
XIV International PhD Workshop 
OWD’2012, 20-23 October 2012

Detectors  Tuning in the Inte l l igent  
Intrus ion  Detection Syste m s

Pavel Kachurka, Brest State Technical University 
Viachaslau Kachurka, Brest State Technical University

Abstract
Modern Intrusion Detection and Prevention 

Systems operate with large amount of data. Most 
host-based systems can analyze big number of traffic 
features in real-time mode. But the network-based 
systems cannot gather and analyze network 
connections in the same way because of the high 
network speed and traffic overload. One of the 
approaches is based on the analysis of intrinsic and 
statistical traffic features using A l methods including 
artificial neural network (ANN) algorithms. In this 
work some aspects of ANN-based detectors’ tuning 
are reviewed. Such tuning is done using genetic 
algorithms and special fine-tune algorithms. 
Comparison with non-tuned detectors is given.

I. Introduction
An increasing role of network information 

technologies in human activities leads to a rising 
level of attention to such technologies from 
evildoers. The average level of expenses of legitimate 
users in case of successful attack increases too.

Different systems of detection and prevention of 
network intrusions are used utilizing several different 
approaches to data mining. One of the most widely 
used approaches uses artificial neural networks 
(ANN) for detection of network intrusions. In our 
previous works [1-3] different types of neural 
networks for detectors were considered. As the best 
network type we have selected recirculation neural 
network (RNN).

In this paper the necessity of tuning these 
detectors is considered. Three different approaches 
are proposed - receiver operating characteristics 
(ROC)-analysis [4] based selection of best 
parameter's values, evolutionär}7 programming for 
fitness-based selection of parameter's values, and 
fine-tuning iterational algorithm.

The training and testing process of RNN-based 
detectors was conducted on KDD’99 data base 
which contains records describing TCP-connections 
including 41 parameter from processed DARPA 
1998 Intrusion detection evaluation database [5]. The

given data base includes normal connections, and 
also the attacks of 23 types belonging to four classes: 
DOS — «denial-of-service» - refusal in service, for 
example, a Syn-flood; U2R — not authorized access 
with root privileges on the given system, for 
example, various attacks of buffer overflow; R2L — 
not authorized access from the remote system, for 
example, password selection; Probe — analysis of the 
topolog}7 of a network, services accessible to attack, 
carrying out search of vulnerabilities on network 
hosts.

2. RNN-based detectors
Recirculation neural networks (sometimes called 

replication neural network) differ from others ANNs 
in the following aspects (Figure I). The input data 
vector has to be reconstructed in the same kind into 
the output vector. RNNs are commonly used in the 
compression and reconstruction tasks (direct and 
back propagation of the information in the networks 
«with a narrow throat») [6], for definition of outliers 
on a background of the general file of entrance data
PT

Fig. I. W I a y e r s R N N s tr u c tu re  
N1-  quantity  o f  neural e lements in i-th  layer,  N M = N l -  

quantit ies of neural e lements in entrance and target  
layers are equal

Nonlinear RNNs have shown good results as the 
detector of anomalies [8, 9]. Training RNN can be 
made in two ways: first, on normal connections so 
that input vectors on an output were reconstructed 
in themselves, thus the connection is more similar on 
normal, the less reconstruction error is:
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(I)E t = " Z (X ‘ - X ‘ ) 2

where X kj  —j -th element of Xth input vector, X j -

j -th element Xth output vector. Whether E k > T  , 
where T — certain threshold for given RNN 
connection admits anomaly, or attack, differendy -  
normal connection.

The opposite way of utilizing RNN-based 
intrusion detectors [1] is the following. Every RNN 
is trained to detect a specific attack, so that if 
reconstruction error is lower than threshold then 
connection admits attack; if error is higher 
(abnormal) then the connection could be normal 
(the specific attack is not registered). The detectors 
which use these types of RNNs are called "private 
detectors".

