Индивидуальные задания, представленные в электронном формате на базе 3D-моделей, позволяет организовать обучение чтению и построению чертежей с применением современных компьютерных информационных технологий в условиях дистанционного обучения [4], что имеет принципиальное значение в условиях глобального образовательного пространства.

Литература

- 1. Шабека, Л.С. К вопросу оптимизации обучения машиностроительному черчению во втузе / Л.С. Шабека [и др.] // Педагогика высшей школы. Мн.: Вышэйшая школа, 1979. Вып. 4. С. 121-125.
- 2. Зенюк, И.А. Машиностроительное черчение с элементами конструирования / И.А. Зенюк, Ю.Г. Козловский, А.П. Поляничева; под ред. И.А. Ройтмана. Мн.: Вышэйш. школа. 1977. 256 с.
- 3. Böttcher, P. Technisches Zeichnen / P. Böttcher. –19., Überarb.Aufl. Stuttgart: Teubner, 1982. S. 194–195.
- 4. Шабека, Л.С. Управление изучением инженерной графики в условиях дистанционного обучения / Л.С. Шабека, Е.А. Гриневич, Н.В. Рутковская // Образовательные технологии в преподавании графических дисциплин: материалы IV Республиканской научнопрактической конференции, Брест, 17-18 марта 2011г. Брест: БрГТУ, 2011. С. 75-78.

МЕСТО ИНЖЕНЕРНОЙ ГРАФИКИ В РЯДУ ОБЩЕТЕХНИЧЕСКИХ ДИСЦИПЛИН В ВЫСШЕЙ ШКОЛЕ

Шевчук Т.В.

Брестский государственный технический университет, г. Брест

Изучение инженерной графики имеет большое значение для общего и технического образования, это один из важнейших технических предметов, знание его облегчает изучение многих других общениженерных и специальных дисциплин. Инженерная графика является звеном, соединяющим математические и физические науки с техническими.

Зачастую преподаватели в современных условиях, имея малоподготовленную студенческую аудиторию, делают скидку на низкий уровень базового образования и подменяют собой педагога средней школы, не делают различия между методами преподавания в средних и высших учебных заведениях, стремятся упростить задания, максимально разъясняют и демонстрируют решения задач, не оставляя студентам места для самостоятельного анализа и мышления.

С другой стороны, с каждым годом усложняются технические объекты, растет поток графической информации, закладываемой в техническую документацию. Возникает все больший разрыв между подготовкой студентов на выходе и возросшими требованиями к графической подготовке специалистов. Решение проблемы кроется в понимании задач преподавания графических дисциплин. В высшей школе студент должен, прежде всего, научиться самостоятельно мыслить, применять полученные знания при решении, в том числе и достаточно сложных задач, брать на себя ответственность за принятые решения, максимально развивать творческие способности. Тем более, что предлагаемые студентам сложные задачи успешно решаются при правильной подаче метериала и заинтересованности обучающихся. Инженерная графика имеет

большую практическую ценность, что отличает ее от других теоретических дисциплин, изучаемых на начальных этапах обучения в высшей школе. И задача преподавателя высшей школы – донести до студентов осознание практической пользы изучения инженерной графики, формировать заинтересованность в получении навыков черчения. Важно на протяжении всего срока обучения заострять внимание студентов на взаимосвязи начертательной геометрии с последующими курсами инженерной и компьютерной графики.

Необходимо также более тесное сотрудничество кафедр инженерной графики с профилирующими дисциплинами. Например, профилирующие кафедры предъявляют требования, касающиеся свободного владения студентами средствами автоматизированного выполнения чертежей при выполнении графической части курсовых и дипломных проектов. В изучении последующих технических дисциплин не предусмотрено учебное время для изучения компьютерной графики. Тем более важную роль играет курс инженерной графики, в котором имеется возможность обучить студентов современным методам автоматизированного выполнения чертежей, компьютерному моделированию. Анализ обучения различным современным графическим программам (AutoCAD, KOMIIAC, INVENTOR) позволяет сделать вывод о том, что успешное овладение студентами хотя бы одним пакетом компьютерной графики прокладывает ему путь для дальнейшей быстрой ориентации при изучения других необходимых ему в дальнейшем графических редакторов (рис. 1).

Рисунок 1 – Результат построения трехмерных объектов, выполненных в редакторах КОМПАС и AutoCAD

Это достигается при достаточно глубоком и последовательном изучении общих принципов построения графических объектов, как в плоскостном черчении, так и в трехмерном моделировании.

В последующей профессиональной деятельности свободное владение средствами компьютерной графики позволяет молодому специалисту быстрее адаптироваться в производственных условиях, активно включиться в рабочий процесс, соответствовать высокой производственно-технической культуре.

Таким образом, целью инженерной графики является овладение достаточными знаниями и правилами по формированию инженерной графической информации, получение навыков в создании, чтении чертежей различного назначения и различной степени сложности, освоение современных компьютерных

графических систем, что позволит инженеру в своей профессиональной практике успешно решать современные производственные, проектно-конструкторские и исследовательские задачи.

КОМПЛЕКС ЗАДАНИЙ ПО ИНЖЕНЕРНОЙ КОМПЬЮТЕРНОЙ ГРАФИКЕ КАК СРЕДСТВО АКТИВИЗАЦИИ ПОЗНАВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ (ИЗ ОПЫТА РАБОТЫ)

Ярошевич О.В., Рутковская Н.В.,

Белорусский государственный аграрный технический университет, г. Минск Зеленовская Н.В.,

Белорусский национальный технический университет, г. Минск Амельченко Н.П.,

Белорусский государственный университет информатики и радиотехники, г. Минск

«Мозг, хорошо устроенный, ценится выше, чем мозг, хорошо наполненный».

М. Монтень

Информатизация геометро-графической подготовки (ГГП) — одна из основных объективных тенденций ее развития [1]. При этом графические дисциплины выступают как предметные области, в процессе изучения которых студент приобретает не только навыки представления и восприятия информации в наглядном, графическом виде, но и овладевает современными графическими программами, совершенствует и приобретает навыки работы в современном информационном пространстве. Таким образом, использование графических программных продуктов в процессе визуализации графической информации переводит их в ранг новых информационно-коммуникационных технологий (ИКТ). Без этих технологий сегодня никак не обойтись. Этот вопрос давно снят с повестки дня.

Прежняя система графического образования, успешно готовившая высококвалифицированные инженерные кадры, в настоящее время уже в значительной мере не способна обеспечить достижение требуемого современными условиями уровня геометро-графической подготовки (ГГП). Ориентация на новый уровень ГТП влечет за собой существенные изменения образовательного процесса. Прежде всего, в значительной мере актуализируется задача формирования навыков самостоятельной познавательной и практической деятельности студентов. Целью ГТП становится не только приобретение знаний, но и овладение способами их усвоения, развитие познавательных потребностей и творческого потенциала студентов [1].

С одной стороны, достижение личностных результатов обучения, развитие мотивационных ресурсов студентов требует осуществления личностно ориентированного образовательного процесса, построения индивидуальных образовательных программ и траекторий для каждого отдельно взятого студента, максимально приближенных к реальному производственному процессу проектирования и изготовления изделий и конструкций.

С другой стороны, процесс ГТП должен быть максимально основан на базе конструкторской документации из предметной области будущей профессио-