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Abstract—In the article, an approach to building hybrid
next-generation intelligent computer systems (NGICS) based
on the integration of pre-trained models of deep neural
networks and logical models developed using the OSTIS
technology is proposed. To reduce the requirements for
the size of the training dataset, the authors propose an
alternative method for pre-training deep models. To achieve
the interpretability of neural network models, the authors
used methods from the Explainable AI (XAI) field.
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I. INTRODUCTION

The implementation of next-generation intelligent com-
puter systems is one of the most promising objectives of
the present and near future of Al science. New approaches
built at the intersection of various directions of artificial
intelligence allow eliminating or minimizing the impact of
the shortcomings of individual methods, while enhancing
the overall efficiency of intelligent systems. For example,
when combining the capabilities of logical and neural
network models in the context of implementing a neuro-
symbolic approach in Al, we benefit from each model
used. From logical models — the possibility of explaining
the results for a user of the system who is not expert in
the subject domain of the problem, from neural networks
— the possibility of solving problems that are difficult
to formalize (for example, data analysis and computer
vision) [1]. Well-known scientists and researchers in
certain fields of Al are increasingly declaring the need
for compatibility between logical and neural network
approaches (for example, [2]).

It should be noted that progress has already been made
in these separate fields of research. For example, thanks to
logical approaches in artificial intelligence (for example,
an OSTIS technology [3]), systems for automating the
work of manufacturing enterprises [4] are being developed.
On the other hand, in the last decade, there has been a
tendency towards the active usage of machine learning
methods (and neural networks) to solve various problems.
Thanks to the development of deep learning theory, new
approaches and models have solved problems, that earlier
have been solved successfully only by humans, and in
some cases even outperform them (for example, [5]).

Such tendencies definitely give grounds to further actively
explore neural network models, applying these approaches
in new, still poorly explored or high-cost fields.

The organization of the neural network training process
is the cornerstone of the achievements obtained using
these models. It should be noted that most of the research
work currently is based on the usage of so-called pre-
trained neural networks. These are networks that have
already been trained, and they have been retrained for a
new problem being solved (transfer learning [6]). Thus,
model training is put on stream, making the threshold for
entering the field lower than ever before. However, this
potentially leads to a serious commercialization of the
field of neural networks with the impossibility (primarily
via the hardware lack) for ordinary researchers to train
neural networks from the scratch. In addition, not in
all cases, the usage of pre-trained models and transfer
learning can help in solving new problems [7].

These circumstances form the need to develop new
methods for training deep neural networks that reduce the
requirements for hardware and the size of used dataset.

Despite the success of neural network models, there
remains a certain caution in their usage, mainly due to
the closed nature and non-interpretability of these models.
We see a solution to this problem in the development of
hybrid approaches.

In hybridization, a collision with the problem of
integrating different models is inevitable. In the analysis
of neural network models it is necessary to proceed from
the output data generated by the model. The direct usage
of the output data in the development of hybrid intelligent
systems is possible and gives results that allow talking
about their effectiveness [8]. However, in this case, the
neural network model is used in the “black box” mode,
without the possibility of interpreting the impact that
the input data has on the final result. A successfully
implemented interpretation would allow the integration
of models at a qualitatively new level, supplementing the
logical subsystem with new rules based on the identified
patterns. In this case, the neural network part could be
used in the process of training an intelligent system to
form rules, and then, if necessary, “disable” and generate
predictions only based on logical rules. On the other hand,
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it is possible to use models in combination, getting the
primary result from the neural network subsystem, and
then form an interpretation for the user, which would
allow leveling the wariness in using neural networks. In
addition, it becomes possible to obtain information that
allows more accurately assessing the quality of the model
in the face of possible leaks and shifts in the data.

The authors of this article propose to implement such
integration using the results of research obtained in the
field of Explainable AI (XAI), which make it possible
to assess the influence of the values of the features on
outputs of the neural network. Such an evaluation can be
represented as a sorted list of features that most strongly
influence the result, as well as the formation of feature
change intervals, within which the features make the
greatest contribution to the results obtained at the output
of the neural network.

Within this article, a solution to the problem of
integrating neural networks and the OSTIS technology
based on Explainable Al and deep learning methods is
proposed.

The next sections are organized as follows: Section Il
describes the problem definition for the development of a
next-generation intelligent computer system; Section III
provides an overview of existing and proposed approaches
in the field of training deep neural networks; Section IV
gives a brief description of the SHAP method; the main
practical results obtained by the authors are represented in
Section V; Section VI summarizes the main conclusions
of the proposed approach and describes the possibilities
for its evolution.

