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A b stra c t—This article is a consideration on computer net­
work intrusion detection using artificial neural networks, or 
whatever else using machine learning techniques. We as­
sume an intrusion to a network is like a needle in a haystack 
not like a family of iris flower, and we consider how an attack 
can be detected by an intelligent way, if any.

I. Introduction

The parachute drop went smoothly . ■ ■ slithering down the 
chute and out into space ... Flick landed perfectly, with her 
knees bent and her arms tucked into her sides as she fell to 
the ground ... She folded her parachute into a neat bundle, 
then set out to find the other Jackdaws. -  “Jackdaws" by 
Ken Follett.

Most banks nowadays facilitate their ATM (automated 
teller machine) in which we may have a personal account 
to which we can access with PIN-code, usually four digits 
of decimal numeral. For security reason, if we failed to en­
ter the PIN correctly more than three times in a row, the 
PIN would loose its validity thereafter. Then what we are 
curious is, “How many trials would be needed for random 
challenges to reveal the secret PIN if an infinite number of 
trials were permitted?” Let’s formalize this problem.

Problem  I  (Breaking a  P IN )
Assuming p-bit oc ta l1 numeral is employed to construct a 
PIN, only one out o f those 8P possible combinations is the 
secret PIN. No one except fo r  the owner o f the PIN knows 
it. Then question is, “How many average trials-and-errors 
will be needed fo r  a non-owner to know the PIN under a 
specific strategy?”

This might be reminiscent of the famous problem called 
a needle in a haystack which was originally proposed by 
Hinton к  Nowlan in 1987 [1]. The needle in the proposal 
was exactly the one configuration of 20-bit binary string, 
that is, the search space is made up of 220 points and only 
one point is the needle to be searched for. No information 
such as how close is a currently searching point to the nee­
dle, or how lilrely is a searching point to be the needle. See 
Figure I.

We assume that TCP connections to a computer network 
are represented with «-dimensional vectors and those rep­
resented by intrusions are like needles among huge amount

1 You will see the reason why “octal” not “decimal” later in the sub­
section concerning “intron” in the section E X P E R IM E N T S .

of normal transactions which might look like a haystack or 
pastoral.

II. Network Intrusion Detection

Those highly qualified hackers who provide security ser­
vices to companies during the daytime and then go home 
at night to conduct totally illegal hacking are the ones who 
are the most dangerous. -  by Enis Senerdem from Turkish 
Daily News on 29 March 2006.

When we are to design a network intrusion detection sys­
tem, which is one of the hottest topics these days, by 
means of so-called a soft computing such as artificial im­
mune system, fuzzy logic, evolutionary computations, neu­
ral networks, whatever it might be, we need a set of sample 
data to train the system and to test the system afterwards.

A. When a Family o f  Iris Flower is Normal Then are 
Others Abnormal? — HTiere is an Outlier?

The Spearman’s iris flower database2 is a frequently used 
dataset in pattern recognition/classification, data mining, 
etc. As such, there have been fair amount of studies in 
which this iris flower database is employed as a dataset to 
train and to test the intrusion detection system.

A total of 150 samples consists of three species: setosa, 
versicolor and virginica, each of which includes 50 sam­
ples. Each sample is a four-dimensional vector represent­
ing four attributes of the iris flower, that is, sepal length, 
sepal width, petal length, and petal width.

Let us take an example where this iris flower dataset was 
employed. Castellano et al. [2] assumed one family to be 
normal whilst the other two to be abnormal. The whole 
dataset was divided into 10 parts each of which has 15 sam­
ples uniformly drawn from the three classes. The system

Fig. I. A fictitious sketch of fitness landscape of a needle in  a haystack. 
The haystack here is drawn as a  2-dimensional flat plane of fitness zero.

