
Dynamic windows scaling in Unix-like systems interface

Vladimir Diomin, Dmitriy Kostiuk, Alexander Nikoniuk
Brest State Technical University, 224017, Moskovskaya str., 267, Brest, Belarus,

dmitriykostiuk@bstu.by

Abstract: The models o f a scaled down window and o f a
window with variable scale are presented, as far as their
practical implementation for Unix-like systems as the
Compiz window manager extension modules. An
implementation specific is provided fo r the X Window
System environment. Changes in the original window are
dynamically mapped to the compressed image due to
hardware-accelerated OpenGL backend. The concept is
especially usefid for portable devices with reduced screen
resolution as it makes them effectively running software
originally designed for desktop computers.

Keywords: windows scaling, OpenGL, GUI, window
manager.

1. INTRODUCTION
Due to limited hardware resources large areas can't be

widely used for the information output in contemporary
computers and computer-based devices. GUIs, or graphic
user interfaces, use special approaches and auxiliary
navigation controls to overcome this limitation, making it
possible to see whole working space with less details or in
schematic manner [1]. The main problem at developing
such approaches and controls is the difficulty to combine
the backward compatibility with previously developed
applications and the strict object-oriented paradigm [2]
(which makes software objects to be intuitively analogous
to real world objects). Until recent years such auxiliary
GUI elements were sketchy and constrained to stay
compatible. But currently they are becoming more
detailed and visual because of the possibility to use more
resources, including higher pixel density of screens and
hardware-accelerated graphics.

Many of these approaches are based on using
downscaled images to preview and to manipulate real
objects. Downscaled images are known as thumbnails and
can be often seen in popular applications. Being placed on
the periphery of the workspace, thumbnails are copying
the natural model of human vision [3] and are among the
best ways to improve the intuitivity of an interface.

Efforts to use downscaled images in window
management were less successful. The metaphor was
several times implemented in experimental graphical
shells by placing miniaturized image of a hidden window
instead of its icon in a taskbar. These miniatures are called
mini-windows and are very useful with dynamic mapping
of window content, allowing user to track down
substantial changes in hidden applications. Unfortunately
main experiments with mini-windows were carried out in
times of relatively weak processors and window managers
with non-accelerated graphics, when real-time mapping of
miniaturized windows was impractical or even impossible
to carry out.

Last five years brought hardware acceleration to

window management in all widely spread desktop
operating systems (OS). There are auxiliary elements of
graphics shells that use scaled window images,
dynamically mapped with use of graphics processor of a
video-adapter. But while the technical implementation is
ready, such window miniatures are used in a very limited
way and for a short period of time only - as pop-up
thumbnails, in window selector or in workspace (virtual
desktop) toggle screen. Spoken above GUIs were
designed in the face of necessity to hide lack of dynamical
mapping and/or its effect on processor load, and therefore
window scaling is still used in a small extent there.

Several years after the appearance of hardware-
accelerated window managers, netbooks (and some tablet
PCs) have appeared in common usage as a new class of
portable computers with smaller screen size and
resolution, but capable of running standard PC OS and
applications. From the other side, mobile hardware and
OS designed for smartphones are narrowing the gap with
portable PCs concerning the computation power.

In both cases developers have a problem with placing
classical application in reduced resolution workspace.
Modifying application interface is not always possible
and purposeful. Outlined situations make strong demand
for window managers providing scaled down windows for
constant operation, if done in proper parts of an interface,
without harm to its overall readability.

In this article we present two models based on window
scaling and their experimental implementation for Unix-
like systems. The first model is based on discrete window
scaling and is close to mini-windows metaphor. The
second one uses nonlinear window scaling and is
especially designed for reduced resolutions.

2. DISCRETE WINDOW SCALING MODEL
This model in its general form supposes dividing

workspace into several levels, each one with its own scale
factor (Fig.I). All parts of a window have same scale, and
the scale factor depends on the area, upper left corner of a
window (the x q ; у д point) belongs to.

1:X 1:1

o - j

■ I

! ! і

!
1 іI ■ 1 і

! - - - J_______________________

Fig. I - Discrete levels of window scaling

So transformed і^г pixel coordinates are calculated as

402

mailto:dmitriykostiuk@bstu.by

X1 = X 1 - а ±(х 0) - [0 (х ,) - 0 (x i - X 0)],

Xi Xi і (л
*± V - О / L - v z і ;

- Ш л , - і , Yl
" \ Х і X I) /1

(1)

where а(х) is a scale change function, and в is a
Heaviside step function [3, 4]. Within the mini-window
approach a~f[0(yp- y j] , because of only two possible
stages: unsealed window outside the dock panel, or
window in the panel area downscaled with a ratio
depending on the panel lesser dimension (stated as yp
global screen coordinate for horizontal panel).

As user decides what windows should be
miniaturized into the dock panel, the auxiliary mechanism
to remember several schemes of windows placement and
to quickly switch between them should substantially
improve the usability. To provide such a possibility we
have modified the model. The modification is referred as
model of grouped mini-windows [4].