II. PROBLEM DEFINITION

Based on the abilities of next-generation intelligent
systems, which are given in [3], we formulated a set of
basic requirements for such systems:

o semantic compatibility with existing approaches in
the field of artificial intelligence;

« evolution of the system;

« replaceability of system components — the ability to
replace the active components of the system directly
in the process of system work, for example, in the
process of selecting a solution to a given problem;

o (self-)extensibility, simplicity in making changes to
the existing set of components with the complication
of their functionality;

« no side effects when using the system;

« ability to explain decisions;

« adaptive interface.

Semantic compatibility primarily refers to the possibil-
ity of using various Al technologies as system components
without the need for constant redesign of the system in
the face of changing theories and requirements.

The core of the next-generation system is the con-
cept of compatibility of approaches in the field of Al

Fundamentally, this means the possibility of coexistence
of approaches developed in different fields of science
within the same system. For example, logical and fuzzy
models or logical and neural network models, etc. At
the same time, a fundamental boundary should be drawn
between systems (or approaches on the basis of which
intelligent systems were implemented) of the previous
generation, where developers used hybrid methods — for
example, neural networks, which can act as separate
individuals of a population and thus participate in the
implementation of a certain genetic algorithm. In such
cases, it was about hybrid methods, but such methods did
not include components that provide the necessary level
of reflection of the intelligent system. Next-generation
intelligent systems are able to explain the decisions they
make. For such systems, one of the main requirements
is their evolution, i.e. the ability to change not only
their state but their qualities, which is the most valuable
property. Given the presence of semantic compatibility,
such a system is able to do this in the most natural
way, and replacement of components, even if they have
different nature but solving the same problem, is not
difficult.

Extensibility in the presence of these properties is only
a matter of developer competence. The self-extensibility
of the system becomes the development of extensibility,
which is represented in the possibility of generating its
own components by the system based on the available
knowledge. This part is the most valuable and even
revolutionary, since the components offered by the system
itself are unique ways to solve problems, as well as ones
that may not have been known until now.

In addition to the listed properties, the system must be
free of side effects, that is, it must not do anything for
which it was not designed and intended. This functionality
can be considered in the context of some “stop tap”, a
set of directives of direct and unconditional action that
determine the purpose setting of the system and its internal
value system.

A property directly related to the previous one is the
ability to explain decisions. Since the NGICS evolves
and acquires the ability to create its own components,
the correct interpretation of the obtained decisions is
very important. Based on the purposes and directives
available in the system, the system should describe the
procedure for making decisions with the explaining for
each step. Thus, the components created by the system
will be documented by the system itself.

Finally, an adaptive interface forms a convenient user
access to the NGICS. Such interface is not limited to
adaptation to the user device through which the system is
accessed but also to adaptation to the users themselves, to
their physical abilities and limitations, habits and interests.
Only such an interface can be called fully adaptive.

All these requirements must be taken into account when
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creating a model of NGICS.
The general view of the proposed model is shown in
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Figure 1. A model of a hybrid system (dashed lines indicate control
actions)

Here, it is necessary to emphasize the fact that neu-
ral networks are ideally suited as component of next-
generation intelligent computer systems. This is achieved
mainly by the fact that these models are adaptive and
can be used to solve various problems. In addition, such
models support additional training during work. As the
initial version of the neural network model, a model
pre-trained on a small dataset can be used.

It should be noted that the neural network subsystem
can also be placed in the OSTIS system and interact
with the knowledge base as an agent. In this article, we
propose a simplified architecture, focusing on the idea of
interpretability of the neural network subsystem.

III. DEEP NEURAL NETWORKS TRAINING

Today, there are two main approaches to train deep
neural networks: the first involves pre-training according
to Hinton, the second involves special types of activation
functions (ReLU), a large available training dataset, and
some special regularization techniques (for example,
dropout).

At the same time, it is necessary to distinguish between
pre-training as a pre-executed procedure in accordance
with the Hinton approach based on greedy layer-wise
unsupervised learning with Restricted Boltzmann Machine
as base trained network (let us call it pre-training of type I

— Fig. 2) and pre-training as the process of preparing a pre-
trained neural network that can be retrained on a different
dataset to solve other problems using transfer learning
(pre-training of type II). In the second case, traditional
learning techniques can be used (for example, stochastic
gradient descent with ReLLU activation functions).

