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Abstract: This paper describes behavior patterns 
produced by Multi-Joined Robot learned via Influence 
Reinforcement learning. This learning technique used for  
distributed, adaptive and self-organizing control in 
multi-agent system. This technique is quite simple and uses 
agent’s influences to estimate learning error between 
them. As will show, this learning rule supports 
positive-reward interactions between agents and does not 
require any additional information than standard 
reinforcement learning. The behavior patterns o f learned 
robot shows that optimal behavior strategies differ for 
various learning techniques. As we will show, every 
algorithm produces his own behavior's patterns which are 
optimal for that learning rule to produce a faster 
convergence.

Keywords: Multi-Agent Influence Reinforcement
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1. INTRODUCTION
Machine learning being explored an important 

component in multi-agent systems (MAS). For example, 
many application domains are envisioned in which teams 
of software agents or robots leam to cooperate amongst 
each other and with human beings to achieve global 
objectives [I]. Learning may also be essential in many 
non-cooperative domains such as economics and finance, 
where classical game-theoretic solutions are either 
infeasible or inappropriate. Teams of agents have the 
potential for accomplishing tasks that are beyond the 
capabilities of a single agent. An excellent and demanding 
example of multi-agent cooperation is in robot soccer. At 
the same time, Multi-Agent learning (MAL) poses 
significant theoretical challenges, particularly in 
understanding how agents can learn and adapt in the 
presence of other agents that are simultaneously learning 
and adapting [2,3].

2. REINFORCEMENT LEARNING
Reinforcement learning is an approach to artificial

intelligence that emphasizes learning by the individual
from its interaction with its environment that produces 
optimal behavior [4]. It is often used as one of the control 
techniques, especially for learning autonomous agents in 
unknown environment. It emerged at the intersection of 
dynamic programming, machine learning, biology, studies 
the reflexes and reactions of living organisms: reflex 
theory, animal cognition [5,6]. RL is highly popular for 
learning autonomous agents, for example autonomous 
robotics, negotiating agents and so on. The math 
foundation of RL is Markov Decision Pprocess (MDP), so

it widely used for learning in game theory, e.g. 
TD-Gammon [10].

The core of all most Reinforcement Learning methods 
is a Temporal Difference (TD) learning [4-9]. Temporal 
Difference technique measures the inconsistency between 
difference of quality for two actions done in some state 
and received reward, shows expectation of agent.

Agent execute action a in particular state j , goes to next 
state s ’ and receives reward r as a feedback of recent 
action. During learning agent try to select the best action in 
some state (best action usually more rewarded in future). 
Visually, iteration of RL-agent on MDP is shown at Fig. I.

Possible actions

--..............select action ä
and do them

“ Next state $

Observe next actions 

And do one of it - Si'

Fig. I. One iteration of Reinforcement learning

Where 6 - learning rate, r - discount factor, determines 
the importance of future rewards.

Learning goal is to approximate (9-function (I), e.g. 
finding true (9-values of (9-function for each action in 
every state. Formula I shows SARSA learning rule. 
Estimated in square brackets value is Temporal Difference 
error.

A(9(s,a) ■- a[r + Q(s', a' ) -  Q(s,a)] ( I)

The natural extension of standard RL algorithm is 
usage eligibility traces to remember previously visited 
states. Eligibility trace is a temporary records of the 
occurrence of an event, such as the visiting of a state or the 
taking of an action [4]. At every time step, when a TD error 
occurs, only the eligible states or actions are updated.

A Q(s,a) = a[r + Q(s',a') -  Q(s,a)]e(s) (2)

ф )  = |  (3)
[A}&(s) + 1 oterwise

Formula (2) called for every previously visited state 
ife (s) > 0 , where e(s) - is a eligibility value, Я - is a
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eligibility discount factor, decay in time past eligibilities.
г» . : „ r . -------------------- T ---------:   . . „ v i i
< \ с т к л U C i i i t u i  J b c a i i i i n g  w u i k » w u i  u i  u i  u u c ,

agent. In case of multi-agents system Reinforcement 
Learning update rule should be updated for better 
convergence to reduce several limitations [2, 3, 4, 6]. It is 
exponentially growing state-action space depending on 
number of agents, curse of dimensionality, and 
decentralization of learning process.

