
Convergence and integration of artificial neural
networks with knowledge bases

in next-generation intelligent computer systems
Mikhail Kovalev

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
michail.kovalev7@gmail.com

Aliaksandr Kroshchanka
Brest State Technical University

Brest, Belarus
kroschenko@gmail.com

Vladimir Golovko
Brest State Technical University

Brest, Belarus
vladimir.golovko@gmail.com

Abstract—In the article, an approach to the integra-
tion and convergence of artificial neural networks with
knowledge bases in next-generation intelligent computer
systems through the representation and interpretation of
artificial neural networks in a knowledge base is considered.
The syntax, denotational, and operational semantics of
the language for representing neural network methods in
knowledge bases are described. The stages of building of
neural network problem-solving methods with the help
of intelligent framework for designing artificial neural
networks are described.

Keywords—problem-solving model, ontological approach,
neuro-symbolic AI, artificial neural network

I. INTRODUCTION

The term of a next-generation intelligent computer
system implies that such systems, among others, have the
following capabilities [1]:

• the ability to constantly improve the quality of
problem solving;

• the ability to acquire skills for solving fundamentally
new problems;

• the ability to explain their own decisions;
• the ability to find and eliminate errors in their own

decisions (the ability to introspect).
Ensuring the above abilities is fundamentally possible

in the concept proposed by the OSTIS project [1] due
to the unification of the representation and ontological
structuring of knowledge describing problems, subject
domains within which problems are solved, and problem-
solving methods.

Representation of various problems-solving methods
in a common knowledge base ensures the semantic
compatibility of these methods. When solving a problem
using such methods, the system does not interact with
them on the principle of “inputs–outputs”. On the contrary,
a common memory allows real-time transformation of
input knowledge using any available methods, which
provides the ability to introspect and explain the decisions
of the system.

Promising and actively developing problem-solving
methods are artificial neural networks (ANN), which is
determined, on the one hand, by the evolution of the
theory of ANN and, on the other hand, by the hardware
capabilities of the machines that are used to train them.

The advantages of ANN include the ability to solve
problems with unknown patterns, as well as the ability
to solve problems without the need to develop problem-
oriented approaches.

However, most neural network models work like a
“black box” [2], which is one of the main disadvantages
of this problem-solving method. Modern problems in-
creasingly require explanation of their solution. A whole
direction of Explainable AI has appeared, within which
various attempts are made to explain the decisions of ANN
[3], [4]. Approaches that propose the integration of neural
networks with knowledge bases are being developed [5]–
[7].

As a disadvantage of ANN we can also name the heuris-
tic nature of the process of finding optimal architectures
of models and the parameters for their training, as well
as the high requirements for the scope of knowledge of
neural network models researchers.

Based on the above abilities, the presence of which
must be ensured in next-generation intelligent computer
systems, the problem of developing an approach to the
integration of ANN into the knowledge base of an intel-
ligent system arises, both as a problem-solving method
and as an object of automatic design of new methods.
The solution of this problem will allow overcoming the
above disadvantages of the neural network method.

The purpose of the research is to expand the range of
problems solved by intelligent systems by developing a set
of models, methods, and tools for representing, designing,
and processing artificial neural networks in intelligent
systems and integrating them with other problem-solving
models.

173

II. PROPOSED APPROACH

The basis of the proposed approach is the usage of the
OSTIS technology and its basic principles [8]. Intelligent
systems developed using the OSTIS technology are called
ostis-systems. Any ostis-system consists of a knowledge
base, a problem solver, and a user interface.

The problem solver performes the processing of frag-
ments of the knowledge base. At the operational level,
processing means adding, searching, editing, and deleting
sc-nodes and sc-connectors of the knowledge base. On the
semantic level, such an operation is an action performed
in the memory of an action subject, where, in the general
case, the subject is an ostis-system and the knowledge
base is its memory. An action is defined as the influence
of one entity (or some set of entities) to another entity
(or some set of other entities) according to some purpose.

Actions are performed according to the set problems. A
problem is a formal specification of some action, sufficient
to perform this action by some subject. Depending on
a particular class of problems, it is possible to describe
both the internal state of the intelligent system itself and
the required state of the external environment [9].

Similar problems are grouped into classes, for which
generalized problem formulations are described. The
following classes of problems for ANN are defined [10]:

• The classification problem. The problem of construct-
ing a classifier, i.e. a mapping c̃ : X → C, where
X ∈ Rm is the feature space of the input example,
C = C1, C2, ...Ck is a finite and usually small set
of class labels.

• The regression problem. The problem of constructing
an evaluation function by examples (xi, f(xi)),
where f(x) is an unknown function. The evaluation
function is a mapping of the form f̃ : X → R, where
X ∈ Rm is the feature space of e.a.p.

• The clustering problem. The problem of constructing
a function a : X → Y that matches any object
x ∈ X with a cluster number y ∈ Y with a certain
distance metric ρ(x, x′), where X is a set of objects,
Y is a set of cluster numbers (names, labels), x, x′ ∈
X .

• The problem of decreasing the dimensionality of
the feature space. The problem of constructing a
function h : X → Y that preserves the given
relations between points of sets X and Y, where
X ⊂ Rp, Y = h(X) ⊂ Rq , q < p.

• The control problem. The problem of constructing a
model-regulator for the state of a complex dynamic
object.

• The filtering problem. The problem of building a
model that cleans the original signal containing some
noise and reduces the influence of random errors in
the signal.

• The detection problem. It is a special case of the
classification and regression problems. The problem

of constructing a model that performs the detection
of objects of certain types in photo and video images.

• The problem with associative memory. The problem
of constructing a model that allows reconstructing
the original example based on previously saved
examples.

