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Abstract: This paper discusses the neural network 
approach for computing o f Lyapunov spectrum using one 
dimensional time series from unknown dynamical system. 
Such an approach is based on the reconstruction of 
attractor dynamics and applying of multilayer perceptron 
(MLP) for forecasting the next state o f dynamical system 
from the previous one. It allows for evaluating the 
Lyapunov spectrum of unknown dynamical system 
accurately and efficiently only by using one observation. 
The results o f experiments are discussed.
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I. INTRODUCTION
Processing of time series often turns out to be 

insufficient when the data irregular and this inadequacy 
has often been assigned to noise and randomness. Many 
real dynamical systems (e.g., compound pendula, 
dripping faucets, chemical reactions, stock market, EEG 
patterns of brainwave activity, social behaviour) are 
believed to be nonlinear. In many such systems, chaotic 
behaviour has been observed. Chaos theory is nowadays 
widely studied and applied in various areas in order to 
describe, characterize, and possibly predict the system 
behaviour when such kind of complexity occurs [1]. 
Therefore nonlinear signal processing has become an 
inevitable and essential tool for the study of complicated 
systems. The techniques of nonlinear signal processing 
are summarized in [2]

The chaotic behaviour of a dynamical system has been 
manifested by the study of nonlinear mathematical 
equations and it has been observed on experimental data. 
Unfortunately, in typical practical problems, we do not 
know the nonlinear equations that describe the underlying 
dynamical system of an observed process. The problem 
consist of identifying the chaotic behaviour and building a 
model that captures the important properties of the 
unknown system by using only experimental data. In 
order to determine the main properties of the model, we 
must estimate dynamic invariants of the underlying 
system, such as the correlation dimension, the Lyapunov 
exponents and the Kolmogorov entropy. However, in 
practice, the existing approaches for the estimation of the 
Lyapunov exponents from experimental data are 
characterized by computational complexity, require a 
large data length and applied only when we have all 
observations of dynamical system. Working on real world 
data, it is often difficult to obtain a reliable estimate with 
these approaches and thus their applicability is limited.

A proposed solution to this is the use of neural 
networks. As was shown in [3,4] the multilayer

perceptron has been used successfully for the estimation 
of the largest Lyapunov exponent and Lyapunov spectrum 
from scalar time series. In this paper is proposed new 
approach for computing of Lyapunov spectrum using only 
one-dimensional observations from unknown dynamical 
system.

The rest of the paper is organized as follows. Section 
2 presents the new technique for computing the Lyapunov 
exponents using single time series. The respectively 
algorithm for that is described in Section 3. Section 4 
discusses the results of experiments. To end. Section 5 
gives conclusions.

2. A NEURAL NETWORK APPROACH TO 
COMPUTE THE LYAPUNOV 
EXPONENTS

Let’s consider a dynamical system described by n 
differential or difference equations. This system has n 
Lyapunov’s exponents A, (/=1,2,...,/?), that are globally 
called Lyapunov’s spectrum. The Lyapunov’s spectrum 
describes the system dynamics by defining the evolution 
of the attractor’s trajectories and characterizes the 
sensitive dependence on the initial conditions. These 
exponents are the average exponential rates of 
convergence (divergence) of nearby trajectories in the 
phase space. The largest Lyapunov’s exponent is the 
statistical measure of the divergence between two orbits 
starting from slightly different initial conditions. In a 
chaotic system the largest Lyapunov’s exponent is 
positive.