3. MULTI AGENT REINFORGEMEN LEARNING
In many articles multi-agent reinforcement learning 

(MARL) has shown in context of game theory for founding 
Nash equilibrium point for group of agents. Terms 
‘coordination’ and ‘cooperation’ used in Multi-Agent 
Systems is well known in game theory (e.g. zero sum 
stochastic games and common-payoff). There are several 
models of Game Theory approaches to multi-agent 
learning. Works [1,12,13] provided generalized view to 
this approach, and [14] pointed, that Multi-Agent learning 
is a different kind of machine learning and still open 
question. In robotics, multi-agent reinforcement learning 
has been applied to teams of robots with Q-Ieaming as the 
algorithm of action choice.

In previous papers [15-17] we purpose Influences 
Reinforcement Learning as a simple reinforcement 
learning technique for distributed multi-agent system with 
local update rule and fast convergence.

Influences Reinforcement Learning (I-RL) based on 
assumption if some problem solved cooperatively by 
agents so their learning process is related to each other and 
influences between agents can be used to estimate error 
value between agents. In this case, actions from one agent 
may be directed to another agents and change their states.

Let’s see to interconnected agents A and B. Agent A at 
state sa execute action a over agent B, and set it into new 
state sh. Agent in new state B select action b and execute it 
somewhere (on another agent, or on environment). This 
situation is shown at Fig. 2.

Reward Г

Fig. 2. Influences between two agents. Reinforcement 
learning view.

Actions a and b has their Q-values Q(sa, a) and Q(sh, b) 
respectively. After executing action and receiving reward 
agent B can sent feedback to A. This feedback include Q- 
-value Q(sb, b) and reward r as a response to action a. 
Receiving this feedback agent A can calculate Temporal 
Difference error between them and agent B and learn using 
standard RL technique. Agent A update their g-value 
Q{sa,a) corresponding to action a  using formulas (4,5).

Sm  = r + }Q(sh,b) -  Q isa, a) (4)
A QisatO) = OSab (5)

Formula (4) defines a influence error as a temporal 
difference error between agent A and B. Expression 
r + yQ(sb,h) - is a feedback from agent B.

The most one important change in I-RL is that we 
suppose a Q(sh,b)- is a "future” Q-value of agents, and in 
this case (5) is equal to (I). Using this update rule, the best 
influences from A to B will be more rewarded. In the end, 
agent A can build the optimal interaction policy for agent 
B. Feedback between agents included into update rule 
produces coherence of their behaviors. The advantage of 
this rule is simplicity and all single-agent RL algorithms 
can be used without serious changes.

Including eligibility traces into agent interactions we 
can reduce decentralization of learning process and update 
coherent influences more than between two agents. In 
influence trace we store history (set) of agent influences to 
each other, as number of I-RL procedures.

For example, let’s see to more complicated and 
distributed example from previous chapter. Introduce one 
more agent C. This situation is shown at Fig. 3.

Fig. 3. Influences between two agents (common case). 
Reinforcement !earning view.

Agents interact in following scenario:
1. Agent A acts to agent B with Q(sn, a). Agent B goes to 

state sb.
2. Agent B acts to agent C with Q(sb, b). Agent C goes to 

state sc.
3. Agent C acts with action c to environment Env and 

receive their reward.
4. Agent C receive reward rc and send it to all agents who 

influence to it.
5. Agent’s B receive reward rc for b and leam. Also, 

agent B can calculate their own reward rb ant feedback 
it to agent/I.

6. Agent A receive all reward’s and learn.
As we can see at fig. 3, there are direct interaction 

between A-B, and B-C, and indirect interaction between A 
and C. Using influence trace we can leam and update these 
indirect interactions.

