Общеизвестно [3, с. 303, 332], что задача Дирихле $\Delta u = 0$, $u|_{\partial\Omega} = f$ при любой непрерывной по Гельдеру функции $f:\partial\Omega \to R$ имеет единственное решение. Следовательно, индекс (5), (1) равен нулю. Теорема доказана.

Список использованной литературы

- 1. Агранович, М. С. Эллиптические сингулярные интегро-дифференциальные операторы / М. С. Агранович // Успехи мат. наук. 1965. Т. 20, вып. 5. С. 3—120.
- 2. Антоневич, А.Б. Функциональный анализ и интегральные уравнения: учебник / А.Б. Антоневич, Я.В. Радыно. 2-е изд., перераб. и доп. Минск: БГУ, 2003. 430 с.
- 3. Владимиров, В. С. Уравнения математической физики / В. С. Владимиров. М.: Наука, 1967. 436 с.

УДК 517.946

А. И. БАСИК, И. Ю. ЯЩУК

Брест, БрГУ имени А. С. Пушкина

ЗАДАЧА ГИЛЬБЕРТА ДЛЯ ОДНОГО ТРЕХМЕРНОГО АНАЛОГА СИСТЕМЫ КОШИ – РИМАНА

Пусть $\Omega^+ \subset \mathbb{R}^3$ — ограниченная область, гомеоморфная шару, границей которой является поверхность Ляпунова, гомеоморфная сфере. Через Ω^- обозначим дополнение замыкания Ω^+ .

Четырехкомпонентную вектор-функцию $U = (u_1(x), ..., u_4(x))^T$, удовлетворяющую в областях Ω^+ и Ω^- системе дифференциальных уравнений с частными производными первого порядка вида

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & -1 \end{bmatrix} \frac{\partial U}{\partial x_1} + \begin{bmatrix} 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \frac{\partial U}{\partial x_2} + \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & -1 \\ -1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \frac{\partial U}{\partial x_3} = 0, (1)$$

и обращающуюся в нуль на бесконечности, назовем кусочно-голоморфным вектором. Отметим, что система (1) является трехмерным аналогом системы Коши – Римана [1]. Последнее означает, что каждая компонента ее непрерывно дифференцируемого решения удовлетворяет уравнению Лапласа, т. е. $\Delta u_k = 0$ (k = 1,...,4).

Далее, пусть на $\partial\Omega$ заданы непрерывные по Гельдеру с показателем $\alpha\in]0;1]$ 4×4 – матрица-функция G и 4-компонентная вектор-функция f. Под задачей линейного сопряжения понимается задача нахождения кусочно-голоморфного вектора U(x), непрерывного по Гельдеру с показателем α в замыкании областей Ω^{+} и Ω^{-} и удовлетворяющего на $\partial\Omega$ краевому условию

$$U^{+}(t) = G(t)U^{-}(t) + f(t), t \in \partial\Omega.$$
 (2)

Здесь $U^\pm(t)$ – предельные значения функции U(x) при $x\to t\in\partial\Omega$ изнутри и извне области Ω^+ , по некасательному к $\partial\Omega$ направлению:

$$U^{+}(t) := \lim_{x \to t, x \in \Omega^{+}} U(x), \ U^{-}(x) := \lim_{x \to t, x \in \Omega^{-}} U(x). \tag{3}$$

В случае если система (1) представляет собой систему Коши – Римана, задача линейного сопряжения является основной краевой задачей теории аналитических функций и достаточно подробно изучена (см. книгу [2] и имеющуюся там библиографию).

В многомерном случае ситуация иная. Трехмерный вариант задачи, когда система (1) есть система Моисила – Теодореску и G – постоянная матрица специального вида, впервые рассмотрел и решил А. В. Бицадзе (см. главу VI книги [3], где был построен интеграл типа Коши и установлены формулы Племеля – Сохоцкого, позволяющие свести задачу линейного сопряжения к равносильной системе сингулярных интегральных уравнений). Позднее В. И. Шевченко [4] провел более полное исследование задачи линейного сопряжения для системы Моисила – Теодореску с матрицей G общего вида: была введена сопряженная задача, получено условие нетеровости, проведена гомотопическая классификация задач, найдены явные формулы для индекса, и указаны признаки разрешимости задачи.

В настоящей работе указывается необходимое и достаточное условие нетеровости сформулированной выше задачи (1), (2) в случае, когда коэффициент сопряжения G имеет вид

$$G = \begin{bmatrix} g_1 & g_2 & g_3 & g_4 \\ -g_2 & g_1 & -g_4 & g_3 \\ -g_3 & g_4 & g_1 & -g_2 \\ -g_4 & -g_3 & g_2 & g_1 \end{bmatrix}, \tag{4}$$

где $g_k:\partial\Omega\to {\bf R}\,(k=\overline{1,4})$ — непрерывные по Гельдеру с показателем α на $\partial\Omega$ функции.