Window miniatures are placed along with chosen
screen border as in classical mini-windows variant. User
can reorder mini-windows by dragging, and same action
can be used for grouping, as placing one miniature over
another groups them, arranging side-by-side close to each
other (Fig. 2).

Grouping mini-windows allows unfolding whole
group with one click. E.g. clicking the central group
shown in the upper part of a Fig. 2 would return windows
No. 4, 5 and 6 to their proper places on the screen (as in
lower part of Fig. 2).
Acoverflow effect («turning pages» of objects like album
pages) is proposed to visualize going through mini
windows groups with Super-Tab keyboard shortcut [4].

Moreover, same approach allows grouped launching
of applications. Panel of mini-windows can hold special
docklet - a pseudo-group with icon, representing the
history of windowed interface operation. Being selected
in mini-windows list it would shade screen and paint
previously used windows groups over it. At small amount
of groups scaled virtual desktops can be painted as in very
large pager, but when their amount is to big to place all
groups with suitable scale factor, grouped miniatures can
be used instead. By choosing one of these groups on the
shaded screen, user starts applications of a group and with
placing their windows at remembered screen positions.
Group applications launching should be especially
effective at systems equipped with solid-state drives for
their negligible seek times.

3. NONLINEAR WINDOW SCALING MODEL
This model supposes continuous change of a scale

within one window. Its ratio smoothly increases towards
periphery of the window, while central part stays
unsealed.

Coordinates are translated along with following

expression, generalized to к = I; n dimensions:

G.(i) = P ik) a
, Лp(*> _ p(U _ p(*) і S

r I r W 1 Src

p(*) _ p (h) _ p(L) I S
1 Wsrc 1 W J src T u

■ s

* - F i n +S-O - < M f> - O l

Here peripheral areas are named as E and G, while F
is central unsealed area, and 6 is the width of scaled area.

Following values are used at transforming window
image. Source image has і - 0; Wsrc - 1 , and converted

image has і = 0; w - 1 (values and dimensions of source

image marked with src index). P jkJ - is the shift of a top
left corner (point with zero local coordinate) of the
destination image relative to the corresponding point of a
source image. In two-dimensional coordinates
Pjl) = Xi , Pj2) - y , , к = 1;2, and being considered as

P jk’ = f (P j k>, S , P j k), PjJJ, PjJJc) , (3) transforms to
(З1):

Pi = f

p(k) __
1 src

Xi

L » J
P j k) =

p(*>
">1 Wsrc

8 P (k) =9U J 1 W

Xsrc

y.src

Wsn
(3’)

where Wsrc and hsrc are width and height of source
window, while w and h are same values of a resulting one.

403

Different scale functions can be considered within the
model. Particularly, curve like a (x) = X ilK allow
elements neat the unsealed are to be distinguished better.

4. IMPLEMENTATION OFTHE MODELS
We have developed implementations of both models

for GUI of Unix-like systems. The choice was driven by
the possibility to use source code of all components, as far
as strong modularity and extensibility of graphic
environments, based on the X Window System and
standard for contemporary Unix and Unix-like OS. An
experimental object-oriented branch of the Compiz
window manager was used as the basis for the
implementation. Compiz in its turn uses OpenGL library
for hardware acceleration. One of the features of
OpcnGL, the framebuffer objects, provides window
manager with full access to the inactive window image
[5]. Application treats framebuffer objects as ordinary
windows, while window manager sees them as textures
viable to be used in common multi-texture paint routines
(Fig. 3). Compiz window manager itself is a combination
of relatively independent modules interacting through
API, provided by several core classes. Therefore this
architecture is a good ground for building experimental
graphic environments [6].

Fig. 3 - Architecture of the implementation

Developed extension modules use three functional
parts: initialization code, event handlers and calculating
functions.

Fig. 4 - Routines of the rendering chain

Initialization code is called at module load. It provides
system with pointers to constructors and destructors of
display context, all screens of each display and all
windows of each screen. Access to display context allows

to hook into event handling routine, and screen object
makes it possible to participate in the chain of the screen
image refreshing routines, which itself includes
preparation stage, screen rendering and finalizing stage
(Fig. 4).

Preparation stage is used to make different preliminary
calculations, e.g. to evaluate new reference points
coordinates. Rendering method calls its parent class
implementation to refresh screen image, and then it can
perform wide range of actions with this image, accessible
through the OpcnGL library. It has access to the output
device, physical coordinates, and all windows of a
desktop are presented as correspondent texture images.
Finalizing stage may force screen repaint to provide real
time animations.

One of technical problems arising while implementing
models as the extensions to a window manager, is caused
by specific treatment of the X Window System for
windows, been not on the current screen (especially
minimized ones). When minimization event occurs, the
image pixmap is immediately destroyed, as far as
correspondent texture, to be recreated at restoring window
from the minimized stage. This architectural feature of the
X-server allows to save resources at the cost of windows
which are not currently in use, and the effect is clearly
seen in all compositing window managers with scaled
previews in window selector or pop-up thumbnails, as
minimized windows are never previewed there. Therefore
we use “fake minimization”, where window is replaced
by its miniature but not minimized in terms of X Window
System. Flowever the difference is not distinguishable
from the user's point of view.

