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Abstract: This paper examines neural network in 
order to predict behavior o f chaotic systems. The 
prediction is performed both on the level o f  emergent 
structures and on the level o f individual data points. 
The network is tested using the Henon and Lorenz 
chaotic time series. The results o f experiments and 
future directions are discussed.
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I. INTRO DUCTIO N
Problems concerning forecasting have existed for a 

very long time. People often have tried to predict the 
future. Traditional approach of time series analysis is 
based on linear mathematics. However, linearity is not 
too good tool for investigation of chaotic processes. 
In last years neural networks have been used to predict 
chaotic time series.

Chaotic behavior is characterized by highly 
sensitive to initial conditions and observed for many 
systems (stock market, EEG patterns of brainwave 
activity, central nervous system, etc.). The key 
problem of chaotic time series is unpredictable on the 
long term, because error at the first step prediction is 
increased exponentially at time. That’s why the 
improvement of prediction accuracy is of great 
importance. It permits also to understand the behavior 
observed nonlinear system and to perform state space 
reconstruction, taking into account numerical data 
from complex system. It is based on an embedding 
theorem [1], which guarantees that a full knowledge of 
the behavior a system is contained in time series of 
any a one measurement. As a result the full 
multivariate phase space can be constructed from the 
single time series.

To apply the embedding theorem it is necessary to 
define a suitable embedding dimension and time 
delay. There exist a lot of methods for estimating the 
optimal time delay T (autocorrelation function, mutual 
information, etc) and embedding dimension m such as 
the false nearest neighbors, fractal dimension, 
principal component analysis and so on [2, 3]. The 
estimation such parameters provide a maximum 
predictability of chaotic time series and can be used 
for choosing of optimal window size (number of input 
units) in forecasting neural network. The paper is 
organized as follows. Section 2 describes the applying

of neural networks for chaotic data prediction and 
state space reconstruction. In section 3 is presented the 
computing of upper prediction limit. The section 4 
describes the approach in order to increase the 
predicting horizon and section 5 gives summary.

2. PREDICTIO N AND STATE SPACE  
RECONSTRUCTION

The goal of time series prediction can be stated as 
follows: for a given sequence x(l), x(2)...,x(l) it is 
necessary to find continuation x(l+l), x(l+2)... The 
nonlinear predictive model can be presented, as

x(t) = F(x(t - 1), x(t -  2),...,x(t -  k)) ,

where t = к + 1, N  , F -  nonlinear function, provided 
by ANN nonlinear units and к is size of the sliding 
window, which is equal to number of time series 
elements simultaneously submitted to inputs of a 
neural network. We will apply Multilayer Perceptron 
(MLP )for time series prediction. Such a network is 
capable of approximating any function. Another 
important feature of MLP is the ability to 
generalization. Therefore MLP is powerful tool for 
design of predicting systems.

For achievement of maximum predictability it is 
necessary to define embedding parameters. Let’s 
examine applying feed-forward neural networks for 
chaotic time series forecasting and state space 
reconstruction. As the chaotic systems, which we want 
to model are the Lorenz and Henon attractors. The 
Lorenz attractor is defined by the three-coupled
differential equations:

dx dy dz
—- = G ( y - x ) , —  = - x z  + r x - y , - - = x y - b z .  (I)
dt dt dt
This system is chaotic for the parameter values

G=W, r=28 and b=8/3.
We solved (I) using a 4-th order Runge-Kutta 

approach with a time step 0,01. Fig. I and Fig. 2 show 
Lorenz time series (x-axis) and 3-dimensional 
attractor respectively. Using the mutual information 
we can define that 7=0,16. Analogously applying the 
method of false nearest neighbors we can get
embedding dimension m=5. From this follows, that 
window size к > m - 1 = 4 . The Henon attractor is 
described by the following equations:

U n + \  = 1  - c o c l + y n
l>Wl = fa n
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Figure I. Original Lorenz time series (X-axis)

