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Abstract: In this paper it is developed simple simulation 
model o f a mine section in order to model sequential 
neural control scheme o f  the mine airflow. A technique o f  
neural network's training set forming, neural network 
structure and a training algorithm are described. The 
results o f simulation modeling o f  control influence 
recovering are considered in the end o f  paper.
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I. INTRODUCTION
A problem of allowable concentration control of 
dangerous gases CH4 and CO is very urgent in coal mines 
and other closed environments due to safety of the people 
working in such areas. For instance, coal mining industry 
is a tough industry in every country. For example, in 2001 
there were 6.63 fatalities per million tons of coal 
equivalent (mtce) produced in China's mines, 0.02 
fatalities per mtce in Australia, 0.83 in Russia, and 0.48 in 
India [1]. Therefore development of an Automated 
Control Systems for coal-mine ventilation in order to 
prevent fatalities is a crucial issue. It is obvious, that 
recent advances in science and technology should be used 
to fulfill this task. Thus we should account two properties 
of such automatic ventilation control system at least: (i) 
the sensors must supply the system by accurate 
information in order to provide precise ventilation control 
and (ii) the system should provide adaptive ventilation 
control in normal and possible unexpected conditions.

Economically desirable for fulfillment of the first task is 
using multi-parameter sensors based on SnO2 twin film, 
for example produced by Figaro Inc [2]. High accuracy of 
a measurement system could be reached by using neural 
networks to process the output signal of the multi­
parameter sensor [3-4].

A complexity of the second task is caused by (i) 
stochastic character of aerogasdynamic processes in mine 
ventilation networks (MVN), (ii) changing the MVN 
topology and parameters, (iii) huge distribution of the 
control system and large number of measurement sensors 
[5, 6]. The MVN aerogasdynamic processes are 
characterized as objects with distributed parameters where 
airf ow dynamics is described by a system of differential 
equations with partial derivatives [6]. A solution of such a 
system for real objects requires high qualification o f the 
mathematician and considerable computing power. It is 
expedient to note, than nonlinear characteristics make 
worse MVN modeling, in particularly airflow speed and

foil gases concentration. Moreover additional factors such 
as noise, handicaps and plurality of feedbacks have 
complicated control strategies. From the point of view of 
control theory coal mine ventilation is a multivariable 
control problem where acting in one branch of MVN can 
affect die airflow and concentration in the other branches 
in an unexpected way. Therefore aerogasdynamic 
processes of MVN should be described by a complicate 
mathematical model [7, 8].

Most of the today’s control strategies are based on an idea 
of system’s linearization [9]. First of all it is necessary to 
develop adequate mathematical models for a practical 
implementation of this approach. However the 
mathematical modeling based on hypothesis of a linearity 
of the control object does not reflect its true properties. 
Non-linear mathematical models [8] quite enough reflect 
real properties of the objects but they are quite 
complicated and, therefore, practically cannot be used 
effectively for a control. Statistical models [10] can be 
classified as good models, but their assumptions often do 
not provide enough accuracy of control system. 
Nowadays there are several well-known approaches to 
mine ventilation control such as prediction on methane 
emission by mathematical methods [11-12], analysis of 
ventilation control systems by operational research [13] 
and modelling of ventilation process by correlation 
approach [14].

Against the mentioned above methods, adaptive control 
approaches [15-18] provides better control at reducing of 
complexity of mathematical model describing control 
object in terms of artificial neural network. A neural 
network-based approach can provide better results in 
comparison with other approaches due to high generalized 
properties, self-training and self-adaptation of neural 
networks. Adaptive neural control is widely using now in 
different areas, for example in aircraft industry [19], 
nonlinear [20] and robotic systems [21], chemistry [22], 
energy management [23], chaotic processes [24], medical 
science [25] etc.

The goal of this paper is to estimate the method of airflow 
neural control on the section of mine ventilation network 
using its simulation model.

IL SIMULATION MODEL OF THE 
SECTION OF MINE VENTILATION 

NETWORK
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It is expedient to consider simple structure of the section 
of MVN for development of its simulation model in order 
to estimate potential possibilities of a neural control 
system. A fragment of the MVN section is presented on 
Fig. I1 where the section’s parts are numbered by 
appropriate numbers. Let us suppose that the sensor SI is 
installed in the main ventilation bord 2, the sensors S2 and 
S3 are installed in the mine galleries and the sensor S4 is 
installed in entry 5. Sensors SI-S4  measure methane 
concentrations in the appropriate parts of the section. The 
numerical parameters of the simulation model (lengths 
and crosscuts of the galleries) are gathered from [6].