For this purposes we introduce parameter influence 
value i(d) into update rule, where d  is a distance between 
agents. This parameter shows how far away structurally 
produced influence to this agent. For direct interactions d 
is equal to 0; for indirect interaction d > 0, depending on 
how many intermediate influences done between indirect 
agents. For direct agent’s interactions A-B and B-C the 
influence distance d  equal to 0. For indirect interaction 
A-C influence distance is equal to I. If we introduce one 
more agent D after C, so influence distance between A-D 
will be 2, and so on. The update rule changed as follows:

(6)
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A Q(s„,a) = a S ACi(d) (7)

i(d) = r ~ '  (8)

Where S 4c - is a influence error between agent A and

С, X - is a coefficient of influence discount factor.
Influence value i(d) is depends from discount factor

X and reduced with increasing influence distance between 
agents. If X = I , then all influences will be updated with 
full power. If X = 0 only direct interactions will be 
updated. If 0 < X < I then indirect interactions will be 
updated with decay.

4. MODEL OF MULTI-JOINED ROBOT
Multi-Joined Robot (MJR) learning task is a simple 

decentralized model, which simulate robot arm with 
N-degrees of freedom, where N -  is a number agents in 
MAS. Every segment -  is an intellectual agent learned via 
Reinforcement Learning. The goal of experiment is to 
Ieam MJR reach some target point. This problem requires 
synchronization of local agent behaviors to achieve one 
common goal.

MJR contains one root segment R, several intermediate 
segments S 1, S2, ... , S„ and one terminal segment T 
connected into chain from R to T (Fig. 6). Every segment, 
excluding terminal, can rotate at full circle (360") all next 
segments. At one time step each segment, excluding 
terminal, can rotate all next segments at 5 " to left or right, 
or do nothing.

First acts root segment R, then first intermediate S h 
then second S2, and so on, until Sm,. Root segment can’t 
move, can’t be moved and don’t change their position. 
Terminal segment verify reaching the target and receive 
actions from previous segments that change their own 
position.

Fig. 6: Multi-Joined Robot with 4 segments R, Sh S2, T.
a,b,c-  Agent actions. fa, f b, Q -  Feedback reward 

corresponds to actions.

Used next learning procedure (one training start):
1. MJR moved to initial position.
2. Every segment selects and executes action in order 

to structure of MJR. States of all next agents are 
changed.

3. Terminal segment calculate distance to target 
point.

4. If target is reached then MJR count grand-prix 
reward and learned. Go to I .

5. Else, terminal segment produce feedback reward 
for previous agent to learn it. Feedbacks are

propagated into MJR, so agents learn via RTD 
until root segment will be reached.

6. If simulation time is ended ( 1000 simulation steps) 
go to I . If average RTD-Enor (7) lover than limit 
value, then learning is over.

7. Next time step. Go to 2
Reinforcement Learning parameters include: CC 

(learning rate) = 0.05-0.1; у  (discount factor) = 0.7;
X (eligibility discount factor) = 0.7-0.99, d (influence 
discount factor) = 0.5-0.7

^EXPERIMENTAL RESULTS
Earlier, behavior patterns in multi-agent systems were 

researched at [18]. Simulation of MJR behavior shows 
intension to find optimal structure of segments for the 
robot. During learning synchronization of behaviors 
between segments (successful learning) produces optimal 
interactions from which robot can reach the target.

In our experiments was used two basic reinforcement 
learning technique: SARSA, described above, and 
Q-Learning, using the following update formula:

AQ(s,a) = a [r+ y  maxa,^ Q (s',a')-Q (s,a)] (9)

One of extensions of Q-Learning wich eligibility traces 
is known as Wankins-Q(n), where л -  it is a eligibility 
discount factor. This learning rule was also used in 
experiments.

Convergence. In experiments we used MJR with 5 
active segments. It is good compromise between model 
complexity and decentralization of agent actions. The case 
of MJR with more than 5 segments is described below. The 
norma! convergence process using Q-Learning update ruie 
illustrated at fig 7.

Fig. 7: Average I-RL error per episode for every segment.

As been shown, there are direct dependencies between 
agent’s actions and errors. Every next segment can be 
placed at more states (has biggest state-action space), than 
others, and its error value become higher.