Figure 2. Original Lorenz attractor
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Figure 3. The Henon time series (first 200 elements)
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Figure 4. Original Henon attractor constructed for 1500 elements
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where ?=1,4 and 7=0,3 for chaotic behavior. Fig. 3 
and Fig. 4 show the Henon time series (x-axis) and 2- 
dimensional original attractor. By analogy with 
mentioned above approach we can get that k>2 and 
?= /.Let’s examine forecasting of chaotic behavior by 
means of MLP. We will use for the tests neural 
network with 7 input. 5 hidden and I linear output 
units. Notice that hidden units use the sigmoid 
function of activation. The most commonly training 
method of MLP is backpropagation algorithm (BP). In 
spite of the face that BP is successfully used for 
different tasks, it has lacks such as slow convergence, 
non-stability of convergence and local minimum 
problems. Many efforts have been made to develop 
the efficient training methods using in BP variable 
training step size [4], layer by layer optimization [5] 
and using for training the Newton method [6], the 
Levenberg-Marguardt method [7], conjugal-gradient 
technique [8].

In this work a simple method is used for efficient 
training of MLP by combining BP and adaptive 
training step calculation technique (ATS) [9, 10]. The 
ATS is used to find an optimal learning rate, which 
minimizes the training error. Compared to other 
training algorithms, the proposed approach is 
characterized by simplicity and efficiency. In common 
case the experimental results show significant 
improvement over the traditional BP method.

Based on the iterative approach we predicted the 
Henon data and Lorenz data for 1500 step ahead. The 
predicted Lorenz and the Henon attractors are shown 
in Fig. 5 and Fig. 6. As can be seen the neural network 
has the ability to capture the underlying properties of 
chaotic behavior and can be applied for state space 
reconstruction. Thus the neural network permits to 
predict the behavior of complex system. Fig. 7 and 8 
show the prediction results on 30 step ahead for 
Henon and Lorenz time series respectively. As can be 
seen from figures the prediction on the level of the 
individual data points is unreliable. It is main property 
of chaotic system. We will examine approach which 
permits to increase horizon of prediction in the next 
sections.

3. HORIZON O F PREDICTIO N  
FOR C H AO TIC TIM E SERIES

Horizon of prediction is characterized a range of 
time on which it is possible to perform precision 
forecasting. As it is mentioned before the chaotic data 
are unpredictable on the long term, because 
measurement error in the initial conditions grows 
exponentially in time. Such a sensitive dependence on 
initial conditions is defined by a positive Lyapunov 
exponent. That’s why the positive value of Lyapunov 
exponent determines the upper prediction limit. As is 
well known, the sum of positive Lyapunov exponent is 
equal to the Kolmogorov entropy. Then in accordance 
with chaos theory the horizon of prediction can be 
represented as follows:

where K  = Xj is Kolmogorov entropy and Xi > 0 ,
і

cf0 is initial error of predicting.
In accordance with equation (2) the accurate 

prediction is possible only in range T. Thus, after 
training of neural network we can find horizon of 
predicting for initial point, starting with which one we 
perform forecasting.

4. THE INCREASE O F PRED ICTIN G  HORIZON
As it has been mentioned above, the horizon of 

prediction for chaotic behavior is limited in 
accordance with equation (2). One way to increase of 
predicting horizon is to retraining neural network. 
Let’s examine proposed approach more detailed.

Suppose, that we trained neural network using 
training data set X={x(l),x(2),..,x(N)}.

In accordance with predicting horizon we can 
perform accurate predicting on T point ahead. As a 
result we can define the following predicting points:

x(N+I),x(N+2),.. .,x(N+T).
The next step is to organize the new training data 

set, for instance, as follows: X ’={x(l),x(2),..,x(N+T)}. 
Training neural network for new data set we can 
increase predicting horizon. In order to test the ability 
of proposed approach to increase of predicting 
horizon, the experiments have been performed on 
Henon and Lorenz data. Table I and 2 show the 
comparative results of iterative and retraining 
approaches. The MSEl and MSE2 are mean square 
error for the predicted points x(N+l),x(N+2), x(N+3), 
x(N+4) and x(N+5), x(N+6), x(N+7), x(N+8) 
respectively. Table 3 and 4 show the similar results by 
using of Lorenz data.