2 University of California Urvine Machine Learning Repository. 
ics.uci.edu: pub/machine-learning-databases.
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is trained by the remaining 135 samples. The originally 
picked up 15 samples are used to test the results. After 
this 10-fold cross validation, the authors concluded that 
the abnormal detection rate is 96% while the false alarm 
rate is 0.6%. How nice, isn’t  it? In reality, however, it is 
not so simple. It might not be difficult at all for a hacker 
to find an unlearned region which could work to invade the 
system.

We now look at the Figure 2 to see how the three species 
are distributed in the whole search space. This is depicted 
by the Sammon Mapping.

Sammon Mapping maps a set of points in a high­
dimensional space to the 2-dimensional space with the 
distance relation being preserved as much as possible, or 
equivalently, the distances in the ті-dimensional space are 
approximated by distances in the 2-dimensional space with 
a minimal error.

Just a brief look at the figure reveals us that there remains 
an enormously wide region of unlearned for outliers.

Fig. 2. A 2-dimensional visualization of iris flower data by Sammon Map­
ping. Three different families of iris flower each contains 50 samples are 
represented in the figure with circles, triangles and squares.

B. Intrusion Might Look Like a Needle in a Hay!
The other type of dataset, naturally more often employed 
in the context of network intrusion, is the KDD-cup-1999 
dataset which was prepared by MIT Lincoln Laboratory as 
a dataset for the 1998 DARPA intrusion detection evalu­
ation [3]. This dataset has been, and still is going to be, 
a common benchmark for evaluation of intrusion detection 
techniques.

KDD dataset, beside Normal data, covers four major cate­
gories of attacks: (i) Probing attacks which attack by prov­
ing a vulnerability of the network; (ii) Denial-of-Service 
(DoS) attacks which try an invasion by denying legiti­
mate requests to a system; (iii) Userto-Root (U2R) attacks 
which tries an unauthorized access to local super-user or 
root; and (iv) Remote-to-Local (R2L) attacks which is an 
unauthorized local access from a remote machine. These

four categories of attacks include a total of 32 different at­
tack types.

The dataset consists of two sub-datasets. The one is pro­
vided as training data and contains 4,898,430 records each 
of which is labeled as either normal, or attack indicating 
one specific attack out of the 32 types.3 The second is 
unlabeled and contains 311,029 records, which is provided 
as testing data.

What a huge dataset! In fact, the Sammon Mapping we 
had tried in the iris dataset above wouldn’t work any more. 
Therefore, many have tried various approaches to reduce 
the dimension. Let’s start our small literature survey with 
this topic of dimension reduction.

Kuchimanchi et al. [4] used the principal component anal­
ysis (PCA), and calculated the first most important 19 
attributes.4 Then they evaluated the result of this di­
mension reduction by providing both the original 41- 
dimensional data and those 19-dimensional data reduced 
by PCA to a decision-tree-classifier independently, com­
paring detection accuracies and false positive5 rates. They 
showed detection accuracy and false positive rate were 
99.92% and 0.26%, respectively, on the 19-dimensional 
PCA data, while 99.94% and 0.23%, respectively, on the 
original 41-dimensional data.0 What a successful result! 
However, is this still very huge, is it not?.

Let’s see one more example. Joshi et al. [5] wrote, “Exploit­
ing only 5 out o f 41 attributes7 the best results was 79% ac­
curacy in correctly detecting attacks, and 21 % is accounted 
fo r  false positive rate plus false negative8 rate. ” 9

Though it might not be so successful as the above result by 
Kuchimanchi et ah, if we consider 5 out of )1 attributes, it 
is amazing. Wow!

Anyway, it is good to know we can reduce the dimension 
of the original KDD-cup-1999 dataset into at least about 
half with the result remaining intact.

Then, our next interest will be, “Are all of the attack types 
in the KDD-cup-1999 dataset equally willing to wait to be

3 Tbe labeled training data-set Includes 972,780 Normals, 41,102 
Probes, 3,883,370 DoSs, 52 U2Rs, and 1,126 R2T.S.

4 They are src-bytes, dsLbytes, duration, is-guest.login, is-hosLlogin, 
srv-diffJxost-rate, d iffsrv-ra te , service, flag, protocoLtype, num-root, 
hot, num.compromised, d s t.host.sam e.srv .ra te , dstJiost-count, 
rerror.rate, srv.count, and dst.host.srv.d iff.host.ra te.