Thus, one RNN can be applied to definition of 
an accessory of input vector to one of two classes —
to the training class A , or to the class of outliers A :

X * є  A, i f  E k < T, 

X k e  Ä, i f  E k > T.
(2)

One of the issues here is the determination of 
threshold T  value which provides the most 
qualitative detection of attacking connections.

The other problem is the determination of the 
best exact architecture of RNN - values of M and N1 
- number of layers and numbers of neurons in each 
layer.

3. Detectors tuning 

3.1 ROC analysis
Both problems can be solved using receiver 

operating characteristics (ROC) analysis.
ROC analysis is a tool of organizing and 

performance visualizing for any classifier [4]. In our 
case such organizing can be done for evert' detector, 
making threshold values different for every RNN.

ROC analysis uses terms "True positive rate" 
(TPR) and "false positive rate" (FPR), which both 
are relative values between O and I:

TPR =
TP

TP+  FN
TP
P (3)

where TP (true positive) is absolute amount of true 
positive detects (attacks are detected correctly), FN 
(false negative) is absolute amount of false negative 
detects (attacks are not detected);

FPR =
F P

TN+ F P

FR

N
(4)

where FP (false positive) is absolute amount of false 
positive detects (normal connection is detected as an 
attack) and TN (true negative) is absolute amount of 
true negative detects (normal connections, detected 
as normal connections).

Each threshold value gives us a pair (TPR; FPR). 
Testing each threshold value from the set of possible 
values (from O to positive infinity, step 0,001) gives 
us an ordered array of such (TPR, FPR) pairs, which 
can be used to plot a so called ROC-curve [4] (Figure 
2)-

Fig. 2. Example of ROC-curve  
for RNN with 41-18-41 architecture, hyperbolic  

tangent as activation function, ftp_data attack class 
connections. Three curves show performance of 
anomaly detector, misuse detector  and detector  

ensemble [1].

Threshold which gives the best performance can 
be found using L - distance between the point of 
ROC-curve and diagonal (0,0)-(1,1) of plot (Figure 
3):

A = Р Е + Т р  SinCtan1 - Щ - 7 )
bF i 4 (4)

The maximal distance is given by the best 
threshold.

Another parameter, used in ROC-analvsis, is 
"Area under curve" (AUC) [4], which shows 
performance of classifier.
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Fig. 3. Geometrical interpretation  
of finding best threshold

Precise AUC calculation is a long algorithm [4], 
but semantically it is a percentage of area under the 
ROC-curve in comparison to the whole square area 
from (0, 0) to (I, I) points in ROC-coordinate 
system. A "naive" approach of calculation:

AUC = —
£  TPK

TPR1-TPR1

FS

"(FPRl -FPR i_,)

(?)

where N is number of experiments, and FS is full 
square, in which the curve is plotted.

Classifiers can be compared using AUC: the 
higher AUC, the better classifier. Detectors with 
different architectures can be compared to select the 
best architecture.

The compared architectural parameters are 
number of values, activation functions and numbers 
of neurons in each layer (Figure 4).

Fig. 4. Comparison of AUCs  
for detectors with 18, 25, 33, 41 and 50 neurons in 

hidden layer

AUC calculations give very similar values for 
different architectures, with 1%-deviations (Table I).

T ab .I.
AUC and accuracy com parison table for З -layered and 

_________ 5-layered detector  ensembles_________
N um . o f  
n euron s 
in  h id . 
Iaver

A ctiv a tio n  
fu n c tio n  — tanh

A ctivatio n  
function  — lo gsig

A C C ,
%

A U C ,
%

A C C ,
%

A U C ,
%

T ra in in g  s e t  " A I J J '
18 97,43 99 ,98 97,04 99,98
25 97 ,78 99 ,98 97 ,80 99,98
33 97 ,10 99 ,99 96,60 99,97
41 97,09 99 ,99 97,20 99,99
50 97 ,16 99 ,98 97,91 99,98