I

(2.1), we can derive an expression for concentration 
change

A C =  C 2
Qm -AQ) 
Q + A Q f

( 2 .2)

where Q1 = Qm + Q is the change of methane and air 
mixture to form appropriate methane concentration in the 
section with index t . In a case of simple simulation 
model it is considered four sections 2, 3, 4, 5 from Fig. I 
with installed sensors S1-S4 respectively. Now the airflow 
adjustment in the section with index t can be derived 
from equation (2.2)

2

6

1 -  groove
2 -  main ventilation bord 
3, 4 -  mine galleries
5 -  entry
6 -  skip groove

Fig. 1 - А  fragment of mine ventilation network section used 
to design a simulation model.

A Q  =
Ac ■ О,' 

Q m -  Ac Q1 '
(2.3)

III. SEQUENTIAL NEURAL CONTROL 
SCHEME OF THE MINE AIRFLOW

Preliminary analysis shown [15-18], that sequential neural 
control scheme (Fig. 2) can provide enough control 
efficiency due to absence of additional control branches 
such as additional controllers. The control is provided by 
the following way [18]: getting reference signal r on the 
input, preliminary trained neural network recovers it to 
the control influence и for the control object. According 
to this control influence the control object changes own 
state and its output signal у  which might be close to 
reference signal r . If under external influence factors the 
state of control object is changed, then this changing goes 
to neural network input. Neural network forms new 
control influence и in order to compensate the change of 
output signal у  . In general case neural network might 
have several inputs and outputs, therefore the variables 
described above might be considered as sets

The main task of MVN is to provide ventilation modes of 
mine sections in condition of high intensity of gas 
emission according to safety requirements [6]. The 
ventilation modes are characterized by airflow Q and 
methane concentration c on the required sections of 
MVN. Let us consider stable ventilation modes, where 
parameters Q and c are interrelated by the following 
equation [6]:

C = ----100%,  (2.1)
Q m + Q

where Qm ' s a methane emission to section’s atmosphere.

Saf' concentration of methane c is provided by airflow 
adjustment AQ, which should be considered as control 
influence in relation to concentration c . The airflow 
adjustment AQ can be estimated by concentration change 
Ac at two necessary moments of time. Let us consider 
methane concentrations c, and C1 in first and second 
moments of time. Then, substituting these variables in

r  = {r\ - h } , y = l v i - T / } . A = { A , - A п},и = {щ...ит).

It is seen from Fig. 2, that neural controller transforms 
input space of control object’s states у  into output space 
of control influences и .

Let us suppose for the simulation model from Fig. I, that 
methane concentration c can take on values from the set 
[0.6%, 0.8% , 1.0% , 1.2% , 1.4%}. Let us suppose, that 

methane concentration c=1.5% is a maximum (after it 
increasing all people should be evacuated from the mine) 
and methane concentration c=0.5% is a minimal with no 
necessity to ventilate. Then concentration change Ac 
should take on values from the set [0.1%, 0.3% , 0.5% ,
0.7% , 0.9%} respectively. The algorithm for neural 
network’s training set forming for the simulation model 
from Fig. I can be described as following:

I. To define all possible combinations of 
concentrations change Ac,...Ac4 according to 
possible values from the set above ;
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2. To calculate the value of control influences 3. To save obtained training vectors of neural 
AQ1-A Q 4 using (2.1) and (2.3) and to calculate network according to the Table I.

4
AQz for all possible combinations

1=1
Лc,...Ac4 from point I above;

Tabic I. Structure of the training vector of neural 
network

Input values Output
value
AU1,

m3/min

c, C5 c.

0.6 0.6 0.6 0.6 1064

1.4 1.4 1.4 1.4 9576

hJ
( M

T j wVx- - t J
Vi-I

(4.2)

where w0 are the weights from the input neurons to 
neuron j  in the hidden layer, x, are the input values and 
Tj is the threshold of neuron j  . The logistic activation 
function is used for the neurons of the hidden layer and 
the linear activation function, having a coefficient к , is 
used for the output neuron [29].

IV. NEURAL NETWORK MODEL

It is seen from Table I that neural network should have 
four input and one output neurons. The multi-layer 
perception can be used for this research with nonlinear 
activation functions because this kind of neural network 
has the advantage of being simple and widely used for the 
control problems [26-28].

The output value of three-layer perceptron (Fig. 3) can be 
formulated as:

T = F3
f  N
T

VW
Wl3Ai (4.1)

Fig. 3 -  Structure of neural network

where N  is the number of neurons in the hidden layer, 
Wij is the weight of the synapse from neuron і in the 
hidden layer to the output neuron, h  is the output of 
neuron і , T is the threshold of the output neuron and F1 
is the activation function of the output neuron.

The back propagation error algorithm [30] is used for the 
training algorithm. It is based on the gradient descent 
method and provides an iterative procedure for the 
weights and thresholds updating for each training vector 
p  of the training sample:

Awij (t) = - a 3Ep{ 0
SvijU) ’

ATj U ) = - a S E p U)  

STj (0  ’
(4.3)The output value of neuron j  in the hidden layer is given 

by:
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, . , . cEp{t) . cEp(t)where a  is the learning rate, ---------  and ■■■■ are
d*ij(t) dTj(t)

the gradients of the error function on each iteration t for 
the training vector p  with p  e  {1,...,P} , where P is the 
size of the training set.

