
How Many Parachutists will be Needed to Find
a Needle in a Pastoral?

Akira Imada
Brest State Technical University

Moskowskaja 267 Brest 224017 Belarus
akira@bstu.by

A b stra c t—This article is a consideration on computer net
work intrusion detection using artificial neural networks, or
whatever else using machine learning techniques. We as
sume an intrusion to a network is like a needle in a haystack
not like a family of iris flower, and we consider how an attack
can be detected by an intelligent way, if any.

I. Introduction

The parachute drop went smoothly . ■ ■ slithering down the
chute and out into space ... Flick landed perfectly, with her
knees bent and her arms tucked into her sides as she fell to
the ground ... She folded her parachute into a neat bundle,
then set out to find the other Jackdaws. - “Jackdaws" by
Ken Follett.

Most banks nowadays facilitate their ATM (automated
teller machine) in which we may have a personal account
to which we can access with PIN-code, usually four digits
of decimal numeral. For security reason, if we failed to en
ter the PIN correctly more than three times in a row, the
PIN would loose its validity thereafter. Then what we are
curious is, “How many trials would be needed for random
challenges to reveal the secret PIN if an infinite number of
trials were permitted?” Let’s formalize this problem.

Problem I (Breaking a P IN)
Assuming p-bit oc ta l1 numeral is employed to construct a
PIN, only one out o f those 8P possible combinations is the
secret PIN. No one except fo r the owner o f the PIN knows
it. Then question is, “How many average trials-and-errors
will be needed fo r a non-owner to know the PIN under a
specific strategy?”

This might be reminiscent of the famous problem called
a needle in a haystack which was originally proposed by
Hinton к Nowlan in 1987 [1]. The needle in the proposal
was exactly the one configuration of 20-bit binary string,
that is, the search space is made up of 220 points and only
one point is the needle to be searched for. No information
such as how close is a currently searching point to the nee
dle, or how lilrely is a searching point to be the needle. See
Figure I.

We assume that TCP connections to a computer network
are represented with «-dimensional vectors and those rep
resented by intrusions are like needles among huge amount

1 You will see the reason why “octal” not “decimal” later in the sub
section concerning “intron” in the section E X P E R IM E N T S .

of normal transactions which might look like a haystack or
pastoral.

II. Network Intrusion Detection

Those highly qualified hackers who provide security ser
vices to companies during the daytime and then go home
at night to conduct totally illegal hacking are the ones who
are the most dangerous. - by Enis Senerdem from Turkish
Daily News on 29 March 2006.

When we are to design a network intrusion detection sys
tem, which is one of the hottest topics these days, by
means of so-called a soft computing such as artificial im
mune system, fuzzy logic, evolutionary computations, neu
ral networks, whatever it might be, we need a set of sample
data to train the system and to test the system afterwards.

A. When a Family o f Iris Flower is Normal Then are
Others Abnormal? — HTiere is an Outlier?

The Spearman’s iris flower database2 is a frequently used
dataset in pattern recognition/classification, data mining,
etc. As such, there have been fair amount of studies in
which this iris flower database is employed as a dataset to
train and to test the intrusion detection system.

A total of 150 samples consists of three species: setosa,
versicolor and virginica, each of which includes 50 sam
ples. Each sample is a four-dimensional vector represent
ing four attributes of the iris flower, that is, sepal length,
sepal width, petal length, and petal width.

Let us take an example where this iris flower dataset was
employed. Castellano et al. [2] assumed one family to be
normal whilst the other two to be abnormal. The whole
dataset was divided into 10 parts each of which has 15 sam
ples uniformly drawn from the three classes. The system

Fig. I. A fictitious sketch of fitness landscape of a needle in a haystack.
The haystack here is drawn as a 2-dimensional flat plane of fitness zero.

2 University of California Urvine Machine Learning Repository.
ics.uci.edu: pub/machine-learning-databases.

53

mailto:akira@bstu.by

is trained by the remaining 135 samples. The originally
picked up 15 samples are used to test the results. After
this 10-fold cross validation, the authors concluded that
the abnormal detection rate is 96% while the false alarm
rate is 0.6%. How nice, isn’t it? In reality, however, it is
not so simple. It might not be difficult at all for a hacker
to find an unlearned region which could work to invade the
system.

We now look at the Figure 2 to see how the three species
are distributed in the whole search space. This is depicted
by the Sammon Mapping.