Let’s consider a small sphere at the initial condition in 
the //-dimensional phase space. Through the time this 
sphere is transformed into an ellipsoid with n principal 
axes: the Lyapunov’s spectrum measures the exponential 
growth for the principal axes of the evolving ellipsoid. In 
fact, let’s consider the following Lyapunov’s spectrum:

A1 >A^ >...>A „ (I)

and let’s order the axis of the ellipsoid by decreasing 
length; A; corresponds to the longest axis, A2 corresponds 
to the subsequent one, and so on. The Lyapunov’s 
exponent A, is defined as:

Ai = I im - I n
t—>oo t

I,it) 
Ii(O)

(2)

where Ii (0 ) and Ij (? ) are the lengths of ?-th axis at the
initial time and at a time t, respectively. Therefore every 
Lyapunov’s exponent characterizes the modification of
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Fig.l - Multilayer perceptron.

the principal axis of the ellipsoid. In an «-dimensional 
chaotic system the sum of the n Lyapunov’s exponents is 
negative for dissipative systems. The positive exponents 
are responsible for the sensitivity to initial conditions. The 
sum of the positive Lyapunov’s exponents is equal to 
Kolmogorov’s entropy.

Let’s consider a dynamical system described by the n- 
dimensional observable vector X(t)=[X1(t),X2(t),...,Xn(t)] 
and assume that the observations X,{t) are known. In this 
case the Lyapunov spectrum can be computed applying 
MLP, by using the method given in [2].

Let’s assume now, that only one observation X,(t) is 
known. The main goal is to compute Lyapunov exponents 
of unknown dynamical system using only one 
observation. Then the first step of proposed approach is to 
reconstruct the attractor dynamics from a single time 
series, using the method of delays [2]. After this step we 
can obtain the reconstructed trajectory X(t), which can be 
presented as a matrix where each row is a phase-space 
vector:

X=[X(1)X(2) ... X(k)], (3)
where X(i) is the state of the system at discrete time і and 
each X(i) is given by

X(і) = [x(i) x ( i-  x).. .x(i -  (m - 1 )-x )]= ^
[*l(i) X2(I)---Xm(J)],

where X is the time delay and m is the embedding 
dimension.

It is based on the Taken’s theorem [5], which states 
that the attractor can be reconstructed from a one 
dimensional observation in a phase space with dimension 
m>2[d]+\, where d is the fractal dimension of the 
attractor and [.] is the integer part. To apply the 
embedding theorem it is necessary to estimate the 
embedding dimension, i.e. the dimension of the 
reconstructed state space m, and the time delay, which is 
the time separation of lagged samples comprising the 
reconstructed state vector. There exist several methods for 
the estimation of these parameters, e.g. mutual 
information for the delay time, false nearest neighbors 
and saturation of measures such as correlation dimension 
for the embedding dimension [2,4].

The second step of proposed approach is to create 
neural network in order to forecast the next state of 
dynamical system X(i) from the previous one X(i-l). This 
network is a multilayer perceptron with m input units, к 
hidden units, and n output units (Fig.l). The output is 
defined as

X(t+l) = F(X(t)). (5)

After training neural network and starting from a 
given initial condition, this network is able to compute the 
state of the dynamical system at any time, as well as to 
describe the evolution of the phase trajectory points. At 
each step the Gram-Schmidt orthogonalization procedure 
must be used to adjust the output vector.

3. AN ALGORITHM FOR COMPUTING 
OF LYAPUNOV SPECTRUM
L et IW(- (f)| be the length of the i-th vector at the time t.

This length characterizes the value of the vector along the 
i-th ellipsoid axis. Thus, the i-th Lyapunov’s exponent is 
given by:

\  -  Iim г І In-
P ,=I

h ( o [
I VVy (t — 1)|

(6)

The correspondent length |Wj- (t)| can be evaluated by
using a neural network and, consequently, the Lyapunov 
exponents can be estimated. The algorithm to compute the 
complete Lyapunov spectrum is as follows:

1. Take the initial point N(O)-Ix1(O),X2(O),...,xm(0)] 
from the basin of attraction.

_g
2. Choose a small value £ = 10 and define the 

coordinates of next n points as follows:

A1OOhix1O0)+e,x2( t),.. .,xm0t)]
A2(O)=[x,( 0),x2( t)+£,...,xJt)]

(7)
A J  0)=Ix /  0),x2( t),...,xJt)+E]

The following orthogonal vectors are obtained: 

NA/0)=[e,0,...,()]
NA2(0)=[0,e,...,0] (8)

NAJ0)=[0,0,...,8]

3. Compute the length of each vector 

INAi (0)| = Jwj (0)| =  £ , where і =  I, m .