For classes of problems, classes of methods for their
solution are formulated. A problem-solving method is de-
fined as a problem-solving program of the corresponding
class, which can be either procedural or declarative. In
turn, a class of problem-solving methods is defined as
a set of all possible problem-solving methods having a
common language for representing these methods. The
method representation language allows describing the
syntactic, denotational, and operational semantics of this
method.

In this article, we propose to consider ANN as a
class of problem-solving methods with its own repre-
sentation language. According to the OSTIS technology,
the specification of a class of problem-solving methods is
reduced to the specification of the corresponding method
representation language, i.e. to the description of its
syntactic, denotational, and operational semantics.

To achieve semantic compatibility with other problem-
solving methods of the OSTIS technology, it is proposed
to describe neural network methods within semantic
memory, accordingly, the syntax of the representation
language of neural network problem-solving methods is
the syntax of the SC-code used in the OSTIS technology
for knowledge representation.

Thus, in order to add neural network problem-solving
methods to the stack of the OSTIS technology and thus
expand the range of problems solved by ostis-systems, it
is necessary to describe the denotational and operational
semantics of the representation language for the neural
network problem-solving method.

The denotational semantics of neural network method
representation language is described within the subject
domain and its corresponding ontology of a neural
network method. This model is described in detail in
Section III.

The operational semantics of any problem-solving
method representation language is the specification of
a family of agents providing the interpretation of any
method belonging to the corresponding method class. This
family is an interpreter of the corresponding problem-
solving method. Within the OSTIS technology, such
an interpreter is called a problem-solving model. Since
the OSTIS technology uses a multi-agent approach, the
development of a neural network problem-solving model
is reduced to the development of an agent-oriented model
of ANN interpretation. This model is described in Section
IV.

A skill is a method, the interpretation of which can
be fully carried out by a given cybernetic system, in

174

Figure 1. A fragment of the set-theoretic ontology of ANN

the memory of which the specified method is stored [9].
Thus, forming the specification for the neural network
problem-solving method and neural network problem-
solving model in the ostis-system, we can say that such
system possesses the skill of problem solving with the
help of ANN.

In Figure 1, a fragment of the ANN ontology is shown,
describing the relation of such concepts and nodes as:

• a class of problems that can be solved by ANN (for
example, the class of classification problems);

• a class of neural network problem-solving methods;
• a neural network problem-solving model;
• a skill in problem solving with the help of ANN;
• specific problems and methods of their solution (for

example, a specific trained convolutional ANN).
The usage of ANN as a problem-solving method

implies the usage of an already designed and trained
ANN. However, the presence of a neural network method
description language in ostis-system memory opens the
way for automation of the design and training ANN
processes themselves. Such automation is represented by
separate classes of problems and the corresponding skills
for their solution. The approach to such automation is
described in Section V.

III. DENOTATIONAL SEMANTICS OF THE NEURAL
NETWORK REPRESENTATION LANGUAGE

As it was already mentioned, the denotational semantics
of neural network method representation language is
described within the subject domain (SD) and its cor-
responding neural network method ontology. The SD of
neural network methods is a private SD of the method.

The maximum class of artificial neural network re-
search objects is an artificial neural network.

The SD of a neural network method and key elements
of its ontology are described in [10]. In this article, an
extension of the SD of neural network methods, described
in [10], is represented.

Let us demonstrate an updated classification of neural
network methods (the added classes are in bold):

artificial neural network
:= [neural network method]
⇐ inclusion*:

method
⇒ subdividing*:

Typology of ANN on the basis of the directivity of
connections^
= {{{
• ANN with direct connections

⇒ decomposition*:
{{{• perceptron

⇒ decomposition*:
{{{• Rosenblatt

perceptron
• autoencoder

ANN
}}}

• support vector machine
• ANN of radial basis

functions
• convolutional ANN

}}}
• ANN with inverse connections

⇒ decomposition*:
{{{• Hopfield ANN
• Hamming ANN

}}}
• recurrent ANN

⇒ decomposition*:
{{{• Jordan ANN
• Elman ANN
• multi-recurrent ANN
• LSTM-element
• GRU-element

}}}
}}}

⇒ subdividing*:
Typology of ANN on the basis of completeness of
connections^
= {{{• fully connected ANN

• weakly connected ANN
}}}

The concepts for describing metrics of neural network
methods effectiveness are also added in the SD of neural
network methods. These metrics are taken into account by
the problem solver when deciding to use one or another
neural network method.

Metrics can be classified according to the type of
problem to be solved.

175

ANN quality assessment metric
⇒ subdividing*:

Metric typology by problems^
= {{{• classification metrics

⇒ decomposition*:
{{{• ANN precision
• ANN completeness
• F1-metric

}}}
• regression metrics
⇒ decomposition*:

{{{• MAE
• MAPE
• RMSE

}}}
}}}

ANN precision
:= [precision]
:= [proportion of correctly identified positive out-

comes in the total number of outcomes that were
identified as positive]

⇒ formula*:
[

PRE =
TP

TP + FP

where TP and FP are the number of true-
positive and false-positive predictions of the
neural network, respectively]

ANN completeness
:= [recall]
:= [proportion of correctly identified positive out-

comes in the total number of positive outcomes]
⇒ formula*:

[
REC =

TP

TP + FN

where TP and FN are the number of true-
positive and false-negative predictions of the
neural network, respectively]

F1-metric
⇒ formula*:

[
F1 = 2 ∗ PRE ∗REC

PRE +REC

where PRE and REC are the accuracy and
completeness of ANN, respectively]

MAE
:= [mean absolute error]
⇒ formula*:

[1
N

∑N
i=1 |yietalon − yipredicted|, yietalon – the ref-

erence value, yipredicted – the value obtained by
the ANN, N – the size of the training dataset]

MAPE
:= [mean absolute percentage error]
⇒ formula*:

[1
N

∑N
i=1

yi
etalon−yi

predicted|
yi
etalon

∗ 100%,
yietalon – the reference value,
yipredicted – the value obtained by the ANN,
N – the size of the training dataset]

RMSE
:= [root mean squared error]
⇒ formula*:

[
√

1
N

∑N
i=1(y

i
etalon − yipredicted)

2, yietalon – the
reference value, yipredicted – the value obtained
by the ANN,
N – the size of the training dataset]

IV. OPERATIONAL SEMANTICS OF THE NEURAL
NETWORK REPRESENTATION LANGUAGE

Operational semantics of neural network representation
language is defined by the agent-oriented model of
artificial neural network interpretation and specification
of corresponding actions.

