорема доказана.

Замечание. Так как у нас $x_0 = 0$, то $x_n \to x^*$, т.е. итерационный процесс (2) сходится к решению с минимальной нормой.

Литература

1. Bialy, H. Iterative Behandlung Linearer Funktionsgleichun-gen / H. Bialy // Arch. Ration. Mech. and Anal. – 1959. – Vol. 4, N 2. – P. 166-176.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ НЕКОТОРЫХ МЕТОДОВ РЕШЕНИЯ СЛАУ

Панасик Д.А., Рыбачук Г.Г.

Брестский государственный университет им. А.С.Пушкина, Брест

Необходимость решения систем линейных и нелинейных уравнений на ЭВМ существует давно. Среди задач вычислительной математики, требующих решения СЛАУ, различают собственно задачи на решение СЛАУ, а также практически все нелинейные задачи, решаемые итерационными методами, которые сводятся к последовательному решению СЛАУ на каждом шаге вычислительного процесса. Поэтому математики всегда