N eiv  con n ect ion s  s e t  "A L L -N E W "
18 83 ,88 98 ,27 84,41 98.34
25 82 ,80 98 ,24 83,88 98,25
33 83 ,72 98 ,38 83,55 98,31
41 83,73 98,29 83,49 97,68
50 83 ,80 98,3 83,41 98,33

T ra in in g  s e t  " A U ."
18/18/18 99 ,00 99 ,92 97,28 99,97
33/25/33 98 ,34 99 ,96 97,42 99,98
41/33/41 98,83 99,81 97,75 99,98
41/41/41 98 ,69 99 ,99 97,88 99,83
25/50/25 98 ,70 99 ,95 97,81 99,98

N ew  con n e ct io n s  s e t  "A L L -N E  W
18/18/18 81,81 95 ,49 81,78 96,61
33/25/33 81,54 95 ,49 81,80 96,58
41/33/41 81,75 97 ,15 81,70 95,32
41/41/41 81,69 97 ,06 81,99 96.66
25/50/25 81 ,74 96,1 81.83 97,73

Values shown in Table I were calculated using 
two sets of data - "ALL-train", set with all types of 
connections (normal and all attacks), on which 
detectors were trained; and "ALL-new", all 
connections set, which is unknown for detectors.

As it is shown in Table I, deviations for AUC 
and accuracy parameters are ver\r small, so almost 
every given architecture can be used; however, the 
performance is slightly better for З-layered tanh- 
activated networks with 25 or 33 neurons in hidden 
layer.

3.2 Evolutionary programming
Evolutionary programming (EP) is one of the 

four major evolutionary algorithm paradigms [10]. It 
is similar to genetic programming [11], but the 
structure of the program to be optimized is fixed, 
while its numerical parameters are allowed to evolve.

In case of detectors tuning, the parameter to 
evolve is threshold.

Chromosome consists of N values of thresholds 
(each one for every private detector, each private 
detector for one of N classes of attacks [I]). Fitness 
function is summary cost of detection errors, which 
we try to minimize:

N N  ...
Fitness = X  2  (cost( PPtj)+ cost (FNlj)) -> min V6J

i=i j , і
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where FP,j is the amount of z-th detector's false 
positive detections of j -th attack type, FN1, is the 
amount of z-th detector's false negative detections of 

j -th attack type; N - number of detectors (and attack 
type), 5 or 23 [1].

The costs of false positive and false negative 
errors are defined as cost matrix in [12].
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Fig. 5. 60 iterations of EP tuning of thresholds

Usage of EP, unlike ROC-analysis, can be 
effective for detector tuning on unknown input data.

3.3 Fine-tuning algorithm
Another approach is somehow similar to back- 

propagation learning algorithm.
After training of neurodetectors of all types it is 

needed to tune the thresholds T, to minimize the 
classification error. The following algorithm can be 
used.

I. Matrix of classification results C is calculated, 
where Cij — amount of vectors of class Л і, detected 
as vectors of class A/, if i i j ,  this number shows the 
amount of incorrectly classified vectors. To 
minimize this number, we should for ever}' £-th 
vector minimize 8,k and maximize 8/, where 8jk is a 
relative error of reconstruction for detecting k-ih 
vector of class Aj'.

actually is of class A h but has been detected as a 
vector of class Aj\

ER ,
Ci p k

= E h r r' - h  (8)
k=\ A }

for Vz = I ..A, j  = I ..N, і j .
2. For Vf = I .JV  new threshold is calculated:

N , i*  j  N ,i*  j

І . Щ  ! . E R 1,
T  = T  + a 7=1

N ,i*  j

! c ,
7=1

— ß
7=1
ZV,/*7 (9)

! c J
7=1

where a—ß —0,01 (empiric values).
Formula 9 decreases T1, increasing possibility of 

correct classification of vectors of z-th class (not as a 
vector ofy-th class), at the same time increasing this 
threshold, decreasing possibility of incorrect 
classification as of z-th type for vectors ofyLth type. 
Depending on the values of this errors, T, will be 
either increased or decreased on a small value.