As can be seen the retraining approach permits in 
common case to perform better prediction than 
iterative approach and to increase the horizon of 
predicting.

5. SUM M ARY AND DISCUSSIO N
In the previous sections we examined the simple 

predicting approach, when for given time-series up to 
time N it is necessary to find the continuation of time 
series. The more complex problem is described as 
follows: given a d-dimensional chaotic system, which 
is defined by the d differential equations. However we 
have only one-dimensional observed data. Then the 
fundamental question is the following: Is it possible to 
define knowing only one coordinate of observed time 
series the others coordinates and how to do it?

One way to decide this problem may be the 
following. We can define the embedding dimension m 
and number of the factors d, which influence on this 
time series. In accordance with it we can construct the 
neural network which has m input and d output units 
and to apply the ICA (independent component 
analysis) or PCA methods. But experiments on Lorenz 
data show, that these methods are not suitable for such 
a task. For instance, we try to mix the coordinates of 
the Lorenz data and after this to get the original 
sources. As a result traditional ICA is not able to do it.
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Figure 5. Predicted Henon attractor constructed for 1500 predicting iterations

Figure 6. Predicted Lorenz attractor constructed for 1500 predicting iterations

Figure 7. Henon process: prediction results for 30 
predicting iterations (using retraining approach) 

I -  prediction, II -  original sequence

Figure 8. Lorenz process: prediction results for 30 
predicting iterations (using retraining approach) 

I -  prediction, II -  original sequence

As a rule the ICA method gives the good results if 
we use non-gaussian (deterministic) data and PCA -  
on contrary. The chaotic data are more gaussian with 
comparison with other data. That’s why by using PCA 
we got better results in comparison with ICA. But it 
should be noted, that PCA also doesn’t give the 
suitable decision of given problem.

That’s why the next task is to develop a powerful 
tool for separation of chaotic time series and for

getting using one-dimensional chaotic time series the 
others coordinates. It can permit to analyze the past 
and define the hidden factors.
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Approach NIT Size of 
training set

MSE T MSEl MSE2

Iterative
approach

308 950
3 -Ю '4

4 0.00022275 0.031198

Retraining
approach

276 954
3 1 0 -4

4 0.00003325 0.00804275

Table 2
Approach Actual

value
Desired
value

Absolute
error

Iterative
approach

0.365621 0.363170 0.002451
0.992627 1.002511 0.009884
-0.274204 -0.298088 0.023884
1.191078 1.176354 0.014724
-1.101723 -1.026758 0.074965
-0.363043 -0.123019 0.240024
0.512435 0.670785 0.158350
0.524174 0.333160 0.191014

Retraining
approach

0.364677 0.363170 0.001507
1.001295 1.002511 0.001216
-0.288775 -0.298088 0.009313
1.182933 1.176354 0.006579

-1.046040 -1.026758 0.019282
-0.247162 -0.123019 0.124143
0.592083 0.670785 0.078702
0.434126 0.333160 0.100966

Table 3
Approach Actual

value
Desired
value

Absolute
error

Iterative
approach

-0.155480 -0.163600 0.008120
-0.556713 -0.617800 0.061087
-1.573766 -1.633100 0.059334
-0.536221 -0.439700 0.096521
0.085535 0.186400 0.100865
0.237657 0.520500 0.282843
0.719185 1.254000 0.534815
1.509935 0.938200 0.571735
0.461715 0.245600 0.216115
-0.042810 0.230800 0.273610

Retraining
approach

-0.169124 -0.163600 0.005524
-0.613167 -0.617800 0.004633
-1.598149 -1.633100 0.034951
-0.430258 -0.439700 0.009442
0.121533 0.186400 0.064867
0.317614 0.520500 0.202886
0.940051 1.254000 0.313949
1.336355 0.938200 0.398155
0.301510 0.245600 0.055910
0.011798 0.230800 0.219002

Table 4
Approach NIT Size of 

training set
MSE T MSEl MSE2

Iterative
approach

1000 800 0.001357 5 0.0053618 0.1628954

Retraining
approach

578 805 0.0014 5 0.0011142 0.0698684
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