A neural network method is described in the form of
a program in some programming language, which can be
either external in relation to the ostis-system or internal (at
the moment, an SCP language). Each such programming
language corresponds to some private subject domain of
the SD of neural network methods.

Subject domain of neural network methods
:= [Subject domain of artificial neural networks]
⇒ private subject domain*:

{{{• Subject domain of neural network
methods in SCP

• Subject domain of neural network
methods in Python

• Subject domain of neural network
methods in C++

}}}

In the case of description of a neural network method
in an external language, such method is described in the
corresponding subject domain, within which the action for
interpretation of this method is also specified. This action
corresponds to an agent implemented in the corresponding
programming language.

However, to achieve convergence and integration, it
is necessary to describe neural network methods in the
internal language of the ostis-system, which is SCP [1].

An scp-program is a sequence of generalized specifica-
tions (templates) of scp-operators. Each scp-operator is
an action in ostis-system memory (sc-memory). During
interpreting an scp-program, the abstract sc-agent of
creating scp-processes creates an scp-process, taking into
account the specific scp-program interpretation parameters.

176

In many cases that means substituting arguments in the
generalized scp-operator specifications of the program and
generating specific instances of these programs (methods).
Then, the initial operator is added to the set of real entities,
and the program execution begins.

Thus, the interpretation of an scp-program comes down
to agent-based processing of actions in the scp-memory,
which are scp-operators.

The neural network method representation language
in SCP is an extension of the SCP language. It is
extended at the expense of actions, specific to the SD
of ANN. The subject domain and its corresponding
ontology of neural network methods in SCP describes the
specification of actions for interpretation of ANN within
ostis-system memory, which extend the range of standard
scp-operators. The following hierarchy of such actions
can be distinguished:

action for interpreting the ANN layer
⇒ decomposition*:

{{{• action for calculating the weighted sum
of all neurons of the layer

• action for calculating the activation
function for all neurons of the layer

• action for interpreting the convolutional
layer

• action for interpreting the pooling layer
}}}

To describe the specification of the above actions, it is
necessary to introduce the concepts of oriented number
set and matrix using which the input values of ANN,
output values of ANN, weight matrices, and so on are
specified.

Each element of an oriented number set is some number.
The numbers can be represented as sc-nodes or with a
string representation of the whole set, for which a special
relation string representation of the oriented number set*
is used. This relation was introduced in order to optimize
some implementation options of the agent interpreting
action using the concept of oriented number set.

oriented number set
:= [oriented number set]
⇐ inclusion*:

number
⇐ inclusion*:

oriented set
⇐ first domain*:

string representation of an oriented number set*

A matrix is an oriented set of oriented sets of equal
power numbers.

1. Action for calculating the weighted sum of all
neurons of the layer

The (objects’) arguments of this action are set by the

Figure 2. An example for the specification of the action for calculating
the weighted sum of all neurons of the layer

following relations:

input vector’
⇒ first domain*:

action for interpreting the ANN layer
⇒ second domain*:

oriented number set

matrix of neuron synapse weights of the layer’
⇒ first domain*:

action for processing ANN
⇒ second domain*:

matrix

The result of the (result’) action is an oriented number
set, which is the weighted sum of neurons of the
corresponding layer.

An example for the specification of the action for
calculating the weighted sum of all neurons of the layer
for a layer with two neurons and an input vector of
dimension 2 is shown in Figure 2.

2. Action for calculating the activation function for
all neurons of the layer

The arguments of this action are set by the following
relations:

vector of weighted sums of layer neurons’
⇒ first domain*:

action for processing ANN’
⇒ second domain*:

oriented number set

threshold vector of layer neurons’
⇒ first domain*:

action for processing ANN’
⇒ second domain*:

oriented number set

activation function’
⇒ first domain*:

action for processing ANN’
⇒ second domain*:

function

177

The result of the action is an oriented number set,
which are the output values of the layer neurons.

3. Action for interpreting the convolutional layer
The arguments of this action are set by the following

relations:

input matrix’
⇒ first domain*:

action for processing ANN
⇒ second domain*:

matrix

convolution kernel’
⇒ first domain*:

action for interpreting the convolutional layer
⇒ second domain*:

matrix

convolution step’
⇒ first domain*:

action for interpreting the convolutional layer
⇒ second domain*:

number

The result of the action is the matrix resulting from
the convolution of the input matrix with the convolution
kernel.

4. Action for interpreting the pooling layer
The arguments of this action are defined by the

following relations:

input matrix’
⇒ first domain*:

action for processing ANN
⇒ second domain*:

matrix

pooling window size’
⇒ first domain*:

action for interpreting the pooling layer
⇒ second domain*:

matrix

pooling window step’
⇒ first domain*:

action for interpreting the pooling layer
⇒ second domain*:

number

The result of the action is the matrix obtained as a
result of pooling the input matrix.

If it is necessary to specify different arguments for
neurons of the same layer, it is possible to specify the
corresponding actions, however, this was not used in this
work due to the poor knowledge of neural network models

Figure 3. Solving the “EXCLUSIVE OR” problem [11]

Figure 4. A scheme of a single-layer perseptron solving the “EXCLU-
SIVE OR” problem [11]

of this kind.
The specification of agents corresponding to the speci-

fied actions sets an agent-oriented model for interpreting
artificial neural networks. The implementation of this
model will be called an artificial neural network inter-
preter.