Data flow

i

Data flow

|

[eYeYeXeXe)

[eYele)eYe]

[eYeYeYeXe)]

[eYeYe)eYe]

OO0 00|

[eYeYe)eYe]

OO0 00|

Data flow

i

Data flow

M.L..I

woioo\

00000

[eYeYeleXe]

[eYeYe)e)e)

[e]e]e)e)e]

l

l

Figure 2. Greedy layer-wise pre-training

The choice of one or another approach to training
deep neural networks depends on the size of the training
dataset. So, if the dataset is large, pre-training of type II
is applied. Otherwise, pre-training of type I is used. For
small training datasets, this method overcomes overfitting
[9].

The purpose of applying pre-training (both the first
and second types) is to achieve some “good” initial
initialization of the parameters of the neural network
model. This allows starting the retraining process with a
lower generalization error and speed it up.

In this article, a variant of the pre-training method
based on the Hinton type is used. Further, the pre-training
method proposed by Hinton will be called the classical
method.

Let us consider a model of a restricted Boltzmann
machine.

This model consists of two layers of stochastic binary
neurons, which are interconnected by bidirectional sym-
metrical connections (Fig. 3). The input layer of neurons
is called visible layer (X)), and the output layer is called
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hidden layer (Y'). The restricted Boltzmann machine can
generate any discrete distribution if enough hidden layer
neurons are used [10].

Y, Y, Y.,

X X;

Figure 3. A Restricted Boltzmann Machine

X,

This network is a stochastic neural network in which the
states of visible and hidden neurons change in accordance
with the probabilistic version of the sigmoid activation
function:

1 n

p(y;lz) = TS S = zi:wijmi +T;
1 m

p(zily) = T o5 S; = sz‘jyj +T;

J

where w;; are the weight coefficients of the neural
network, S;,S; are the weighted sums calculated for
the neurons of the visible and hidden layers, respectively,
T;, T} are the thresholds of the visible and hidden layers.

The rules for online learning of a restricted Boltzmann
machine proposed in the classical method are as follows

[11]:
wij(t +1) = wi;(t) + a(zi(0)y;(0) — 24(1)y;(1))
Ti(t+1) = Ti(t) + (@i (0) — x4(1))

Tj(t +1) = T5(t) + aly;(0) — y; (1))

where z;(0),z;(1) are the original data of the visible
layer and data, which been restored by the neural network,
¥i(0),y;(1) are the original data of the hidden layer and
data, which been restored by the neural network.

The last equations are obtained using the Contrastive
Divergence algorithm with the parameter k£ = 1.

Rules for an arbitrary natural k& can be obtained
similarly:

wij(t + 1) = wij (t) + o(2s(0)y; (0) — i (k)y; (k)
Ti(t +1) = Ti(t) + a(zi(0) — z(k))
Tj(t+1) = Tj(t) + a(y; (0) — y;(k))

Rules for batch learning are as follows (case CD-1):

L
wij(t4+1) = wz‘j(t)+% <Z(zﬁ(o)yé(())—xi(l)yé(1))>

=1

L
T%(t + 1) = Ti(t) + % <Z($1(O) — xl(l))>

=1

L
«
Tt+1) =T+ 7 <Z<yj<o> - yj<1>>>
1=1
It should be noted that in order to obtain these rules,
Hinton was guided by the idea of maximizing the
likelihood function of the form:

P(a) = Y P(a,y)

where P(xz,y) is the probability for a case of a visible
and hidden neuron in the state (z,y), determined on the
basis of the Gibbs distribution P(z,y) =« Z =
Zw} y e~ F(@y) is the probability normalization parameter,
E is the energy of the system in the state (x,y).

Finally, the function will take the form:

—E(zx —E(x,
e—E( ,y)_ Zye (z,y)

P(x) = Z 7 - Zz y e—E(z,y)

Y

Previously, the authors proposed an approach that
generalizes the classical approach and demonstrated its
effectiveness for some problems (for example, [12]).

The rules for online learning in accordance with the
proposed approach for CD-1 are as follows:

wij (t+1) = wi; (1)
—a((y; (1) — y;(0))F'(S;(1))z(1)+
(@:(1) — 2:(0)) F'(S:(1))y;(0)),
Ti(t +1) = Ti(t) — alzi(1) — 24(0)) F'(Si(1)),
Tj(t+1) = T;(t) — aly; (1) — y;(0))F'(S;(1)).