When minimization event occurs, old coordinates of
the window are stored and updated with new values in
boundaries of the dock panel area, and a scale factor is
calculated and stored into the window data structure. This
value used to identify mini-windows by a screen paint
routine.

At screen initialization module hooks its handlers to
necessary events:

PreparePaintScreen, as explained above;
PaintWindow, that is invoked each time at window
repaint to check scale factor and change window
transformation matrix if necessary;
DamageWindowRect, to reduce resource
consumption by bounding the fragment to be
repainted.

Service routine also tracks mouse click on mini
window to restore it to nontransformed stage.

Window scaling affects the image only. The
application itself has no changes in the window size, as
backward compatibility would be broken in opposite case.
But the same is true for the X-server. Therefore from the
system point of view all controls inside the window keep
their old coordinates, and mouse pointer should be moved
to their previous unsealed position to interact with them.
That is unacceptable, as mouse actions out of window
bounds would activate its content.

One of possible ways to solve the problem is to use X-
server modification with input redirection. There is an
experimental branch with this feature, proposed in 2007.
Window manager should provide X-server with a mesh of
triangular elements, every even triangle describing a

404

triangle on a transformed window and every odd triangle
describing a triangle on the actual window. There were
FoiyY stability problems with this implementation, and,
unfortunately, only one extension module could set an
input mesh at a time [7].

Therefore we use simpler approach, in which all
mouse events are blocked for miniaturized window
content. Instead mouse pointer is used to unminiaturise
window, to highlight it and to drag to another position in a
dock. The implementation uses standard XShape
extension, initially designed for applications that use
transparency channel to show non-rectangular windows,
it blocks mouse events on external transparent parts of the
window. The approach is known as “input shaping” and is
used in several standard Compiz modules. While being
inaccessible to mouse, mini-windows still can be
controlled by keyboard, and if necessary that allows
interaction with them without return to the original scale.

Module of nonlinear window scaling has close
architecture. It is activated when window is dragged
towards any of the screen boundaries (or, more properly,
towards the current workspace boundary). If dragging
doesn’t slops after reaching the boundary, compression of
outer part of the window begins, so user can kineticaly
control the size of window scaled part and is able to keep
balance between minimizing window area and having
enough of its readability.

To make off-screen part of a window visible, the
whole window is transformed with scale factor close to
1:1. After that additional reference vertices are added to
the window substrate figure, and those belonging to an
area with variable scale are shifted along with chosen
scale function (Fig. 4), The transformation can be carried
out along with one window side or two bordering sides.

Fig. 4 - Transformed mesh of a window

As in case of mini-windows, input is shaped, but only
partially, and main part of the window is still accessible
with mouse. That is enough for many typical applications,
which have most of mouse-controlled elements, like
system menu and button panels, grouped in one part of a
window (Fig. 5 shows partially compressed window with
menu, activated by a mouse click).

Fig. 5 - Window with variable scale factor

5. CONCLUSION
Presented models of discrete and continuous scaling of

the windows and their implementation for Unix-like OS
allow to achieve more effective and saving usage of the
screen area, especially appreciable for portable devices
running unmodified computer software. Due to hardware-
accelerated graphics windows images are transparently
mapped in real time without high processor loads, and this
allows user to observe the changes in large amount of
opened windows and to work wdth several windows at
once on relatively small screen.

6. REFERENCES
[I] J. Raskin. The Humane interface: new directions for
designing interactive systems. ACM Press Series, 2000.
233 p.
[2] D.A. Kostiuk, V.V. Diomin. Mode! of mini-windows
dynamically mapped in hardware-accelerated graphic
interface, Vestnik BrGTU 5 (2009). P. 71-74.
[3j H.V. Gomanova, D.A. Kostiuk, K.L. Kostiuk.
Applying peripheral vision model to hardware-accelerated
graphical user interface, Veslnik BrGTU 5 (2007). P. 33-
35.
[4] V. Diomin, D. Kostiuk. Grouped windows focus
switching with variable scale factor. Proceedings o f the IV
International Academic Conference o f Young Scientists
"Computer Science & Engineering 2010 (CSE-2010)",
Lviv, Ukraine 25-27 November 2010, P. 32-33.
[5] 0 . Chapuis, N. Roussel. Metisse is not a 3D desktop.
Proceedings o f the 18'h annual ACM symposium on user
interface software and technology. NY, USA, P. 13-22.
[6] E.V. Gomanova, I.N. Borushko, D.A. Kostiuk.
Peripheral vision model for graphical user interface.
Contemporaiy information computer technologies: hook
o f scientific articles [in Russian], Grodno, 2006. P. 22-27.
[7] S. Spilsbury, Input Redirection Update.
http://smspillaz.wordpress.com/2008/10/21/inpul-
redirection-update/

405

http://smspillaz.wordpress.com/2008/10/21/inpul-redirection-update/
http://smspillaz.wordpress.com/2008/10/21/inpul-redirection-update/