Let us consider an example of a description in the
neural network method representation language in SCP,
that solves the problem, which is formulated as follows:
calculate the result of the “EXCLUSIVE OR” logical
operation for the values of two logical variables. In Figure
3, the solution to this problem using a signal function is
shown.

In the work [11], a single-layer perseptron that solves
the problem is described. The perseptron consists of
two input neurons and one output neuron, with a given
threshold of 0.5 and a signal activation function:

F (S) =

{
1, 0 < S < 0,

0, else

The weight coefficients of the input layer synapses are
equal to 1. In Figure 4, a scheme of the perseptron is
demonstrated.

This perseptron corresponds to the method represented
in the ostis-system knowledge base in the neural network

178

Figure 5. A method that solves the “EXCLUSIVE OR” problem
represented in the neural network method representation language in
SCP

method representation language in SCP. This method is
represented in Figure 5.

The description of the method consists of a sequence
of two generalized action specifications – action for
calculating the weighted sum of all neurons of the layer
and action for calculating the activation function of all
neurons of the layer.

The signal activation function used in the perseptron is
defined in the ostis-system memory by the logic formula
shown in Figure 6.

Any agent interpreting actions with arguments given
with the activation function’ relation must use an in-
terpreter of mathematical functions that can be used as
activation functions. A classification of such functions is
shown in [10].

V. INTELLIGENT FRAMEWORK FOR BUILDING NEURAL
NETWORK METHODS

The presence of a language for representing neural
network methods and its interpreter in SCP allows for
the interpretation of the neural network method in the
ostis-system memory. The presence in a common memory
of not only instances of methods but also concepts that
describe them, creates the basis for automating the process
of building (designing and training) neural network
methods. The ostis-system memory stores knowledge
about the methods of which class can solve the problem
of a given class, but instances of this method class may
not be represented in the system. In this case, the system

Figure 6. Representation of the activation signal function in the ostis-
system memory

should be able to inform the user about the possibility of
a solution, for which, however, it is necessary to load a
certain method into the system. Since the system stores the
problem and the requirements for the method of solving
it in a common memory, it becomes possible to design
the necessary method. This requires the presence of a
design framework for the methods of the corresponding
classes. In the case of the neural network method, we
are talking about an intelligent framework for building
neural network methods.

The intelligent framework for creating neural network
methods is based on corresponding hierarchies of actions,
problems, and methods for building ANN. The presence
of such a hierarchy will make it possible to describe the
method representation language for building ANN and
develop an interpreter for that language.

Creation of the hierarchy of the corresponding actions
of building ANN should be studied by the stages of
design and training of ANN, which, in the general case,
are performed by all the developers of ANN:

1. Problem definition.
The problem definition includes a description of the

input data (images / video, time series, text), output data,
and requirements for the solution method (speed, memory
costs, etc.). It also describes additional information that
can help in constructing a problem-solving method (for

179

example, the specification of the training dataset, if it
exist). Usually, at this stage, the developer determines
the class of the problem, forms the requirements for the
training dataset, if it is not provided.

The execution of this stage by the ANN design
framework involves performing the following actions:

• Action of problem condition translation. The action
translates the description of the problem specified
using the ostis-system interface (for example, natural
language interface) into the ostis-system memory.
The action is required when the problem condition
is specified by the user. It is necessary to understand
that the problem description goes into the knowledge
base not only from the user interface. For example,
a problem can be formulated by the system itself in
the duration of its life. This action is common to
all ostis-systems, so its consideration goes beyond
the consideration of the process of building an ANN
intelligent design framework.

• Action of problem classification. The action de-
termines the class of the problem (problem of
regression, detection, clustering, etc.) based on the
description of the problem in the knowledge base.

• Action of finding a suitable training dataset. The
knowledge base can store a set of dataset specifi-
cations to which the ostis-system has access. The
action searches for datasets that can be used as a
training dataset.

• Action of generating requirements for the training
dataset. If the training dataset was not provided
and was not found, then it is necessary to form
a description of the requirements for the training
dataset, which can be translated into the user inter-
face language and request the necessary dataset from
the user.

2. Dataset preprocessing: cleanup
At this stage, features that have incorrect values are

detected (for instance, for some examples, the value of the
feature may have an undefined value, or a value that does
not match in type, or an abnormally large, or very small
value). For features that have an undefined value, various
elimination methods can be applied, for example, such
values can be replaced by the average value of this feature
calculated over all examples (for unsequential data), or
they can be replaced by average values from adjacent
examples (in the case of sequential data), or some fixed
value. A radical method for solving the problem is the
removal of examples that have undefined feature values
from the dataset. However, it is better to use it if there
are few examples with missing feature values. Similar
strategies are used for outliers and anomalies (but only
if the goal is not to predict these anomalies).

In an intelligent design framework, this stage corre-
sponds to the execution of the action of dataset cleanup,
which is performed in the case of processing a dataset that

was not previously represented in the system memory (for
example, was received from the user). The implementation
of the interpreter (agent) of this action requires the
description in memory of the classification of data
cleaning strategies and the implementation of methods
for applying these strategies.

3. Dataset preprocessing: identifying meaningful
features

Engineering of features is implemented, consisting in
the selection of features that affect the output of the
model; non-meaningful features that do not correlate with
the model output are removed. The purpose of this stage
is to reduce the dimensionality of the feature space in
order to reduce the influence of the overfitting effect on
the model.

To reduce the dimensionality of the feature space, the
methods of feature selection and feature extraction can
be used.