4. At the time t=0, use the set of points N(0), A 1(O), 
A2(O),..., Am(O) as the input vector of the neural 
network. The output produced by the predicting 
network is the set of the coordinates of the points at 
the next time t=t+l:
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N(I) =Ixl(IlN),X2(L N ),- , xm(l,N))
A,(l)=[x,( 1,A,),x2( LA,),--- ,x j  LA,)]

A2(1)=[x,(LA2),x2(LA2)„..,Xm(LA2)] (9)

A J l)=[x,( 1,AJ,x2( I,A J,...,X J L A J l

where xjl,A j) is the 7-th coordinate of the point A1 at 
the time t=l. This leads to the next set of vectors:

Щ  (I) =  W1 (I) =  [wn , W2 1 Wffll ]

NA2 (I) = w2 (I) =  [ W12, W22,..., wm2 ] ( 10)

N Am (1) =  Wffl (I) =  [W]ffl, W2ffl, Wfflffl ]

chosen as:

I I----

I--
-- W1(I)T ’h i 0)1.

where Iw1(I)I = ^vvf1 +VV21 + . . . +  W 2ml .

b) The subsequent vectors are defined by the 
following recurrent formulas:

W1 (I) = w,.(1) -  Y j (wf (I) • w] (1)) ■ Wrj (I)
J=1

I Wi(I)I = V Wu + W 1li  + . . .  +  W 1mi (12)

where Wy is the Tth coordinate of the у-th vector, 
having defined Wij = Xi (Xt A j ) - x ,( \ ,N ) .

5. The basis [W1(I)tW2(I),...,w jl)]  is transformed into 
the orthonormal frame by using the Gram-Schmidt 
algorithm, as follows:

a) The first vector of the orthonormal frame is

w' (1) = w U W ,„ i

k ( l ) | > ,  (1) Г " > Д 1)|

where i — 2 ,m .  
c) Compute:

Table I. Estimation of Lyapunov spectrum of Lorenz system using neural network

dt T Lyapunov spectrum Absolute Relative
X.2 )-3 error error

0,04170 0,1668 0,612978 -0,2016840 -15,0033 0,559053 3,83%
0,04200 0,1680 0,725777 -0,0211582 -14,6402 0,193839 1,33%
0,04215 0,1686 0,966544 -0,3009800 -15,9458 1,407730 9,64%
0,04220 0,1688 0,965399 -0,3006240 -15,9270 1,389170 9,51%
0,08500 0,1700 1,143851 -0,2816490 -14,9843 0,553092 3,79%
0,04260 0,1704 1,021790 -0,4326160 -15,6514 1,168620 8,00%
0,04260 0,1704 0,483841 0,0528098 -13,3949 1,251610 8,57%
0,04300 0,1720 0,742471 -0,0865899 -14,2650 0,358420 2,45%
0,08600 0,1720 0,830438 -0,3357490 -13,5627 1,066370 7,30%
0,04320 0,1728 0,570654 -0,1465600 -14,9297 0,511766 3,51%
0,08700 0,1740 1,216890 -0,6435080 -14,5374 0,715508 4,90%