Sammon Mapping maps a set of points in a high
dimensional space to the 2-dimensional space with the
distance relation being preserved as much as possible, or
equivalently, the distances in the ті-dimensional space are
approximated by distances in the 2-dimensional space with
a minimal error.

Just a brief look at the figure reveals us that there remains
an enormously wide region of unlearned for outliers.

Fig. 2. A 2-dimensional visualization of iris flower data by Sammon Map
ping. Three different families of iris flower each contains 50 samples are
represented in the figure with circles, triangles and squares.

B. Intrusion Might Look Like a Needle in a Hay!
The other type of dataset, naturally more often employed
in the context of network intrusion, is the KDD-cup-1999
dataset which was prepared by MIT Lincoln Laboratory as
a dataset for the 1998 DARPA intrusion detection evalu
ation [3]. This dataset has been, and still is going to be,
a common benchmark for evaluation of intrusion detection
techniques.

KDD dataset, beside Normal data, covers four major cate
gories of attacks: (i) Probing attacks which attack by prov
ing a vulnerability of the network; (ii) Denial-of-Service
(DoS) attacks which try an invasion by denying legiti
mate requests to a system; (iii) Userto-Root (U2R) attacks
which tries an unauthorized access to local super-user or
root; and (iv) Remote-to-Local (R2L) attacks which is an
unauthorized local access from a remote machine. These

four categories of attacks include a total of 32 different at
tack types.

The dataset consists of two sub-datasets. The one is pro
vided as training data and contains 4,898,430 records each
of which is labeled as either normal, or attack indicating
one specific attack out of the 32 types.3 The second is
unlabeled and contains 311,029 records, which is provided
as testing data.

What a huge dataset! In fact, the Sammon Mapping we
had tried in the iris dataset above wouldn’t work any more.
Therefore, many have tried various approaches to reduce
the dimension. Let’s start our small literature survey with
this topic of dimension reduction.

Kuchimanchi et al. [4] used the principal component anal
ysis (PCA), and calculated the first most important 19
attributes.4 Then they evaluated the result of this di
mension reduction by providing both the original 41-
dimensional data and those 19-dimensional data reduced
by PCA to a decision-tree-classifier independently, com
paring detection accuracies and false positive5 rates. They
showed detection accuracy and false positive rate were
99.92% and 0.26%, respectively, on the 19-dimensional
PCA data, while 99.94% and 0.23%, respectively, on the
original 41-dimensional data.0 What a successful result!
However, is this still very huge, is it not?.

Let’s see one more example. Joshi et al. [5] wrote, “Exploit
ing only 5 out o f 41 attributes7 the best results was 79% ac
curacy in correctly detecting attacks, and 21 % is accounted
fo r false positive rate plus false negative8 rate. ” 9

Though it might not be so successful as the above result by
Kuchimanchi et ah, if we consider 5 out of)1 attributes, it
is amazing. Wow!

Anyway, it is good to know we can reduce the dimension
of the original KDD-cup-1999 dataset into at least about
half with the result remaining intact.

Then, our next interest will be, “Are all of the attack types
in the KDD-cup-1999 dataset equally willing to wait to be

3 Tbe labeled training data-set Includes 972,780 Normals, 41,102
Probes, 3,883,370 DoSs, 52 U2Rs, and 1,126 R2T.S.

4 They are src-bytes, dsLbytes, duration, is-guest.login, is-hosLlogin,
srv-diffJxost-rate, d iffsrv-ra te , service, flag, protocoLtype, num-root,
hot, num.compromised, d s t.host.sam e.srv .ra te , dstJiost-count,
rerror.rate, srv.count, and dst.host.srv.d iff.host.ra te.

5 Le., recognizing attack as normal.
6 This was not the main purpose of the paper. The authors rather ex

ploited the other methods of dimension reduction such as neural-network-
PCA or nonlinear-component-analysis, expecting more efficiency and
higher accuracy. The evaluation was carried out not only by dectston-
tree classifier but also by non-linear classifier.

7 I.e., src.bytes, dst-bytes, duration, t s.host-login, and is-guest-login.
8 I.e., recognizing normal as attack.
9 Most of the phrases cited in this article appeared hereafter like “• • • ”

are the ones paraphrased, more or less, by the author of this article. As
such, if there are some incorrect expressions, it is the author of this article
who is responsible for, not the original authors.

detected?” Some of the reports were from this point of
view. Let us name a few.