5 Le., recognizing attack as normal.
6 This was not the main purpose of the paper. The authors rather ex­

ploited the other methods of dimension reduction such as neural-network- 
PCA or nonlinear-component-analysis, expecting more efficiency and 
higher accuracy. The evaluation was carried out not only by dectston- 
tree classifier but also by non-linear classifier.

7 I.e., src.bytes, dst-bytes, duration, t s.host-login, and is-guest-login.
8 I.e., recognizing normal as attack.
9 Most of the phrases cited in this article appeared hereafter like “• • • ” 

are the ones paraphrased, more or less, by the author of this article. As 
such, if there are some incorrect expressions, it is the author of this article 
who is responsible for, not the original authors.



detected?” Some of the reports were from this point of 
view. Let us name a few.

Pan et al. [6] exploited three-layer (70-Ц-6) feed-forward 
neural network with a sigmoid transfer function trained 
with back-propagation using scaled conjugate gradient de­
cent, to detect five typical types of attacks -  neptune, 
portsweep, satan, buffer-overflow, and guess-passwd -  as 
well as normal samples.

Let’s see what they observed. Authors wrote, “The test 
result indicates that 99.6% of the normal examples were 
recognized correctly, and for three attacks of neptune, Sa­
tan, and portsweep, we obtained the average detect rate of 
96.6% and the false positive rate of 0.049%. However, for 
all the five kinds of attacks, we only obtained the average 
detect rate of 64-9% and the false positive rate of 26.7%. 
This is because all buffer-overflow and guess-passwd at­
tacks failed to be classified by this back-propagation neu­
ral network. Then we tried an expert system, and found 
that buffer-overflow and yuess.passwd attacks can be more 
accurately detected by this rule-based detector than neural 
network.” And then concluded, “The model based on both 
neural network and expert system finally achieved the aver­
age detection rate of 93.28% and false positive rate of 0.2% 
for all of these five attack types. ”

We, however, would be rather more interested in why 
this neural network failed to classify buffer-overflow and 
guess-passwd attacks, than the performance improvement 
by using rule-based detector.

Pan et al. reported yet another result in their differ­
ent article [7]. With the same architecture of neural 
network and with the same target of five attacks as 
above, they reported that correctly predicted (normal, nep­
tune, satan, portsweep, buffer-overflow, guess-passwd) by 
this back-propagation neural network was (73.3%, 99.2%, 
94.6%, 94.2%, 0.0%, 0.0%). And concluded, “The back- 
propagation network can’t detect the buffer-overflow and 
guess-passwd attacks.” This sounds like a realistic asser­
tion, and the one we want.10

Thus far, such more careful conclusions appear in the re­
cent literatures. For example, Stibor et al. [8] wrote, 
“The real-valued negative selection with variable-sized de­
tectors has poor classification performance on the high­
dimensional KDD dataset."

When this artificial immune system based detector was 
proposed by Ji et al. [9], the result of applying it to the 
iris dataset was not that bad. That is, the correct de­
tection rate of (setosa, versicolor, virginica) was (99.98%, 
85.95%, 81.87%>), while false alarm rates were all zero!

As another example of such implicit report of failure, Dam

et al. [10] claimed, “The evolutionary classifier system, de­
vised to make its performance improved than the traditional 
one, resulted in the detection rate of (95.7%, 49.1%, 93.0%, 
8.5%, 3.9%) for (normal, DoS, Probe, U2R, R2L).”

Again, we are rather more interested in why detection rate 
is so low for U2R and R2L than whether result is satisfac­
tory or not.