Теорема. Задача линейного сопряжения (1), (2) является нетеровской тогда и только тогда, когда в каждой точке t поверхности $\partial\Omega$ выполняется неравенство

$$g_1^2(t) + g_2^2(t) + g_3^2(t) + g_4^2(t) > 0.$$
 (5)

◀ Задача (1), (2) равносильна следующей системе сингулярных интегральных уравнений

$$(G(t) + E)\Phi(t) + (E - G(t))\frac{1}{2\pi} \int_{E} M(t; y)\Phi(y)dS(y) = 2f(t),$$
 (6)

в том смысле, что векторная плотность $\Phi:\partial\Omega\to {\bf R}^4$ является решением системы (6) тогда и только тогда, когда вектор-функция

$$U(x) := \frac{1}{4\pi} \int_{\Omega} M(x; y) \Phi(y) dS(y)$$
 (7)

является решением задачи (1), (2) [5]. Таким образом, рассматриваемая задача является нетеровой в том и только в том случае, когда нетеровым является оператор \Im , задаваемый левой частью системы (6) в пространстве $L_{\rho}(\partial\Omega)$ для некоторого p>1, что равносильно невырожденности символической матрицы

$$\sigma_{3}(t;\tau) = (G(t) + E) + i(E - G(t)) \begin{bmatrix} -\tau_{1} & -\tau_{1} & \tau_{2} - \tau_{3} & \tau_{2} \\ 2\tau_{1} & \tau_{1} & 2\tau_{3} & -\tau_{2} + \tau_{3} \\ -\tau_{2} + \tau_{3} & -\tau_{2} & -\tau_{1} & -\tau_{1} \\ -2\tau_{3} & \tau_{2} - \tau_{3} & 2\tau_{1} & \tau_{1} \end{bmatrix}$$
(8)

оператора \Im в каждой точке $t \in \partial \Omega$ и при каждом единичном векторе τ , касательном к $\partial \Omega$ в точке t [6, c. 190].

Непосредственное вычисление показывает, что при $|\tau|$ =1 имеет место равенство

$$\det \sigma_3(t;\tau) = 4(a\tau_1^2 + b\tau_2^2 + c\tau_2\tau_3 + d\tau_3^2),$$

где

$$a = 4g_1^2 + 9g_2^2 + 4g_3^2 + 9g_4^2; b = 4g_1^2 + 5g_2^2 + 4g_3^2 + 5g_4^2;$$

$$c = -4(g_2^2 + g_4^2); d = 4g_1^2 + 8g_2^2 + 4g_3^2 + 8g_4^2.$$

Так как при выполнении неравенства (5) все угловые миноры матрицы квадратичной формы $\sigma_3(t;\tau)$ положительны, то, согласно критерию Сильвестра, форма $\sigma_3(t;\tau)$ является положительно определенной.

Список использованной литературы

- 1. Усс, А. Т. Гомотопическая классификация трех- и четырехмерных аналогов системы Коши-Римана / А. Т. Усс // Дифференц. уравнения. 2004. Т. 40, № 8. С. 1118—1125.
- 2. Гахов, Ф. Д. Краевые задачи / Ф. Д. Гахов. 3-е изд., перераб. и доп. М. : Наука, 1977. 640 с.
- 3. Бицадзе, А. В. Краевые задачи для эллиптических уравнений второго порядка / А. В. Бицадзе. М.: Наука, 1966. 203 с.
- 4. Шевченко, В. И. Гомотопическая классификация краевых задач Гильберта для голоморфного вектора / В. И. Шевченко // Докл. АН СССР. 1971. Т. 201, № 5. С. 1067–1069.
- 5. Басик, А. И. Задача линейного сопряжения для одного класса трехмерных аналогов системы Коши-Римана / А. И. Басик // Аналитические методы анализа и дифференциальных уравнений: тр. 4-й междунар. конф., посвящ. 100-летию акад. Ф. Д. Гахова, Минск, 13–19 сент. 2006 г.: в 3 т. / НАН Беларуси, Ин-т математики; ред.: А. А. Килбас, С. В. Рогозин. Минск, 2006. Т. 3: Дифференциальные уравнения. С. 12–18.
- 6. Михлин, С. Г. Многомерные сингулярные интегралы и интегральные уравнения / С. Г. Михлин. М.: Физматгиз, 1962. 256 с.

УДК 519.24

Е. В. БОРОДЕЙ, Е. И. МИРСКАЯ

Брест, БрГУ имени А. С. Пушкина

ИССЛЕДОВАНИЕ ВТОРОГО МОМЕНТА РАСШИРЕННОЙ ПЕРИОДОГРАММЫ СТАЦИОНАРНОГО СЛУЧАЙНОГО ПРОЦЕССА

Статистический анализ стационарных случайных процессов является одним из наиболее значимых в прикладном отношении направлений математической статистики, одной из главных задач которого является построение и исследование оценок спектральных плотностей, так как они дают важную информацию о структуре процесса.

Пусть $X'(t), t \in Z$, r — мерный действительный стационарный в широком смысле случайный процесс. Будем предполагать, что $MX_a(t) = 0, f_{ab}(\lambda), \ \lambda \in \Pi$ — неизвестная взаимная спектральная плотность рассматриваемого процесса, $a, b = \overline{1, r}$.