Pan et al. [6] exploited three-layer (70-Ц-6) feed-forward
neural network with a sigmoid transfer function trained
with back-propagation using scaled conjugate gradient de
cent, to detect five typical types of attacks - neptune,
portsweep, satan, buffer-overflow, and guess-passwd - as
well as normal samples.

Let’s see what they observed. Authors wrote, “The test
result indicates that 99.6% of the normal examples were
recognized correctly, and for three attacks of neptune, Sa
tan, and portsweep, we obtained the average detect rate of
96.6% and the false positive rate of 0.049%. However, for
all the five kinds of attacks, we only obtained the average
detect rate of 64-9% and the false positive rate of 26.7%.
This is because all buffer-overflow and guess-passwd at
tacks failed to be classified by this back-propagation neu
ral network. Then we tried an expert system, and found
that buffer-overflow and yuess.passwd attacks can be more
accurately detected by this rule-based detector than neural
network.” And then concluded, “The model based on both
neural network and expert system finally achieved the aver
age detection rate of 93.28% and false positive rate of 0.2%
for all of these five attack types. ”

We, however, would be rather more interested in why
this neural network failed to classify buffer-overflow and
guess-passwd attacks, than the performance improvement
by using rule-based detector.

Pan et al. reported yet another result in their differ
ent article [7]. With the same architecture of neural
network and with the same target of five attacks as
above, they reported that correctly predicted (normal, nep
tune, satan, portsweep, buffer-overflow, guess-passwd) by
this back-propagation neural network was (73.3%, 99.2%,
94.6%, 94.2%, 0.0%, 0.0%). And concluded, “The back-
propagation network can’t detect the buffer-overflow and
guess-passwd attacks.” This sounds like a realistic asser
tion, and the one we want.10

Thus far, such more careful conclusions appear in the re
cent literatures. For example, Stibor et al. [8] wrote,
“The real-valued negative selection with variable-sized de
tectors has poor classification performance on the high
dimensional KDD dataset."

When this artificial immune system based detector was
proposed by Ji et al. [9], the result of applying it to the
iris dataset was not that bad. That is, the correct de
tection rate of (setosa, versicolor, virginica) was (99.98%,
85.95%, 81.87%>), while false alarm rates were all zero!

As another example of such implicit report of failure, Dam

et al. [10] claimed, “The evolutionary classifier system, de
vised to make its performance improved than the traditional
one, resulted in the detection rate of (95.7%, 49.1%, 93.0%,
8.5%, 3.9%) for (normal, DoS, Probe, U2R, R2L).”

Again, we are rather more interested in why detection rate
is so low for U2R and R2L than whether result is satisfac
tory or not.

Finally, it would be interesting to take a look what Sabh-
nani et al. [11] reported. See Table I to have a bird’s eye
view of those results above.

Table I. Detection rate for 4 attack types eech with 9 different machine
learning technique. Prom Sabhnani et al. [I IJ.

Probe DoS U2R R2L
Multi-layer Perceptron 88.7 97.2 13.2 5.6
Gaussian Classifier 90.2 82.4 22.8 9.6
K -mean Clustering 87.6 97.3 29.8 6.4
Nearest Cluster Algorithm 88.8 97.1 2.2 3.4
Radial Basis Function 93.2 73.0 6.1 5.9
Leader Algorithm 83.8 97.2 6.6 1.0
Hypersphere Algorithm 84.8 97.2 8.3 1.0
Fuzzy A rt Map 77.2 97.0 6.1 3.7
C4.5 Decision Tree 80.8 97.0 1.8 4.0

Also note that KDD-cup-1999 winner’s detection rate for
(Probe, DoS, U2R, and R2L) was (83.3%, 97.1%, 13.2%,
8.4%).

O ur C onjecture
Here, we, conjecture that those sometimes observed poor
results are because some of the attack data are like needles
in a haystack of huge amount of normal data. If we were
able to fully visualize such large size of normal samples
together with a few data picked up from abnormal samples,
the latter might look like a needle in a hay stack of the
former, like in Figure 3. Though we are not yet ready,
we plan to show a visualization of this assumption of us
elsewhere, to study this conjecture further in detail.

Fig. 3. We conjecture that some attack data (filled circles) are like nee
dles in a hay of normal data (empty circles). Plots in this figure are all
fictitious.