3. If max number of iterations is not reached, go 
to p. I.

Figures 6 and 7 show graphs of summary changes 
of thresholds and summary classification error MC.
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Fig. 6. Sum mary changes of thresholds in 70 
iterations

(7)

where Tj is a threshold of z-th detector; initially T1= 
m e a n S f . The less is S j ,the more is possibility of
input /fe-th vector being of class A,.

To do the minimization (maximization) of 
relative reconstruction error, we have to compute 
summary relative errors for every vector, which
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Fig. 7. Summary c lassification error MC

U 2R 6,98 5,17 4,75 6,89
R 2L 5,53 5,42 4,77 2,75

N orm al 12,75 10,4 10,81 10,84

C lass
F N R 1, %  (23 det.)

N one R O C E P F ine
D oS 0,18 0,21 0,2 0,39

Probe 0,03 0,02 0 ,02 0,02
U 2R 2,54 1,91 1,89 1,49
R 2L 3,37 2,51 2,99 0,37

N orm al 0,1 0 ,04 0,05 0,02

C lass
A C C 1, %  (23 det.

N one RO C EP Fine
D oS 97,91 98,09 96,57 94,86

Probe 96,64 98,11 97,62 96,93
U 2R 96,48 97,22 98,12 96,73
R 2L 91,1 93,51 96,58 99,08

N orm al 87,15 90,51 89,11 90,14

4. Experimental results
In [1] it is shown that 2 approaches of detections 

can be used: using fusion of private detectors, where 
every detector is trained for one exact type of attack 
(one of 23 types); and using fusion of attack class 
detectors - where one detector is trained not for one 
attack, but for one of connection classes (one of 5 
classes - DoS, Probe, U2R, R2L, normal 
connection).

Table 2 shows FPR (false positive rate), FNR 
(false negative rate) and ACC (accuracy of detection) 
for all 5 classes of connections, using different types 
of tuning (ROC-tuning, EP-tuning and fine-tuning) 
for different approaches of detecting (5 or 23 
detectors) - after threshold tuning.

T a b .2.
Detection results after threshold tuning

Class
FPR 1, %  (5 det.)

N one RO C EP F ine
DoS 1,27 1,01 1,14 1,04

Probe 3,41 1,52 1,85 1,54
U 2R 5,77 5,17 4,75 4,4
R 2L 6,50 5,42 4,77 4 ,22

N orm al 12,75 10,4 10,81 11,8

C lass
FN R 1, %  (5 det.)

N one RO C EP F ine
D oS 0,28 0,01 0,14 0,1

Probe 1,87 0,71 1,42 1,2
U 2R 0,72 0,13 0,66 0,55
R 2L 0,66 0,11 0,32 0,23

N orm al 0,10 0,02 0,01 0,01

C lass
A C C 1, %  (5 det.)

N one RO C EP F ine
D oS 98,94 99,22 99,1 99,32

Probe 96,89 98,78 98,74 99,05
U 2R 95,24 94,85 96,74 94,93
R 2L 94,67 95,5 96,25 98,7

N orm al 89,78 91,14 90,4 90,21

C lass
F PR 1, %  (23 det.)

N one RO C EP F ine
D oS 1,91 1,77 1,99 3,64

Probe 3,33 1,52 2,14 3,3

As it is shown in Table 2, false detection rates 
(FPR and FNR) are decreased, and accuracy is 
increased after using any tuning algorithm. All three 
algorithms show comparable results.

As it is said in [13], a detector is effective if FPR 
and FNR are less than 5% - such effectiveness 
threshold is reached with EP-tuning and fine-tuning 
algorithms for 5-detector IDS.

Conclusions
As it is shown in p.4, non-tuned detectors are 

showing worse effectiveness, than tuned ones. The 
fusion of 3 tuning algorithms (choosing the best 
algorithm for each attack class) gives better results, 
than using only one algorithm for all attack classes.

Usage of such tuning is obligatory in creating 
fully functional intrusion detection system.
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