Finally, it would be interesting to take a look what Sabh- 
nani et al. [11] reported. See Table I to have a bird’s eye 
view of those results above.

Table I. Detection rate for 4 attack types eech with 9 different machine 
learning technique. Prom Sabhnani et al. [I IJ.

Probe DoS U2R R2L
Multi-layer Perceptron 88.7 97.2 13.2 5.6
Gaussian Classifier 90.2 82.4 22.8 9.6
K -mean Clustering 87.6 97.3 29.8 6.4
Nearest Cluster Algorithm 88.8 97.1 2.2 3.4
Radial Basis Function 93.2 73.0 6.1 5.9
Leader Algorithm 83.8 97.2 6.6 1.0
Hypersphere Algorithm 84.8 97.2 8.3 1.0
Fuzzy A rt Map 77.2 97.0 6.1 3.7
C4.5 Decision Tree 80.8 97.0 1.8 4.0

Also note that KDD-cup-1999 winner’s detection rate for 
(Probe, DoS, U2R, and R2L) was (83.3%, 97.1%, 13.2%, 
8.4%).

O ur C onjecture
Here, we, conjecture that those sometimes observed poor 
results are because some of the attack data are like needles 
in a haystack of huge amount of normal data. If we were 
able to fully visualize such large size of normal samples 
together with a few data picked up from abnormal samples, 
the latter might look like a needle in a hay stack of the 
former, like in Figure 3. Though we are not yet ready, 
we plan to show a visualization of this assumption of us 
elsewhere, to study this conjecture further in detail.

Fig. 3. We conjecture that some attack data (filled circles) are like nee­
dles in a hay of normal data (empty circles). Plots in this figure are all 
fictitious.

10 Again they reported a successful improvement of this result by a hy-
bridization with C4.5. To summerize this section, we ask the readers,



Problem  2 (A Challenge in KDD-cup-99 dataset)
Design an intrusion detection system which has 41 inputs 
corresponding to attributes from KDD-cup-1999 dataset, 
and 5 YES/NO  outputs indicating that the input is either 
normal, Probe, DoS, U2R, or R2L. The question is, “Such 
design is possible or not?”

Note that one parachutist is represented by our genotypes 
of a Зр-digit binary strings. Let’s take an example of p = 4. 
A genotype

((100)(1 1 1 )(000)(010))

maps into its phenotype (4 7 0 2).

Also see Figure 4 to get an image of real implementation 
by a neural network, as an example.

Fig. 4. A simple architecture of neural network we desire to design to 
classify KDD-cup-99 dataset.

III. E x p e r i m e n t s

Flick remembered the legend of the Jackdaw of Rheims, 
the bird that stole the bishop's ring. The monks couldn't 
figure out who had taken it, so the bishop cursed the un­
known thief. Next thing they knew, the jackdaw appeared 
all bedraggled, and they realized he was suffering from the 
effects of curse, and must be the culprit. Sure enough they 
found the ring in his nest. -  “Jackdaws" by Ken Follett

Assuming our conjecture that real attack samples are like 
needles in a haystack of normal samples, we now look at 
how easy or difficult to find them. Let’s start with a ran­
dom search. Note that some proposed algorithms which 
were reported as success actually were not good as asserted, 
and sometimes found to be worse than a random search.

At the start, one p-bit octal PIN is created which we 
assume no one knows a priori. With p being increas­
ing from 2, we count the number of randomly created 
genotypes until its phenotype strictly matches to the 
hidden PIN. The average number, during 1024 runs, of 
parachutists needed until we found the parachutist who 
fell on the needle just by chance, for p = 2,3,4,5,6,7 were, 
respectively,

(66,512,3951,32154,254673,2058527). (I)

See Figure 5.