10 Again they reported a successful improvement of this result by a hy-
bridization with C4.5. To summerize this section, we ask the readers,

Problem 2 (A Challenge in KDD-cup-99 dataset)
Design an intrusion detection system which has 41 inputs
corresponding to attributes from KDD-cup-1999 dataset,
and 5 YES/NO outputs indicating that the input is either
normal, Probe, DoS, U2R, or R2L. The question is, “Such
design is possible or not?”

Note that one parachutist is represented by our genotypes
of a Зр-digit binary strings. Let’s take an example of p = 4.
A genotype

((100)(1 1 1)(000)(010))

maps into its phenotype (4 7 0 2).

Also see Figure 4 to get an image of real implementation
by a neural network, as an example.

Fig. 4. A simple architecture of neural network we desire to design to
classify KDD-cup-99 dataset.

III. E x p e r i m e n t s

Flick remembered the legend of the Jackdaw of Rheims,
the bird that stole the bishop's ring. The monks couldn't
figure out who had taken it, so the bishop cursed the un
known thief. Next thing they knew, the jackdaw appeared
all bedraggled, and they realized he was suffering from the
effects of curse, and must be the culprit. Sure enough they
found the ring in his nest. - “Jackdaws" by Ken Follett

Assuming our conjecture that real attack samples are like
needles in a haystack of normal samples, we now look at
how easy or difficult to find them. Let’s start with a ran
dom search. Note that some proposed algorithms which
were reported as success actually were not good as asserted,
and sometimes found to be worse than a random search.

At the start, one p-bit octal PIN is created which we
assume no one knows a priori. With p being increas
ing from 2, we count the number of randomly created
genotypes until its phenotype strictly matches to the
hidden PIN. The average number, during 1024 runs, of
parachutists needed until we found the parachutist who
fell on the needle just by chance, for p = 2,3,4,5,6,7 were,
respectively,

(66,512,3951,32154,254673,2058527). (I)

See Figure 5.

B. What if Parachutists are Allowed to Walk after Fall?
A lgorithm 2 (E xploration after Fall) (I) Create a p-
bit octal PIN at random. (2) Create randomly one ip-bit
of binary string. (3) Translate the string into p-bit octal
code. (4) Check if the translated code matches the PIN.
(5) If matches, end the run. Otherwise give a mutation by
flipping a bit chosen at random11 with a probability o f l / i p
until the translation matches the PIN, or number of steps
exceeds 1000. (6) I f still none has matched, then repeat
from 2.

What will happen if the fallen parachutist is allowed to
explore, say, 1000 random steps, around the spot they
fall? This might remind you of the seminal experiment
once made by Hinton к Nowlan [1] who referred it to “life
time learning — Baldwin Effect, ” though our parachutist
in this paper ends her life without creating a next genera
tion. The results, again over the average of 1024 runs, for
P = 4 ,5,6,7,8 were, respectively,

(5,36,308,2436,23087). (2)

A. Random Fall of Parachutists
A lgorithm I (R andom Fall) (I) Create a p-bit octal
PIN at random. (2) Create randomly one "ip-bit of bi
nary string. (3) Translate the string into p-bit octal code.
(4) Check if the translated code matches the PIN. (5) If
matches, end the run. Otherwise go back to 2.

Let us allow to use a metaphor here. We now assume only
one needle in a pastoral, and parachutists fall from the
airplane in the sky to the pastoral one by one, then our
interest is on how would it be likely for a parachutist to
fall just on the needle. This might be taken as a random
search, and will be our criterion of comparison hereafter.

The results are depicted also in Figure 5 together with
the result of our random parachutists in the previous sub
section. In both cases, we can see that complexity to find
the needle is an exponential order. But look! How impres
sive an exploration-after-fall improves the performance!

As you have probably noticed already, however, it’s not
fair just to compare the number of parachutists. The total
number of points searched by those walking parachutists
is plotted as a function of p in Figure 6. We can see that
the result was rather worse than our random parachutists,
despite of its superficial good looking of the result.

11 We will call this a “point-wise m u ta tion” hereafter.

56

C. Neutral Mutation
Algorithm 3 (Walk by N eu tra l M utations) (I) Cre
a tes PIN at random. (2) Create one genotype at random.
(3) Try point-wise mutation on the genotype such that the
result maps into the same phenotype as the one before the
mutation. (4) Assess all possible single-mutation-neighbors
of the new genotype to determine whether any new pheno
type is discovered. (5) Step 3 to 4 are repeated untill the
phenotype matches the PIN, or untill a pre-fixed number of
steps is reached.