The Sum-Squared Error (SSE), for training iteration t , is 
calculated as:

E p ( t ) = \ ( y p ( t ) - d p { t ) J , (4.4)

where for the training vector p ,  y p(t) is the output value 
on iteration t and d p(0  is the target output value.

During training, the total error is calculated as:

EiO = ^ E p (I). (4.5)
p =і

The steepest descent method for calculating the learning 
rate [29] is used for removing the classical disadvantages 
of the back propagation error algorithm. Thus, the 
adaptive learning rate for the logistic and linear activation 
functions are given, respectively, by:

a(t) 4 , x ---------------------------- . ,
И * ' ' ' »  ) [ x ( r f ( t ) ) 2(/tp (t))2( i - h p (t))2J

« (0  = 17------ !---------  (4-6)
U h f i t ))2 + 1
I = I

where, for the training vector p  and iteration t , y p (/) is

the error of neuron j  and hf ( t )  is the input signal of the 
linear neuron.

The error of neuron і with logistic activation function 
can be determined by the relation:

r f  (o  = z r f  о м з ( о л ;  (0(1 -  л ; (0) . ( 4 .7)

1. Set the desired value of SSE to Zsmin ;
2. Initialize the weights and the thresholds of the 

neurons by values in the range (0-0.5);
3. Set a counter for the number of neural network 

layers, LAYERS',
4. If LA YERS = 2 then calculate the output value _>,<•(,) 

using expression (4.2) for the training vector p  and 
perform the steps 5 and 6;

5. Calculate the error of the output neuron: 
r ; ( t)  = y p( t ) - d p(t);

6. Update the weights and the thresholds of the output 
neuron by (4.3) using the adaptive learning rate given 
by (4.6);

7. Decrease the number of current layer LAYERS by 
one unit;

8. If LAYERS = I then calculate the error y p(0 of the
neurons of the hidden layer by (4.7);

9. Update the weights and the thresholds of the neurons 
of the hidden layer by (4.3) using the adaptive 
learning rate (4.6) for the logistic activation function;

10. Calculate the SSE for the training iteration t  using 
(4.4);

11. Repeat the steps from 3 to 10 for all the other vectors 
in the training set;

12. Calculate the total SSE, E(0  of the neural network 
using (4.5);

13. If E(0  is still greater than the desired error Emin 
then go to step 3, otherwise stop the training process.

V. SIMULATION MODELING RESULTS
Simulation modeling should show experimentally the 
optimal choice of neural network structure and its training 
parameters from the point of view accuracy of control 
influences recovering and providing real time operations. 
During the experiments neural network is trained on 400 
vectors. It tested on 225 testing vectors which did not 
included in the training set. Simulation modeling results 
with different number of the hidden layer neurons are 
shown on Fig. 4. The relative error of control influences 
recovering is increasing from 0.1% to 8% at increasing 
the number of hidden layer neurons from 5 to 30. Also the 
training time is increased from 8 to 15-20 seconds. 
Therefore, neural network structure 4-5-1 provides better 
result, i.e. minimal relative error of control influence 
recovering and minimal training time.

where Yp ( 0 - Уp i t ) ~ d p(0  is the error of the output

neuron, Wl3 (/) is the weight of the synapses between the 
neurons of the hidden layer and the output neuron.

A slight modification of the back propagation error 
algorithm, called multiple propagation error, has been 
implemented in order to stabilize the training process 
[31]. This approach consists in modifying the weights of 
only one layer of the neural network during a single 
training iteration. This algorithm includes thus the 
following steps:
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Fig. 4 -  Dependencies of relative recovering error and 
training time from the nnmbcr of hidden layer neurons

Therefore let us use this model of neural network to 
investigate the parameters of neural network training. 
Simulation modeling results with different values of SSE 
are shown on Fig. 5. The relative error of control 
influences recovering does not exceed 1% and decreases 
till 0.07% at increasing o f SSE till 10‘8, the training time 
is increasing from 5 to 30 seconds respectively. The 
relative error of control influences recovering is allowable 
for all values of SSE according to the safety rules of mine 
ventilation. Therefore necessary SSE values for the 
training should be chosen to provide needed real rime of 
model working.

Fig. 5 -  Dependencies of relative recovering error and 
training time from the SSE values

VL CONCLUSIONS
A simple simulation model of the section of mine 
ventilation network and a technique of training set 
creation for neural control of the airflow are developed in 
this paper. The simulation modeling results have shown 
good potential capabilities of neural control of mine 
airflow in the real time. Future researches it is expedient 
to fulfill using complicated simulation model of the 
airflow in mine ventilation networks.
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