B. What if Parachutists are Allowed to Walk after Fall?
A lgorithm  2 (E xploration  after Fall) (I) Create a p- 
bit octal PIN at random. (2) Create randomly one ip-bit 
of binary string. (3) Translate the string into p-bit octal 
code. (4) Check if  the translated code matches the PIN.
(5) If matches, end the run. Otherwise give a mutation by 
flipping a bit chosen at random11 with a probability o f l / i p  
until the translation matches the PIN, or number of steps 
exceeds 1000. (6) I f  still none has matched, then repeat 
from 2.

What will happen if the fallen parachutist is allowed to 
explore, say, 1000 random steps, around the spot they 
fall? This might remind you of the seminal experiment 
once made by Hinton к  Nowlan [1] who referred it to “life­
time learning — Baldwin Effect, ” though our parachutist 
in this paper ends her life without creating a next genera­
tion. The results, again over the average of 1024 runs, for 
P = 4 ,5,6,7,8 were, respectively,

(5,36,308,2436,23087). (2)

A. Random Fall of Parachutists
A lgorithm  I  (R andom  Fall) (I) Create a p-bit octal 
PIN at random. (2) Create randomly one "ip-bit of bi­
nary string. (3) Translate the string into p-bit octal code. 
(4) Check if the translated code matches the PIN. (5) If 
matches, end the run. Otherwise go back to 2.

Let us allow to use a metaphor here. We now assume only 
one needle in a pastoral, and parachutists fall from the 
airplane in the sky to the pastoral one by one, then our 
interest is on how would it be likely for a parachutist to 
fall just on the needle. This might be taken as a random 
search, and will be our criterion of comparison hereafter.

The results are depicted also in Figure 5 together with 
the result of our random parachutists in the previous sub­
section. In both cases, we can see that complexity to find 
the needle is an exponential order. But look! How impres­
sive an exploration-after-fall improves the performance!

As you have probably noticed already, however, it’s not 
fair just to compare the number of parachutists. The total 
number of points searched by those walking parachutists 
is plotted as a function of p in Figure 6. We can see that 
the result was rather worse than our random parachutists, 
despite of its superficial good looking of the result.

11 We will call this a “point-wise m u ta tion” hereafter.
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C. Neutral Mutation
Algorithm  3 (Walk by N eu tra l M utations) (I) Cre­
a tes PIN at random. (2) Create one genotype at random. 
(3) Try point-wise mutation on the genotype such that the 
result maps into the same phenotype as the one before the 
mutation. (4) Assess all possible single-mutation-neighbors 
of the new genotype to determine whether any new pheno­
type is discovered. (5) Step 3 to 4 are repeated untill the 
phenotype matches the PIN, or untill a pre-fixed number of 
steps is reached.

This is a paraphrase of the algorithm proposed by Ship- 
man et al. [12] who called the step 3 a neutral mutation 
(Note that the mutation in step 4 is a standard one). Its 
efficiency was studied in their paper by applying it to a 
random Boolean network and telecommunication networks. 
But why not more simple example is to be explored, if it 
is to work universally?

To apply this in our problem of searching for the needle, 
that is, octal p-bit PIN, we design our genotype as 15p-bit 
binary string such that the number-of-1 (mod 8) in each of 
those 15-digit blocks in the string maps into one bit of the 
corresponding octal code.12 For example

D. Does Neutral Mutation on Intron Enhance Efficiency 
of Search?

A lgorithm  4 (N eu tra l N etw ork) (I) Create a PIN at 
random. (2) Create randomly an initial individual which 
is considered to be the winner to the next generation. (3) 
Carry out point-wise mutation on the winning parent to 
generate 4 offspring. (4) Construct a new generation with 
the winner and its offspring. (5) Select a winner from the 
current population using the following rules, (i) I f  any off­
spring has a better fitness than the parent, the one with 
highest fitness becomes the winner, (ii) I f fitness of all off­
spring have the same fitness as the parent, one offspring 
is randomly selected, and if  the parent-offspring pair has 
a Hamming distance within the permitted range, the off­
spring becomes the winner, otherwise the parent remains 
as the winner. (6) Back to step 2 unless the maximum 
number of generations reaches, or a solution is found.