This is a paraphrase of the algorithm proposed by Ship-
man et al. [12] who called the step 3 a neutral mutation
(Note that the mutation in step 4 is a standard one). Its
efficiency was studied in their paper by applying it to a
random Boolean network and telecommunication networks.
But why not more simple example is to be explored, if it
is to work universally?

To apply this in our problem of searching for the needle,
that is, octal p-bit PIN, we design our genotype as 15p-bit
binary string such that the number-of-1 (mod 8) in each of
those 15-digit blocks in the string maps into one bit of the
corresponding octal code.12 For example

D. Does Neutral Mutation on Intron Enhance Efficiency
of Search?

A lgorithm 4 (N eu tra l N etw ork) (I) Create a PIN at
random. (2) Create randomly an initial individual which
is considered to be the winner to the next generation. (3)
Carry out point-wise mutation on the winning parent to
generate 4 offspring. (4) Construct a new generation with
the winner and its offspring. (5) Select a winner from the
current population using the following rules, (i) I f any off
spring has a better fitness than the parent, the one with
highest fitness becomes the winner, (ii) I f fitness of all off
spring have the same fitness as the parent, one offspring
is randomly selected, and if the parent-offspring pair has
a Hamming distance within the permitted range, the off
spring becomes the winner, otherwise the parent remains
as the winner. (6) Back to step 2 unless the maximum
number of generations reaches, or a solution is found.

The description of the algorithm above is a paraphrase from
Yu &: Miller [13]. As for the application of this algorithm,
we had an interesting discussion between Yu h Miller’s
paper “Finding needles in haystack is not hard with neu
trality” (2002) vs. Collin’s “Finding needles in haystack is
harder with neutrality” (2005).

((100011000000100)(111111111111111)(111110001101010))

maps into (4 7 1).

The average number, during 1024 runs, of parachutists
needed until we found the one who firstly reached the nee
dle for p = 2,3,4,5,6 were, respectively,

(71728,583593,4930624,36592634,314817878). (3)

Much worse than our random search.

300,000

„ 250,000
©■5
■g 200,000
«
cS
! 150,0000
1 100,000
э2

50,000

0
0 1 2 3 4 5 6 7 8 9

Number of Pins

Fig. 5. (a) Number of random creations of candidate until the PIN is
matched (filled circles), and (b) The number when created candidate is
allowed random walks of 1000 steps (empty circles). Both are the average
of 1024 runs.

What Yu & Miller [13] attacked as a type of a needle
in a haystack problem was to make a genetic algorithm
construct an even-n-parity logic circuit by employing only
XORs and EQs, not ANDs and ORs and so on, which
shows a peculiar fitness landscape. The even-n-parity logic
has n-bit binary inputs and if and only if the number of
“1” is even, it returns I and otherwise returns 0. Hence,
we can evaluate the fitness value of any one candidate of
the solution, by giving all the possible configurations of 0
and I and counting how many correct outputs. Thus, from
a combinatorial point of view, we have 2n cases of fitness
values. In reality, however, we have only three different
values, that is, 2n, 2("-1) and 0. In other words, the out
put is all correct, half correct, or not correct at all. For
example, candidates of even-3-parity constructed only by

>4
Tc
о
H

300.000. 000

250.000. 000

200 .000. 000

150.000. 000

100.000. 000

50,000,000

0
0 1 2 3 4 5 6 7 8 9

Number of Pins

Fig. 6. Average number of points explored by all the randomly created
12 A simple consideration might give us the idea that 7-bit binary for candidates who are allowed further random walks of 1000 steps until the

each octal is enough. However, we implemented in this way so that each needle is found. Average are taken among 1024 runs,
octal from 0 to 7 are created uniformly at random.

XORs and E'Qs returns either 8, 4 or O correct outputs for is translated into (1,5,2,7) since the second gene is trans-
the eight possible inputs (000), (001), (010), (111). Iated into 12 and supposed to be an intron.

Yu & Miller wrote, “In the case of random creation
of 4,000,000 candidates of even-12-parity, the solution
(fitness 4096) was never emerged, while even-10-parity
100,000 random creations of candidate yielded 540 solu
tions (fitness 1024)- On thz other hand, when neutral mu
tation was applied to the candidates of even-12-parity, the
48 out of 100 runs reached solution(s) with each run being
only within 10,000 iterations.”