When selecting features, a subset from the original fea-
tures is formed (backward selection algorithm, recursive
feature elimination algorithm, algorithms using random
forests).

When extracting features from a set of features, in-
formation is extracted to build a new feature subspace
(algorithms using an autoencoder).

In an intelligent design framework, this stage cor-
responds to the execution of the action of identifying
meaningful features. The implementation of the interpreter
(agent) of this action requires the description in memory
of the classification of strategies for reducing the dimen-
sionality of the feature space and the implementation of
methods for applying these strategies.

4. Dataset preprocessing: transformation
At this stage, the data is prepared for training. Here,

special attention should be paid to the presence of
categorical features, most often specified by strings. These
features can be nominal and ordinal. To encode ordinal
features, a sequential numerical code (1, 2, 3, ...) is
most often used. For nominal coding, such a solution
is incorrect, since these features are fullright and cannot
be compared by a numerical code (for example, gender
is 0/1). For nominal features, a direct coding method
is used, which consists in creating and using fictitious
features according to the number of values of the original
one. For example, an attribute of a gender (male, female)
is converted into two new features – male and female –
with the corresponding values for the existing examples.

Feature scaling involves bringing the feature values
to one common interval – this is especially relevant
for features that have disproportionate means across
all dataset – for example, one feature has an average
value of 10.000 and another – 12. This can result in
minimizing only by feature with the highest values and
poor convergence of the training method. Most often,
scaling corresponds to performing normalization on an

180

interval (min-max normalization):

xi
norm =

xi − xmin

xmax − xmin

where xi is the value of the feature for a single example
i, xmin is the smallest value for the feature, xmax is the
largest value for the feature.

Another scaling technique is to apply feature standard-
ization:

xi
std =

xi − µ(x)

σ(x)
,

µ(x) is a sample mean of a single feature, σ(x) is the
standard deviation.

Standardization preserves useful information about
outliers in the original data and makes the learning
algorithm less sensitive to them.

Discretization is used to move from an objective feature
to an ordinal one by encoding intervals with a single value
(for example, if a feature reflects a person’s age, then
values can be discretized with the selection of certain
age groups, where each group will be encoded by one
integer).

In the intelligent design framework, this stage cor-
responds to the execution of the action of dataset
transformation. The implementation of the interpreter
(agent) of this action requires the description in memory
of the classification of methods for scaling features and the
implementation of methods for applying these strategies.

5. Dividing the common dataset into training,
validation, and test (control) datasets

The entire dataset is divided into training, test, and, in
some cases, validation datasets.

The validation set is used to evaluate the impact of
changing hyperparameters on the learning outcome and
can be used as an additional tool for this along with grid
search.

The split is carried out in a ratio of 3:1:1, in percent
(60/20/20), if the validation dataset is not used, then
80/20.

In an intelligent design framework, this stage corre-
sponds to the execution of the action of dataset splitting.

All previous steps were applied to the dataset; the
subsequent steps refer to the used ANN models.

6. Choosing a class of neural network methods in
accordance with the formulated problem

At this stage, the selection of the main ANN archi-
tecture, which will be used in training, is carried out.
However, it should be noted that this selection is relatively
conditional; the researcher is not limited to using only
one type of ANN to solve a problem (like, for example, a
convolutional network for images, since images can also
be processed with a conventional multilayer perceptron).
Rather, it is about the recommended architecture, but
this does not exclude the usage of any other variants

of architectures and their combinations within the same
model).

Examples of such recommendations are:
• images/video – convolutional neural networks;
• time series – multilayer perceptrons or recurrent

networks;
• text information – multilayer perceptrons or recurrent

networks;
• sets of characteristics of some objects (for example,

car specifications) – multilayer perceptron.
In an intelligent design framework, this stage corre-

sponds to the execution of the action of selecting a class
of neural network methods.

7. Formation of specifications for input and output
data

Additional data transformations are performed related
to changing storage structures (for example, converting
a multidimensional array to the one-dimensional array,
converting types).

In the intelligent design framework, this stage corre-
sponds to the execution of the action of forming the
specification for ANN inputs and outputs.

8. Selection of optimization method
As part of the work [10], following optimization

methods are described:
• stochastic gradient descent (SGD);
• Nesterov method;
• adaptive gradient (AdaGrad);
• adaptive moment estimation (Adam);
• root mean square spread (RMSProp).
In the intelligent design framework, this stage corre-

sponds to the execution of the action of optimizing method
selection.

9. Selection of an error function to be minimized
At this stage, the error function is set, which will

be minimized. For example, MSE is better suited for
regression and clustering problems, CE – for classification
problems. In the article [10], the classification of such
functions within the SD of ANN if described.

These functions are defined as follows:

MSE =
1

n

n∑
i=1

(Yi − Ỹi)
2

where n is the size of the dataset, Yi is the reference
value of the function, Ỹi is the output obtained by the
NN.

CE = − 1

n

n∑
i=1

(Yi log(Ỹi) + (1− Yi) log(1− Ỹi))

(case of 2-class classification)

CE = − 1

n

n∑
i=1

M∑
c=1

Y c
i log Ỹ c

i

181

(case of multi-class classification)
In the intelligent design framework, this stage corre-

sponds to the execution of the action of selecting the
error function to be minimized.

10. Initialization of neural network parameters
In the work [10], within the SD of ANN, methods of

primary initialization of ANN have already been described.
The most commonly used options for initializing neural
network weights and thresholds include:

• initialization with values from a uniform distribution
over some small interval, for example, [-0.1, 0.1];

• initialization with values from the standard normal
distribution;

• Xavier initialization [12].
It is used to prevent a sharp decrease or increase
in the output values of neurons after applying the
activation function during the direct passage of the
image through a deep neural network. In fact, ini-
tialization by this method is carried out by choosing
values from a uniform distribution on the interval
[−

√
6/

√
ni + ni+1,

√
6/

√
ni + ni+1], where ni is

the number of incoming connections to this layer and
ni is the number of outgoing connections from this
layer. Thus, initialization by this method is carried
out for different layers of the neural network from
different intervals.