The description of the algorithm above is a paraphrase from 
Yu &: Miller [13]. As for the application of this algorithm, 
we had an interesting discussion between Yu h  Miller’s 
paper “Finding needles in haystack is not hard with neu­
trality” (2002) vs. Collin’s “Finding needles in haystack is 
harder with neutrality” (2005).

((100011000000100)(111111111111111)(111110001101010))

maps into (4 7 1).

The average number, during 1024 runs, of parachutists 
needed until we found the one who firstly reached the nee­
dle for p = 2,3,4,5,6 were, respectively,

(71728,583593,4930624,36592634,314817878). (3)

Much worse than our random search.
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Fig. 5. (a) Number of random creations of candidate until the PIN is 
matched (filled circles), and (b) The number when created candidate is 
allowed random walks of 1000 steps (empty circles). Both are the average 
of 1024 runs.

What Yu & Miller [13] attacked as a type of a needle 
in a haystack problem was to make a genetic algorithm 
construct an even-n-parity logic circuit by employing only 
XORs and EQs, not ANDs and ORs and so on, which 
shows a peculiar fitness landscape. The even-n-parity logic 
has n-bit binary inputs and if and only if the number of 
“1” is even, it returns I and otherwise returns 0. Hence, 
we can evaluate the fitness value of any one candidate of 
the solution, by giving all the possible configurations of 0 
and I and counting how many correct outputs. Thus, from 
a combinatorial point of view, we have 2n cases of fitness 
values. In reality, however, we have only three different 
values, that is, 2n, 2("-1) and 0. In other words, the out­
put is all correct, half correct, or not correct at all. For 
example, candidates of even-3-parity constructed only by
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Fig. 6. Average number of points explored by all the randomly created 
12 A simple consideration might give us the idea that 7-bit binary for candidates who are allowed further random walks of 1000 steps until the

each octal is enough. However, we implemented in this way so that each needle is found. Average are taken among 1024 runs,
octal from 0 to 7 are created uniformly at random.



XORs and E'Qs returns either 8, 4 or O correct outputs for is translated into (1,5,2,7) since the second gene is trans- 
the eight possible inputs (000), (001), (010), (111). Iated into 12 and supposed to be an intron.

Yu & Miller wrote, “In the case of random creation 
of 4,000,000 candidates of even-12-parity, the solution 
(fitness 4096) was never emerged, while even-10-parity 
100,000 random creations of candidate yielded 540 solu­
tions (fitness 1024)- On thz other hand, when neutral mu­
tation was applied to the candidates of even-12-parity, the 
48 out of 100 runs reached solution(s) with each run being 
only within 10,000 iterations.”

Collins argued back concluding, “Reported success is due to 
a bias of the selection” [14]. In the other Collin’s work [15], 
it was analytically shown that the number of possible can­
didates of even-12-parity is 1.315 x 10139 in which number 
of real solutions is 2.568 x IO132, claiming “Yu & Miller’s 
result is, therefore, worse than a possible random search. ”

Again what we want to emphasize here is, if the assertion 
by Yu & Miller is universally true, it would work in yet 
more principally simple examples.

Before going further, let’s see what is intron that Yu & 
Miller assumed to play an important role in their evolution. 
For example, take a look at a genotype representing an 
even-3-parity,

((EQ, A 1 B)(EQ, C, D)(XOR,  I, E)(EQ, F1 G)(EQ, 3, H))

where each gene which corresponds to one unit constructs 
triples, with the 1st being which logic to be used (EQ or 
XOR); and with the 2nd and 3rd being connections to ei­
ther one of the inputs or the outputs of a previous unit. 
Note that the 2nd and 4th genes in the above example do 
not contribute to construct the phenotype since those two 
genes will not be connected to any other unit, and hence 
are called intron as a biological metaphor. Any mutation 
on an intron has no effect on phenotype, and as such, they 
are called neutral. The above genotype can be interpreted 
as the phenotype shown in Figure 7.