Collins argued back concluding, “Reported success is due to
a bias of the selection” [14]. In the other Collin’s work [15],
it was analytically shown that the number of possible can
didates of even-12-parity is 1.315 x 10139 in which number
of real solutions is 2.568 x IO132, claiming “Yu & Miller’s
result is, therefore, worse than a possible random search. ”

Again what we want to emphasize here is, if the assertion
by Yu & Miller is universally true, it would work in yet
more principally simple examples.

Before going further, let’s see what is intron that Yu &
Miller assumed to play an important role in their evolution.
For example, take a look at a genotype representing an
even-3-parity,

((EQ, A 1 B)(EQ, C, D)(XOR, I, E)(EQ, F1 G)(EQ, 3, H))

where each gene which corresponds to one unit constructs
triples, with the 1st being which logic to be used (EQ or
XOR); and with the 2nd and 3rd being connections to ei
ther one of the inputs or the outputs of a previous unit.
Note that the 2nd and 4th genes in the above example do
not contribute to construct the phenotype since those two
genes will not be connected to any other unit, and hence
are called intron as a biological metaphor. Any mutation
on an intron has no effect on phenotype, and as such, they
are called neutral. The above genotype can be interpreted
as the phenotype shown in Figure 7.

The average number, during 1024 runs, of parachutists
needed to firstly find the needle for p = 2,3,4,5 were, re
spectively,

(65,488,3751,33710). (4)

Alas, if we compare it with (I) we will see that the result
is almost the same as our random parachutists.

O ur Second C onjecture
We have no such algorithm that can more efficiently look
for a needle in a haystack than a random search. No way
to find needles in a pastoral.

IV. Discussion

As Laskov et al. [16] claimed in their paper, “Labels can
be extremely difficult or impossible to obtain. Analysis of
network traffic or audit logs is very time-consuming and
usually only a small portion of the available data can be
labeled. Furthermore, in certain cases, for example at a
packet level, it may be impossible to unambiguously assign
a label to a data instance.” Authors further wrote, “In a
real application, one can never be sure that a set of available
labeled examples covers all possible attacks. I f a new attack
appears, examples of it may not have been seen in training
data. ” Then our next question is,

P roblem 3 (A ttacks by M utan ts) Pick up at random
a set of n normal samples from KDD-cup-1999 dataset.
All of those n samples are given a point-wise mutation and
taken as attack data. Train your intrusion detection system
using half of the normal samples and half of the attack
samples (the number of both is n / 2), then test the system
using the remaining samples. Can the system detect those
mutants as intrusion?

Fig. 7. An example of phenotype of even-3-parity constructed only by
EQs and XORs.

Now we try to apply this to our finding PIN problem. This
time we use 4-digit binary, instead of З-digit as before, to
represent one octal numeral in the candidate of PIN. Then
translation is into decimal, instead of octal, and when the
translated decimal is larger than seven we consider it an
intron. For example

((0001)(1100)(0101)(0010)(0111))

A. Can a Sommelier be Trained without Bootlegs?
Though we have not remarked so far, there remains further
difficult issue, that is, “How the system can learn only from
normal data to detect abnormal?” We usually have enor
mous amount of normal data but we have no information
about coming attacks untill it’s too late.

Gomez et al. [17] claimed, “A new technique for generat
ing a set of fuzzy rules that can characterize the non-self
(abnormal) space using only self (normal) samples.” Their
experiment employed 10% dataset, also given as a part
of KDD-cup-1999 dataset, which reduced the number of
records into 10% of the original ones. Further, they re
moved categorical attributes and normalized these remain
ing 33 numerical attributes between 0 and I using the max
imum and minimum values found. Then 80% of the nor
mal samples were picked up at random for training while

58

the remaining 20% along with the same number of abnor
mal samples were used for testing. Gomess et al. designed
the detector with what they called an “immuno-fuzzy ap
proach” and system they call an “evolving fuzzy rules de
tectors” claiming, “It detects attacks with the detection rate
98.30% and false alarm rate 2.0%.” Really satisfactory, if
it’s really true.

The report didn’t mention about the categories of attacks,
which implies the reported success is an average over all
attack types. It seems to be too good if we consider the
results of the other not-so-happy reports mentioned above.

More important thing to notice here is the system learned
from “only with normal data” to establish this success. It
would be terrific if it was really true, but we are fishy more
or less.

This issue is something like we require a wine-taster to
recognize bootleg champagne by only providing him/her
plenty of real champagne to learn.13 14 15

Though this training-only-with-normalis our ultimate goal,
but not so simple to be realized. To study how this is
difficult, why not try the following?