• Initialization obtained from the pre-trained model.
An initialization option that involves using a pre-
trained model as a “starting” model, taken from
some repository of pre-trained models, trained by
the researcher or during the work of an intelligent
system.

• Kaiming initialization [13].
This initialization method is used to solve the
problem of “vanishing” gradient and “explod-
ing” gradient. It is performed by selecting val-
ues from a uniform distribution on the interval
[−

√
2/
√
(1 + a2)fan,

√
2/
√
(1 + a2)fan], where

a is the angle of inclination to the abscissa for the
negative part of the ReLU-type activation function
(for a common ReLU function, this parameter is 0),
fan is the operating mode parameter, which for the
forward propagation phase is equal to the number
of incoming connections (to eliminate the effect
of the “exploding” gradient), and for the backward
propagation phase, to the number of outgoing ones
(to eliminate the effect of the “vanishing” gradient).

In an intelligent design framework, this stage corre-
sponds to the execution of the action of initializing ANN.

11. Selection of ANN hyperparameters
In practice, some hyperparameters (such as the number

of layers, their types, the number of neurons in a layer) are
often determined experimentally in the process of iterative
search for the best solution to the problem. Although
there are ways to partially automate this process, they

are still designed for the presence of some preconditions
for conducting an experiment, in particular, intervals for
changing a parameter (for example, learning rate).

Hyperparameters selected at this stage include:
• ANN training parameters (learning rate, momentum

parameter, mini-batch size);
• ANN model architecture that is based on previously

formulated specifications of input and output data
(for example, the number of neurons in a particular
layer(-s) or configurations of entire layers).

Finding the optimal hyperparameters can be obtained,
for example, using the grid search method, which allows
checking the hyperparameter values taken with a certain
step or from a certain interval (tuple). Using this method,
the optimal set of hyperparameters is selected, which
gives the best results; it is used for subsequent additional
training. Otherwise, if the results obtained are acceptable,
the further learning process is not carried out at all. The
cost of this method should be noted, since, in fact, the
searching for different values of training parameters is
carried out. To reduce the amount of work, a random
search method is used.

To optimize the architecture, the types of layers of the
neural network, the number of neurons in each layer, their
characteristics are determined – the activation function,
for convolutional elements – the size of the kernel, as
well as the padding parameter and the convolution step
(stride). Here, not only the user version of the network
can be evaluated but also the pre-trained architecture. The
main rule when selecting is that the number of model
parameters should not exceed the size of the training
dataset. For pre-trained architectures, this restriction is
removed.

In an intelligent design framework, this stage corre-
sponds to the execution of the action of ANN hyperpa-
rameter selection. The action uses the classification and
specification of ANN hyperparameters (described within
the SD of ANN [10]).

12. Training the model on the dataset
The model is trained until the selected accuracy is

achieved (evaluated on the test dataset) or according
to other specified criteria (achievement of the specified
number of training epochs, invariability of accuracy over
the specified number of epochs, drop in accuracy on the
validation dataset, etc.).

Training algorithms have already been described in the
SD of ANN [10]. Let us demonstrate their classification:

method of training ANN
⊂ method
⊃ method of training with a teacher

⇒ explanation*:
[method of training with a teacher is
a method of training using the set target
variables]

182

⊃ method of backward propagation of errors
:= [MBPE]
⇒ explanation*:

[MBPE uses a certain optimiza-
tion method and a certain loss
function to implement the phase
of backward propagation of the
error and change the configurable
ANN parameters. One of the most
common optimization methods is
the method of stochastic gradient
descent.]

⇒ explanation*:
[It should also be noted that de-
spite the fact that the method is
classified as one of the methods
of training with a teacher, in the
case of using MBPE for training
autoencoders, in classical publica-
tions, it is considered as a method
of training without a teacher, since
in this case there is no marked
data.]

⊃ method of training without a teacher
⇒ explanation*:

[method of training without a teacher
is the method of training without us-
ing the set target variables (in the self-
organization mode)]

⇒ explanation*:
[When performing the algorithm of the
method of training without a teacher,
useful structural properties of the set are
revealed. Informally, it is understood as
a method for extracting information from
a distribution, the dataset for which was
not manually annotated by a human [14].
]

In the intelligent design framework, this stage corre-
sponds to the execution of the action of training ANN.
An example of formalization of this action is shown in
Figure 7

13. Evaluating the ANN effectiveness
After training, the resulting model is evaluated using

quality assessment metrics.
Further, the result of the evaluation can be visualized

with the confusion matrix and the ROC-curve.
The confusion matrix is a matrix (Fig. 8) that contains

information about the number of true positive, true
negative, false positive, and false negative classifier
predictions.

The ROC-curve is a graph in which, based on the given
threshold of the classifier solution, the shares of false
positives and true positives are calculated. Based on the
ROC-curve, the AUC-indicator (area under the curve) is

Figure 7. An example of the formalization of the action for training
the artificial neural network in the knowledge base [10]

Figure 8. A confusion matrix

calculated, which is used as a characteristic of model
quality.

In the intelligent design framework, this stage corre-
sponds to the execution of the action of ANN performance
evaluation.

Let us consider an example of performance of the
described stages by a developer for a specific problem
– classification of digits from the MNIST dataset of
handwritten digits:

1. The initial data of the problem is: a dataset of 70.000
images, pre-divided into a training (60.000 images) and
test (10.000 images) datasets. Each image is represented
by a two-dimensional array of 28X28 items from the
range [0, 255], the numbers represent a shade of gray. In
addition, each image has a class label corresponding to a
specific digit from 0 to 9.