The average number, during 1024 runs, of parachutists 
needed to firstly find the needle for p = 2,3,4,5 were, re­
spectively,

(65,488,3751,33710). (4)

Alas, if we compare it with (I) we will see that the result 
is almost the same as our random parachutists.

O ur Second C onjecture
We have no such algorithm that can more efficiently look 
for a needle in a haystack than a random search. No way 
to find needles in a pastoral.

IV. Discussion

As Laskov et al. [16] claimed in their paper, “Labels can 
be extremely difficult or impossible to obtain. Analysis of 
network traffic or audit logs is very time-consuming and 
usually only a small portion of the available data can be 
labeled. Furthermore, in certain cases, for example at a 
packet level, it may be impossible to unambiguously assign 
a label to a data instance.” Authors further wrote, “In a 
real application, one can never be sure that a set of available 
labeled examples covers all possible attacks. I f  a new attack 
appears, examples of it may not have been seen in training 
data. ” Then our next question is,

P roblem  3 (A ttacks by M utan ts) Pick up at random 
a set of n normal samples from KDD-cup-1999 dataset. 
All of those n samples are given a point-wise mutation and 
taken as attack data. Train your intrusion detection system 
using half of the normal samples and half of the attack 
samples (the number of both is n / 2), then test the system 
using the remaining samples. Can the system detect those 
mutants as intrusion?

Fig. 7. An example of phenotype of even-3-parity constructed only by 
EQs and XORs.

Now we try to apply this to our finding PIN problem. This 
time we use 4-digit binary, instead of З-digit as before, to 
represent one octal numeral in the candidate of PIN. Then 
translation is into decimal, instead of octal, and when the 
translated decimal is larger than seven we consider it an 
intron. For example

((0001)(1100)(0101)(0010)(0111))

A. Can a Sommelier be Trained without Bootlegs?
Though we have not remarked so far, there remains further 
difficult issue, that is, “How the system can learn only from 
normal data to detect abnormal?” We usually have enor­
mous amount of normal data but we have no information 
about coming attacks untill it’s too late.

Gomez et al. [17] claimed, “A new technique for generat­
ing a set of fuzzy rules that can characterize the non-self 
(abnormal) space using only self (normal) samples.” Their 
experiment employed 10% dataset, also given as a part 
of KDD-cup-1999 dataset, which reduced the number of 
records into 10% of the original ones. Further, they re­
moved categorical attributes and normalized these remain­
ing 33 numerical attributes between 0 and I using the max­
imum and minimum values found. Then 80% of the nor­
mal samples were picked up at random for training while
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the remaining 20% along with the same number of abnor­
mal samples were used for testing. Gomess et al. designed 
the detector with what they called an “immuno-fuzzy ap­
proach” and system they call an “evolving fuzzy rules de­
tectors” claiming, “It detects attacks with the detection rate 
98.30% and false alarm rate 2.0%.” Really satisfactory, if 
it’s really true.

The report didn’t mention about the categories of attacks, 
which implies the reported success is an average over all 
attack types. It seems to be too good if we consider the 
results of the other not-so-happy reports mentioned above.

More important thing to notice here is the system learned 
from “only with normal data” to establish this success. It 
would be terrific if it was really true, but we are fishy more 
or less.

This issue is something like we require a wine-taster to 
recognize bootleg champagne by only providing him/her 
plenty of real champagne to learn.13 14 15

Though this training-only-with-normalis our ultimate goal, 
but not so simple to be realized. To study how this is 
difficult, why not try the following?

Problem  4 (Dummy A ttacks) (I) Prepare two sub- 
datasets from KDD-cup-1999 dataset. One is picked up 
from normal samples and call it Dnorm3]. The other is 
from attack samples and call it DattacJ4. (2) Furthermore, 
randomly create an attack dataset -  dummy attacks, and 
call it D jummy. (3) Train your intrusion detection system 
only with Dnorma]. (4) Then, try two tests, one with only 
DattacJ4, and the other with only D jummy, avoiding any 
a priori prediction.