Problem 4 (Dummy A ttacks) (I) Prepare two sub-
datasets from KDD-cup-1999 dataset. One is picked up
from normal samples and call it Dnorm3]. The other is
from attack samples and call it DattacJ4. (2) Furthermore,
randomly create an attack dataset - dummy attacks, and
call it D jummy. (3) Train your intrusion detection system
only with Dnorma]. (4) Then, try two tests, one with only
DattacJ4, and the other with only D jummy, avoiding any
a priori prediction.

B. Don’t We Expect the Result a priori?
“Artificial immune system detects an attack by computer
viruses!” How fantastic it sounds. While we wish it would
work, we are afraid it might be just a fantasy. So, we need
a placebo experiment.

Of the 311,029 records in the test set of KDD-cup-1999,
the rate of (Normal, Prove, DoS, U2R, R2L) is (19.5%,
1.3%, 73.9%, 5.2%, 0.1%), respectively. This suggests that
even the always-retum-U2R strategy14 for instance, would
result in the accurate detection rate of (Normal, Probe,
DoS, U2R, R2L) = (0.0%, 0.0%, 0.0%, 5.2%, 0.0%). Or,
the always-retum-a-rnndom-output strategy15 would have
quite a high score to detect DoS attacks.

13 Or, in an opposite way. I usually enjoy Georgian sparkling wine like
once a week, but still a real champagne would be able to pretend to be a
Georgian one to me.”

14 which returns U2R whatever the input is.
15 which returns either Normal, Probe, DoS, U2R, or R2L a t random

regardless of the input.

The two strategies above might be more intelligent than
some of the artificial intelligent techniques so far proposed.
Yes, rather than ignorant.

We have to be careful, because we sometimes tend to un
consciously pick up only a set of data that will be suitable
to draw our a priori expected conclusion, if not intention
ally at all.

In the way that just a powder-from-sugar sometimes has
a same effect as, or more efficient than, a medicine under
developing enough to cure a disease for a group of innocent
volunteers. Let’s conclude the discussion with the following
final question.

Problem 5 (P laceb o E x p erim en t) (I) Create a sim
ple device which randomly returns either one of Normal,
Prove, DoS, U2R, or R2L for any input. (2) Prepare a
test dataset including enough amount of records uniformly
from Normal, Prove, DoS, U2R, and R2L. (3) Compare the
performances of the detector you designed with the random-
reply-machine created in step I, feeding the same dataset-
prepared in step 2.

V. C o n c l u d in g R e m a r k s

As we have described so far, KDD-cup-1999 intrusion de
tection dataset has 4,898,430 records in the labeled dataset
for training purposes of which 75.6111% are normal. On
the other hand, we have 311,029 records in the unlabeled
dataset for testing purposes of which only 0.0733% are
U2R, for example. Under this situation, a likely interpre
tation would be the U2R attack patterns are like needles
in a haystack of normal patterns when they undergo a test,
if we are not very lucky. Considering we have not had so
satisfactory results to detect U2R attacks, we do not seem
to be so lucky.

In addition, if we take it account that a hacker is a person
who is extremely good at finding a pattern which is very
close to the normal traffic, the point that might be located
by a hacker is not a randomly located point.

It is said that we have two kind of intrusion detection. One
is called misuse detection which recognizes known attack
patterns. The other is called anomaly detection which de
tects no-normal unknown patterns. We are not interested
in the former. All we want is to detect unknown outliers.
And an outlier usually lies not far from normal but very
close to it. We could not be so optimistic.

As for using an artificial immune system, for example,
since that real sensational proposition in 1994 by For
rest, Perelsen et al. [18] that claimed, “Negative selection
of a metaphor of our real biological immune system can
detect anomaly as non-self in computers, ” we have had

59

tremendously lots of intelligent challenges for more than
two decades, but all in vain in a real sense. Still this topic
is not fruitful at all from a practical point of view, as far
as we know.

Probably the most intelligent way of detecting a network
intrusion is to curse it and wait for the effect of the curse.

Needless to say, however, this article is not to negate the
possibility, but we hope this will be a serious challenge to
intrusion detection community to emerge real innovative
ideas.

R e f e r e n c e s

[1] G. E. Hinton, and S. J. Nowlan (1987) “How Learning
can Guide Evolution.” Complex Systems, I, pp. 495-
502.