The problem is: train a model that will take a two-
dimensional array of data as input and return a class

183

label corresponding to the recognized digit.
Thus, the type of problem to be solved is classification,

the nature of the problem data is images.
2. There are no anomalies, erroneous data, or features

with missing values in this dataset.
3. In the dataset, there are no non-content features.
4. As a method of data preprocessing we use features

scaling, min-max normalization on the interval [0, 1].
5. Let us perform the partition of the train dataset into

train and validation datasets at a ratio of 4:1 (48.000
examples in the train dataset and 12.000 examples in the
validation dataset).

6. Since the dataset includes images, we will use a
convolutional neural network.

7. Formation of specifications for input and output data
is not required.

8. We will use the stochastic gradient descent (SGD)
method as the optimization algorithm.

9. Since the classification problem is being solved, let
us select the cross-entropy loss function as the minimizing
function.

10. We will use the Kaiming initialization for the
network parameters initialization.

11. In stage 6, it was determined that a convolutional
neural network would be used to solve the problem. When
using one-hot coding, the last full-connected layer will
have 10 neurons according to the number of classes in
the problem.

For simplicity, we will use the architecture shown in
Fig. 9, which does not contain intermediate layers.

Figure 9. ANN architecture for solving the problem of digit classifica-
tion

To find the optimal set of hyperparameters, we will
apply a random search method.

Let us list the tuples from which hyperparameters will
be sampled:

• learning rate – (0.9, 0.1, 0.01, 0.001);
• number of neurons in the convolutional layer – (5,

10, 15, 20);
• size of the convolutional kernel – (3, 5, 7, 9);
• momentum parameter – (0, 0.5, 0.9);
• mini-batch size – (16, 32, 64, 128).

After determining these parameters and evaluating the
effectiveness of the algorithm, we obtain the following
table:

Table I
PROBLEM RESULTS

(ABBREVIATIONS USED: MBS – MINI-BATCH SIZE, KS – KERNEL SIZE,
LR – LEARNING RATE, CNC – CONVOLUTIONAL NEURONS COUNT,

ACC – ACCURACY, IT – ITERATIONS COUNT)

mbs ks lr momentum cnc acc it
1 128 3 0.001 0.5 10 0.9033 10
2 64 9 0.9 0 15 0.1039 1
3 32 3 0.01 0.5 20 0.9741 10
4 32 7 0.01 0.5 15 0.9794 10
5 16 9 0.001 0.5 20 0.9189 2
6 64 3 0.1 0.5 10 0.9736 10
7 64 7 0.001 0.9 15 0.9007 1
8 32 9 0.1 0.5 5 0.9806 10
9 128 5 0.1 0.5 20 0.98 10
10 32 9 0.01 0.9 5 0.9806 10
11 128 3 0.001 0.9 10 0.893 1
12 32 5 0.9 0.9 20 0.1008 1
13 16 9 0.9 0.5 20 0.0976 1
14 32 7 0.9 0.9 15 0.0932 1
15 128 5 0.01 0.5 20 0.9197 2
16 16 3 0.001 0.5 10 0.904 1
17 16 9 0.001 0 20 0.8866 1
18 128 9 0.1 0.5 5 0.9793 10
19 128 3 0.001 0 10 0.6697 1
20 16 3 0.1 0 15 0.9729 4
21 32 7 0.9 0.5 15 0.1048 1
22 128 7 0.9 0 15 0.1113 1
23 64 9 0.01 0.5 10 0.9482 2
24 16 7 0.9 0 20 0.0985 1
25 16 3 0.1 0.5 5 0.9558 2
26 64 7 0.01 0.9 15 0.9839 10
27 16 7 0.1 0 10 0.9836 10
28 16 5 0.01 0 20 0.9608 2
29 16 5 0.01 0.9 20 0.9847 10
30 32 5 0.01 0.5 15 0.9532 2

It can be noted that the best result (acc = 0.9839)
for generalization ability in the validation dataset was
obtained with the following parameters: mbs = 64, ks =
7, lr = 0.01, momentum = 0.9, cnc = 15.

12. As a stopping criterion, we selected the simplest
one on reaching a given number of epochs of training. No
pre-training was performed, and the model obtained after
the hyperparameter fitting procedure was used to estimate
the generalization ability. The generalization ability on
the test dataset was 0.9853, i.e. 98.53%.

13. By constructing a confusion matrix based on the
trained model and the test dataset, we obtain the result
illustrated in Fig. 10

The obtained matrix is diagonally dominant, so the
resulting model does relatively few errors.

Based on the analysis of the stages of constructing the
ANN that developers perform, the following classification
of actions for the construction of ANN can be derived:

184

Figure 10. A confusion matrix for the MNIST problem

action of building ANN
⇒ decomposition*:

{{{• action of dataset processing
⇒ decomposition*:

{{{• action of finding a suitable
training dataset

• action of generating requirements
for the training dataset

• action of dataset cleanup
• action of identifying meaningful

features
• action of dataset transformation
• action of dataset splitting

}}}
• action of designing ANN
⇒ decomposition*:

{{{• action of selecting a class of
neural network methods

• action of forming the specification
for ANN inputs and outputs

}}}
• action of training ANN
⇒ decomposition*:

{{{• action of optimizing method
selection

• action of selecting the error
function to be minimized

• action of initializing ANN
• action of ANN hyperparameter

selection
• action of ANN performance

evaluation
}}}

}}}

The implementation of the interpreter of actions for

building ANN considered in this section and the descrip-
tion in the knowledge base of the expert knowledge of
the ANN developers (and thus the implementation of the
intelligent ANN design framework) will automatically,
based on the problem description, generate neural network
methods in the ostis-system memory, which is one of the
key directions for development of this work.