The rules for batch learning in accordance with the
proposed approach for CD-1 are as follows:

~—

wij(t+1) = wi;(t)

L
_ % (Z Ayl (D)l (1)F'(SL(1))+
=1

Awi(l)yé(O)F’(Sf(l))> :
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Tt +1) =T;(t) -

Il e

(Z Ayé(l)F’(Sé(l))> ,

=1

T;(t+1)=T;(t) —

Il e

<Z Awﬁ(l)F’(Sﬁ(l))) ,

=1
where Ay!(1) = (1) — g} (0), Azd(1) = 2}(1) — 24(0)

K3
When obtaining these rules, the authors were guided
by the idea of minimizing the mean squared error of the

network (the case of using CD-1):

L m L n
(1) = o (Z S @2+ Z(Axémf)
1=1 j=1 1=1 i=1
where Ay’ (1) = yt(1) - }(0), Aal(1) = 2!(1) - 4(0).
L — size of the training dataset.

It is possible to prove the identity of these learning
rules to the classical ones by using neurons with a linear
activation function.

Thus, the following theorem can be proved:

Theorem. Maximizing the likelihood function of data
distribution P(z) in the space of synaptic connections of a
restricted Boltzmann machine is equivalent to minimizing
the mean squared error of the network E in the same
space using linear neurons.

IV. INTERPRETABILITY OF ANN

The problem of interpretability of machine learning
models is currently quite effectively solved by the
Explainable Al methods [13].

In XAI methods such as LIME [14] and SHAP [15],
only the data feeded to the model and the output returned
by the model are used in the analysis. This type of
methods belongs to the model-agnostic type, i.e. they
can be applied to any machine learning model.

Our hybrid intelligent system model uses the SHAP
(SHapley Additive exPlanations) approach to interpret the
results obtained by the neural network.

The SHAP method is based on an attempt to explain
changes in the predictions of the model caused by a
change in the input features or the appearance of some
information about the input feature. In this case, the
contribution of each feature to the prediction of the model
is calculated.

The SHAP method is based on the game theory. The
key quantities used in evaluating the contribution of each
feature to the overall output of the model are the Shapley
values.

In this case, the players are features (the presence of
the i-th player means the current value of the i-th feature
in the example x, the absence of the i-th player means the
undefined value of the i-th feature), and all the represented
features define a set of players, called coalition.

Denote by f : X — Y the model under study, x € X
is the selected test example for which the output value of
the model is interpreted, X € RY is the feature space, N

is the number of features (players), v is a characteristic
function that assigns a number to each coalition of players
— its efficiency.

Further, assuming that some of the features in the
example x are known and some are omitted (have
undefined values), we obtain the vector xg corresponding
to the known features.

The Shapley values for each player are calculated using
the following formula:

ISI(IN| =S| = 1)!
MV =181= D )

where S defines the coalition of players and A(z,5) is
the efficiency gained from adding player 7 to the coalition
of players S:

A(i, S) =v(SUi)—v(S)

In the SHAP method, the conditional expectation is
used as the characteristic function for the set of features
S of the example x:

v(S) = E[f(z)]s]

In practice, when calculating the characteristic function
given by the last formula, simplifications are used (for
example, Kernel SHAP modification).

V. EXPERIMENTAL RESULTS

For the experimental part of the research, we chose
the well-known Fisher Irises dataset.

The size of this dataset is 150 examples, which are
divided into train (120 examples) and test (30 examples)
datasets. The examples describe the geometric shape of
the iris flower. Each example contains 4 features (sepal
length, sepal width, petal length, petal width) and a
class label (0-2). It is required to classify the example
according to the type of flower (Iris setosa, Iris virginica,
Iris versicolor).

The usage of such simple dataset made it possible, on
the one hand, to demonstrate the effect of pre-training
on a dataset of a limited size and, on the other hand,
to show the process of interpreting the model with the
construction of simple rules, for which checking their
corectness is not difficult.

For this problem, a series of experiments was carried
out with the following training options:

e Nno pre-training — in this case we used backward
propagation to train neural network from the scratch;
« with pre-training by the classical method;
« with REBA-based pre-training.
The training process used a model with a structure (4 —
10 — 10 — 3) with ReLU activation functions on all layers,
except for the last one.
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Table I
PRE-TRAINING PARAMETERS

mini-batch size ~ momentum  epochs count train rate
4 0.5 5 0.01/0.04
Table II
TRAINING PARAMETERS
mini-batch size  momentum  epochs count train rate
4 0.9 10 0.01

Tables I and II show the main parameters of pre-training
and training stages.

A series of 100 computational experiments was carried
out, the results of which were averaged. The results are
represented in Table III.