[2] G. Castellano, and A. M. Fanelli (2000) “Fuzzy In
ference and Rule Extraction using a Neural Network. ”
Neural Network World Journal, Vol. 3, pp. 361- 371.

[3] S. J. Stolfo, F. Wei, W. Lee, A. Prodro-
midis, and P. K. Chan (1999) “KDD Cup knowl
edge discovery and data mining competition.”
h ttp ://kdd.ics.uci.edu/databases/kddcup99/kddcup99.htm l

[4] G. K. Kuchimanchi, V. V. Phoha, K. S. Balagani, and
S. R. Gaddam (2004) “Dimension Reduction Using
Feature Extraction Methods for Real-time Misuse De
tection Systems. ” Proceedings of Workshop on Infor
mation Assurance and Security, pp. 1555-1563.

[5] S. S. Joshi, and V. V. Phoha (2005) “Investigat
ing Hidden Markov Models Capabilities in Anomaly
Detection. ” Proceedings of the 43rd ACM Southeast
Conference, Vol. I, pp. 99-103.

[6] Z. Pan, H. Lian1 G. Hu, and G. Ni (2005) “An In
tegrated Model of Intrusion Detection Based on Neu
ral Network and Expert System. ” Proceedings of IEEE
International Conference on Tools with Artificial In
telligence, pp. 671-672.

[7] Z. Pan, S. Chen, G. Hu, and D. Zhangn (2003) “Hy
brid Neural Network and C4-5 for Misuse Detection.”
Proceedings of International Conference on Machine
Learning and Cybernetics, pp. 2463-2467.

[8] T. Stibor, J. Timmis, and C. Eckert (2005) “A com
parative Study of Real-valued Negative Selection to
Statistical Anomaly Detection Techniques. ” Proceed
ings of International Conference on Artificial Im
mune Systems, Lecture Notes in Computer Science,
Vol. 3627, Springer, pp. 262-275.

[9] Z. Ji, and D. Dasgupta (2004) “Real-valued Negative
Selection Algorithm with Variable-sized Detectors.”
Proceedings of Genetic and Evolutionary Computa
tion Conference, Lecture Notes in Computer Science
Vol. 3102, Springer, pp. 287-298.

[10] H. H. Darn, K. Shafi, and H. A. Abbass (2005) “Can
Evolutionary Computation Handle Large Dataset?”
Technical Report: The Artificial Life and Adaptive
Robotics Laboratory, TR-ALAR-200507011.

[11] M. Sabhnani, and G. Serpen (2003) “Application of
Machine Learning Algorithms to KDD Intrusion De
tection Dataset within Misuse Detection Context.”
Proceedings of the International Conference on Ma
chine Learning: Models, Technologies and Applica
tions, pp. 209-215.

[12] R. Shipman, M. Shackleton, and I. Harvey (2000)
“The Use of Neutml Genotype-phenotype Mappings

for Improved Evolutionary Search.” BT Technology
Journal, Vol. 18, No. 4, pp. 103-111.

[13] Tina Yu and J. Miller (2002) “Finding Needles in
Haystacks is Not Hard with Neutrality.” Proceedings
of EuroGP 2002, Lecture Notes in Computer Science
Vol. 2278, Springer, pp. 13-25.

[14] M. Collins (2005) “Finding Needles in Haystacks
is Harder with Neutrality.” Proceedings of Genetic,
and Evolutionary Computation Conference, pp. 1613—
1618.

[15] M. Collins (2004) “Counting Solutions in Reduced
Boolean Parity. ” CD-ROM of Workshop Proceedings
in Genetic and Evolutionary Computation Confer
ence.

[16] P. Laskov, P. Diissel, C. Schafer, and K. Rieck (2005)
“Learning Intrusion Detection: Supervised or Unsu
pervised?” Proceedings of International Conference
on Image Analysis and Processing, Lecture Notes in
Computer Science, Vol. 3617, Springer, pp. 50-57.

[17] J. Gomez, F. Gonzalez, and D. Dasgupta (2003) “.4n
Immuno-Puzzy Approach to Anomaly Detection. ” Pro
ceedings of IEEE International Conference on Fuzzy
Systems, Vol. 2, pp. 1219-1224.

[18] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri
(1994) “Self Nonself Discrimination in a Computer.”
Proceedings of IEEE Symposium on Research in Se
curity and Privacy, pp. 202- 212.

60

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