Table 2. Estimation of Lyapunov spectrum of Roessler system using neural network

d t T
Lyapunov spectrum Absolute Relative

)-3 error error
0,04 0,04 0,173003 -0,0821049 -5,47571 0,154879 2,87%
0,07 0,07 0,060350 -0,3888620 -5,18352 0,441825 8,19%
0,06 0,12 0,090696 0,0030709 -5,02998 0,363565 6,74%
0,06 0,12 0,106080 -0,0358488 -5,79224 0,402378 7,46%
0,06 0,12 0,077922 -0,0187908 -5,93021 0,537581 9,97%
0,07 0,14 0,129117 -0,1092460 -4,93167 0,477637 8,86%
0,08 0,16 0,106981 -0,0449128 -5,36074 0,065971 1,22%
0,08 0,16 0,085461 -0,0282390 -5,31476 0,084427 1,57%
0,04 0,16 0,119605 -0,2027930 -5,56896 0,272851 5,06%
0,06 0,18 0,141245 -0,0751598 -5,48983 0,141277 2,62%
0,08 0,48 0,078753 -0,0144016 -5,24691 0,147000 2,73%
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5,(1) = ІП h  0)1 
Ivvl(O)I

where і = I, n .
The result is the new set of points:

(13)

N(I) = [*, (I, N), X2 (I, N),..., xm (I, N)]

A (I) = [-*1 (I, A  )’ *2 (I. Xm(UAl)] (14)
A2 (1) =  [xi (I, A2), X2 (I, A 2 Xm (I, A2)]

A, (I) = [Xi (I, An U i  (I, А» X • Xm (I, Am)],

where X j  (I, A j ) =  W- + Xi (I, N )  .

6. Repeat from step 3 to step 5 for t  =  I, p  , where 

/7 = 1000 .
7. Define the Lyapunov spectrum as:

A , - = - j U ( 0  (15)
/7/=1

where І =  I, П . The following Lyapunov exponents 
are therefore obtained:

A1 > A 2 > . . . > A „ .  (16)
Thus the proposed approach permits to estimate 

Lyapunov exponents using only single time series.

4. EXPERIMENTAL RESULTS
Let’s examine proposed approach for estimation of 

Lyapunov spectrum. As the chaotic systems, which we 
want to model are the Lorenz and Roessler attractors. The 
Lorenz attractor is described by the following three 
coupled nonlinear differential equations:

■y- = G ( y - x ) 
dt

■^ -  = - xz  + r x - y  (17)
dt

dz ,
—  -  x y -b z  
dt

where G=10, /=28, and b=8/3 for chaotic behavior. 
Lorenz proposed this model for the atmospheric 
turbulence. For such a system actual values of Lyapunov 
exponents are 0.906, 0, and -14,472, respectively. The 
value of fractal dimension is 2.06. The Roessler attractor 
can be described by the following equations:

< ^  = X + ay,

f  = b + (x-r)z ,
(18)

where a = b = 0.2 and r = 5.7 for chaotic behavior. The 
actual values of Lyapunov exponent are 0.07, 0, and -  
5.39 respictevely. The value of fractal dimension is 2.03. 
Only the X-series has been used in both cases; the size of 
the data set was 400 points. We have been choose the 
embedding dimension m=3 less than in accordance with 
Takens criterion. A multilayer perceptron with 3 input 
units, 10 hidden units, and 3 output units has been used. 
By using this technique we obtained the Lyapunov 
exponents for Lorenz and Roessler dynamical system, as 
it is shown in tables I and 2. During the experiments the 
time step dt between points and time delay x have been 
changed. As can be seen from tables the proposed 
technique permits to predict the Luapunov exponents for 
Lorenz and Roessler dynamical systems accurately and 
efficiently, using only one dimensional observations.

5. CONCLUSION
In this paper some aspects of chaotic time series 

processing have been addressed, namely estimation of the 
Lyapunov spectrum from the single time series. The 
proposed approach based on the reconstruction of the 
attractor dynamics and applying of the multilayer 
perceptron for estimation of Lyapunov exponents. The 
neural network technique allow for evaluating the 
Luapunov spectrum even on small data set, that permits 
both for reducing the computationally complexity and for 
limit the observation time. Finally I would like to thank 
Nikolay Chumerin for performing some experiments.
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