Table III
RESULTS

pre-training method  test efficiency, %

RBM 91.0
REBA 92.6
Without pre-training 83.73

During the implementation of the SHAP method,
Shapley values were obtained, on the basis of which
visualizations were drawn. In Fig. 4, 5, and 6, the
cumulative influence of individual features on irises type
classification is shown.

petal_len +0.39
petal_wid +0.02
sepal_wid +0.02
sepal_len | +0.01
000 005 010 015 020 025 030 035 040

Figure 4. Influence of features on class O for identification (Iris setosa)

petal_len +0.32
petal_wid

sepal_len
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0.15

.00 0.05 0.10 0.20 0.25 0.30 035

Figure 5. Influence of features on class 1 for identification (Iris virginica)

According to these images, it can be seen that the petal
length feature has the greatest influence on determining

petal_len +0.27
petal_wid

sepal_len

sepal_wid
0.00 0.05 0.10 0ls 0.20 0.25
Figure 6. Influence of features on class 2 for identification (Iris

versicolor)

the type of flower. This is confirmed by a more detailed
study of the values dependence from this feature on the
Shapley values (Fig. 7, 8, 9).

3.4
3.2
3.0
2.8

-2.6
s

2 4 6
petal len

.4 ‘0‘.

-2.4

Figure 7. Dependences of feature values on Shapley values (class 0)

As can be seen from the represented visualizations, all
values of the petal length feature are concentrated in 3
main intervals that directly affect the class identification
([1, 21, [2, 51, [5, 6]). The boundaries of the ranges for
simplification are defined approximately. Based on these
data, rules can be formulated:

1) If the value of the petal length feature is in the range
from [1, 2], then define the class of the flower as
Iris setosa

2) If the value of the petal length feature is in the
range from [2, 5], then define the flower class as
Iris virginica

3) If the value of the feature petal length is in the
range from [5, 6], then define the flower class as
Iris versicolor

These rules take into account only the value of
one feature, in order to improve the characteristics of
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Figure 9. Dependences of feature values on Shapley values (class 2)

the classifying algorithm; the number of rules can be
expanded by analyzing changes in other main features.

Finally, after forming a natural language representation
of the rules, they can be easily represented in the SC-code
or illustrated using its visual representation in SCg (Fig.
10).

VI. CONCLUSION

In the article, an approach to the implementation of
next-generation intelligent computer systems is proposed,
which allows integrating neural network and logical
models created using the OSTIS technology. The proposed

-
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Figure 10. Representation of the rule for determining the type of flower
in SCg

approach is based on the application of deep neural
network pre-training methods and Explainable Al. The
effectiveness of the proposed approaches to the pre-
training of a deep neural network, as well as the approach
to integration, is shown on the example of solving
classification problem.

This approach can be used in the development of
next-generation intelligent computer systems, for which
the small amount of available training data and high
requirements for the interpretation of the results often
become critical factors.

As directions for further work, the authors see the
development of the proposed approach in the context
of studying the applicability to convolutional models, as
well as studying the possibilities of interpreting models
with homogeneous inputs (for example, when solving the
problem of recognizing objects in an image, where the
role of an individual pixel or superpixel is difficult to
formalize).
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IIpumeHnenne riry0OKNX HEPOHHBIX ceTell B
HHTEJLIEKTYAJbHBIX KOMIIbIOTEPHBIX
CHCTeMAaX HOBOr'0 MOKOJIEHHSI

Kpomienko A. A.

Crarbsi IOCBSIIIEHAa MOJIEIM THOPHIHON UHTEJUIEKTYaIbHOM
CHCTEMbl HOBOTO IMOKOJICHUSI, 0a3upyIOIIeiics Ha MHTErpalin
npeo0yUYeHHBIX [TyOOKMX HEeWpOCeTeBbIX Mojesedl U Jiorude-
ckux mopenei Texnosmorun OSTIS. I CHMKEHUS BIIMSIHUAS
oObema oOyyvaromieil BHIOOPKM Ha Tpoliecc 00yYeHHs] MOJEIH
ABTOpPAMU TIPE/JIAraeTCsl albTEPHATUBHBIA MOAXO[ K Mpenaoly-
YEeHHWI0 TTyOOKMX HEUPOHHBIX cereil. [[JIsi MOCTXKEHUs Uesn
HHTEPIIPETUPYEMOCTH HEHpOCeTell UCTIONb30BAIMCh METOIbI 13
obaactu Explainable Al
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