VI. CONCLUSION

In this article, an approach to the integration and conver-
gence of artificial neural networks with knowledge bases
in next-generation intelligent computer systems through
the representation and interpretation of the artificial neural
network in the knowledge base is described.

The syntax, denotational, and operational semantics of
the neural network methods representation language are
described, which allows representing and interpreting any
ANN in the memory of the intelligent system. The exis-
tence of such language generates semantic compatibility
of neural network method with other methods represented
in the system memory, which allows analyzing the ANN
itself and its performance stages by any other methods
of the system.

The availability of neural network representation lan-
guage allows describing the expert knowledge of the
developers of the information network in the system
memory. In this article, the stages of building ANN, which
are carried out by the developers of ANN, are represented.
Based on these stages, in order to design an intelligent
framework for building neural network methods, the
actions of building the neural network methods has been
classified and described in the knowledge base.

The design and implementation of the intelligent
framework for building ANN in the knowledge base
of the system is one of two main directions for further
development of this work.

The second main direction is to develop an approach
to the processing of fragments of the knowledge base
by ANN. For this direction, it is necessary to develop
a universal algorithm of mutual-ambiguous matching of
knowledge base fragments and input vectors of ANN. A
knowledge representation language is able to represent
any knowledge. The presence of a neural network method
in the system, which is able to take knowledge fragments
on the input, will allow solving new, poorly studied classes
of problems.

ACKNOWLEDGMENT

The authors would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments, in
particular, Vladimir Golenkov and Daniil Shunkevich.

185

REFERENCES

[1] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

[2] D. Castelvecchi, “Can we open the black box of AI?” Nature
News, vol. 538, no. 7623, Oct 2016.

[3] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I
Trust You?: Explaining the Predictions of Any Classifier,” 2016.
[Online]. Available: https://arxiv.org/abs/1602.04938

[4] S. M. Lundberg and S.-I. Lee, “A Unified Approach
to Interpreting Model Predictions,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
8a20a8621978632d76c43dfd28b67767-Paper.pdf

[5] T. R. Besold, A. d’Avila Garcez, S. Bader, H. Bowman,
P. Domingos, P. Hitzler, K.-U. Kuehnberger, L. C. Lamb,
D. Lowd, P. M. V. Lima, L. de Penning, G. Pinkas, H. Poon, and
G. Zaverucha, “Neural-symbolic learning and reasoning: A survey
and interpretation,” Nov. 2017, (accessed 2020, Jun). [Online].
Available: https://arxiv.org/pdf/1711.03902.pdf

[6] A. d’Avila Garcez, T. R. Besold, L. de Raedt, P. Földiak, P. Hitzler,
T. Icard, K.-U. Kühnberger, L. C. Lamb, R. Miikkulainen, and D. L.
Silver, “Neuralsymbolic learning and reasoning: Contributions and
challenges,” In: McCallum, A., Gabrilovich, E., Guha, R., Murphy,
K. (eds.) Proceedings of the AAAI 2015 Propositional Rule
Extraction under Background Knowledge 11 Spring Symposium on
Knowledge Representation and Reasoning: Integrating Symbolic
and Neural Approaches. AAAI Press Technical Report, vol. SS-
15-03, 2015.

[7] A. Kroshchanka, V. Golovko, E. Mikhno, M. Kovalev, V. Zahariev,
and A. Zagorskij, “A Neural-Symbolic Approach to Computer
Vision,” in Open Semantic Technologies for Intelligent Systems,
V. Golenkov, V. Krasnoproshin, V. Golovko, and D. Shunkevich,
Eds. Cham: Springer International Publishing, 2022, pp. 282–309.

[8] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [semantic
technologies of intelligent systems design and semantic associative
computers],” Open semantic technologies for intelligent systems,
pp. 42–50, 2019.

[9] D. Shunkevich, “Ontology-based design of hybrid problem
solvers,” in Open Semantic Technologies for Intelligent Systems,
V. Golenkov, V. Krasnoproshin, V. Golovko, and D. Shunkevich,
Eds. Cham: Springer International Publishing, 2022, pp. 101–131.

[10] M. Kovalev, “Ontology-Based Representation of an Artificial
Neural Networks,” in Open Semantic Technologies for Intelli-
gent Systems, V. Golenkov, V. Krasnoproshin, V. Golovko, and
D. Shunkevich, Eds. Cham: Springer International Publishing,
2022, pp. 132–151.

[11] V. A. Golovko and V. V. Krasnoproshin, Nejrosetevye tekhnologii
obrabotki dannyh. Minsk : Publishing House of the BSU, 2017.

[12] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research,
Y. W. Teh and M. Titterington, Eds., vol. 9. Chia Laguna Resort,
Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online].
Available: https://proceedings.mlr.press/v9/glorot10a.html

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
2015. [Online]. Available: https://arxiv.org/abs/1502.01852

[14] J. Goodfellow, I. Benjio, and A. Courville, Deep learning.
Moscow : DMK Press, 2017.

Конвергенция и интеграция
искусственных нейронных сетей с базами

знаний в интеллектуальных
компьютерных системах нового

поколения
Ковалёв М.В., Крощенко А.А., Головко В.А.

В статье рассмотрен подход к интеграции и конвер-
генцииискусственныхнейронных сетей с базами знаний
в интеллектуальных компьютерных системах нового
поколения с помощью представления и интерпретации
искусственных нейронных сетей в базе знаний.Описаны
синтаксис, денотационная и операционная семантика
языка представления нейросетевых методов в базах
знаний. Описаны этапы построения нейросетевых мето-
дов решения задач с помощью интеллектуальной среды
проектирования искусственных нейронных сетей.

Received 14.11.2022

186

	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\12_OSTIS22_ID27_Kovalev_ConveaIoANNwKBiN_GICS.pdf