B. Don’t We Expect the Result a priori?
“Artificial immune system detects an attack by computer 
viruses!” How fantastic it sounds. While we wish it would 
work, we are afraid it might be just a fantasy. So, we need 
a placebo experiment.

Of the 311,029 records in the test set of KDD-cup-1999, 
the rate of (Normal, Prove, DoS, U2R, R2L) is (19.5%, 
1.3%, 73.9%, 5.2%, 0.1%), respectively. This suggests that 
even the always-retum-U2R strategy14 for instance, would 
result in the accurate detection rate of (Normal, Probe, 
DoS, U2R, R2L) =  (0.0%, 0.0%, 0.0%, 5.2%, 0.0%). Or, 
the always-retum-a-rnndom-output strategy15 would have 
quite a high score to detect DoS attacks.

13 Or, in an opposite way. I usually enjoy Georgian sparkling wine like 
once a week, but still a real champagne would be able to pretend to be a 
Georgian one to me.”

14 which returns U2R whatever the input is.
15 which returns either Normal, Probe, DoS, U2R, or R2L a t random 

regardless of the input.

The two strategies above might be more intelligent than 
some of the artificial intelligent techniques so far proposed. 
Yes, rather than ignorant.

We have to be careful, because we sometimes tend to un­
consciously pick up only a set of data that will be suitable 
to draw our a priori expected conclusion, if not intention­
ally at all.

In the way that just a powder-from-sugar sometimes has 
a same effect as, or more efficient than, a medicine under 
developing enough to cure a disease for a group of innocent 
volunteers. Let’s conclude the discussion with the following 
final question.

Problem  5 (P laceb o E x p erim en t) (I) Create a sim­
ple device which randomly returns either one of Normal, 
Prove, DoS, U2R, or R2L for any input. (2) Prepare a 
test dataset including enough amount of records uniformly 
from Normal, Prove, DoS, U2R, and R2L. (3) Compare the 
performances of the detector you designed with the random- 
reply-machine created in step I, feeding the same dataset- 
prepared in step 2.

V. C o n c l u d in g  R e m a r k s

As we have described so far, KDD-cup-1999 intrusion de­
tection dataset has 4,898,430 records in the labeled dataset 
for training purposes of which 75.6111% are normal. On 
the other hand, we have 311,029 records in the unlabeled 
dataset for testing purposes of which only 0.0733% are 
U2R, for example. Under this situation, a likely interpre­
tation would be the U2R attack patterns are like needles 
in a haystack of normal patterns when they undergo a test, 
if we are not very lucky. Considering we have not had so 
satisfactory results to detect U2R attacks, we do not seem 
to be so lucky.

In addition, if we take it account that a hacker is a person 
who is extremely good at finding a pattern which is very 
close to the normal traffic, the point that might be located 
by a hacker is not a randomly located point.

It is said that we have two kind of intrusion detection. One 
is called misuse detection which recognizes known attack 
patterns. The other is called anomaly detection which de­
tects no-normal unknown patterns. We are not interested 
in the former. All we want is to detect unknown outliers. 
And an outlier usually lies not far from normal but very 
close to it. We could not be so optimistic.

As for using an artificial immune system, for example, 
since that real sensational proposition in 1994 by For­
rest, Perelsen et al. [18] that claimed, “Negative selection 
of a metaphor of our real biological immune system can 
detect anomaly as non-self in computers, ” we have had
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tremendously lots of intelligent challenges for more than 
two decades, but all in vain in a real sense. Still this topic 
is not fruitful at all from a practical point of view, as far 
as we know.

Probably the most intelligent way of detecting a network 
intrusion is to curse it and wait for the effect of the curse.

Needless to say, however, this article is not to negate the 
possibility, but we hope this will be a serious challenge to 
intrusion detection community to emerge real innovative 
ideas.
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