Learning decentralization. Quality of convergence 
depends from number of segments. IfMJR have more than 
6 segments then probability of convergence is much lower. 
The main problem in this case is decentralization of agent 
actions. Fig. 8-a shows situation where actions in the 
beginning of robot not synchronized with actions in the 
end of robot. The memory techniques, such as eligibility 
traces, are not enough for MJR containing more 7
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step-by-step interactions between agents, and new
!rlLi^c o f  lM m in ff  f n r  r p H n r i n o  rn m n lp Y itv  shnnlH  h p .

used.
Another problem is direct dependencies between 

agents. For example, if one agent in the beginning of MJR 
learns unsuccessfully (broken agent), then behavior of all 
next segments can becomes unstable, if they are can’t 
compensate wrong action from broken agent. Fig. 8-b 
illustrate situation, where wrong actions from first agent 
cause for others agents take a wrong action. Every next 
agent should be sure that executed on it action is correct, in 
other words every selected action should guarantee 
convergence of learning and reaching the target. The 
described I-RL learning rule should be updated with these 
properties, or another, more complicated and more 
researched rule should be used [19,20].

Fig. 8: Two examples where decentralization of actions 
occur. In the left example, actions of R and SI segment are 
inconsistent with action from other segments. The right 
example shows grouping of agents.

behavior in coordination of agent actions. After learning, 
the following stmctural/behavior patterns were observed:

1. Direct. MJR try to reach target in a straight way. MJR 
structure reconfigured on-line, agent’s actions is 
compensating each-other in goal to reaching target. 
Behavior may look as chaotic. Number of actions: 
High. IllustratedonFig. 10-a.

2. Partial-Rotation. MJR prefer to rotate some part of 
segments with segment reconfiguration to reach the 
target. Behavior looks partially synchronized. 
Number of actions: High-medium. Illustrated on Fig. 
10-b.

(c)
Fig. 10: SARSA/Q-Learning structural/bchavior 

patterns.

Behavior patterns. Behavior policy variously changed 
in way of use different algorithms and learning parameters. 
I-RL algorithms with influence traces such as SARSA(n), 
Watkins-(9(л) shown more smooth behavior and better 
synchronization than algorithms without it (9-Learning.

The MJR learning contains with two parts. Fist part — it 
is a !earning of optimal behavior. In this part robot explore 
the world trying to create (learn) best behavior policy. The 
second part uses found best behavior policy to finding 
optimal structure of MJR. Using this structure, MJR should 
reach target in shortest way with minimum number of 
actions. Usually, the better strategy is rotating with 
minimum segments reconfigurations. In this case only one 
segment does actions.

..........Wiitkini-Q - ........Q-LedrmnR ----------- SARSA

20

Fig. 9: SARSA, Q-Learning and Watkins-Q( i) I-RL 
convergence comparison.

Q-Learningpatterns. This algorithm show longest, but 
slabie convergence with better synchronization and 
behavior properties. Q-Leaming has better approximation 
of Q-Function which can produce better actions for agent. 
The observed patterns are:

1. Partial-rotation. The same behavior with partial 
synchronization. Number of actions: High-medium. 
Illustratedon Fig. 10-c.

2. Rotation with fixed points. An unobvious result was 
seen in robot behavior at second stage, where learning 
process was freezed, the learned behavior policy was 
used to select robot actions. In this stage MJR select a 
several fixed points for its segments and rotate without 
reconfigurations reaching target every time, at every 
rotation. This fixed point can be shown as points 
producing optimal behavior with rotation. Rotation 
will guarantee, that target will be reached without 
structural reconfigurations. Behavior looks absolutely 
synchronized. Number of actions: minimal. Examples 
of this pattern shown at Fig 11.

SARSA patterns. This algorithm show fast 
convergence but worse synchronization properties. 
SARSA(n) with eligibility traces show more smooth
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6. CONCLUSION
This work suggests new approaches to Multi-Agent 

Reinforcement Learning named Influence Reinforcement 
Learning. This technique was designed to change standard 
Reinforcement Learning model in a best essential way to 
Multi-Agent Learning. Using I-RL we can apply RL model 
between agents locally.

This technique was used to produce observed behavior 
patterns during learning multi-joined robot. This patterns 
was classified as direct reaching, partial rotation and 
synchronization and rotation around fixed points. Fixed 
point rotation it is an optimal pattern with minimum 
number of required actions to reach the target. The 
state-action space should be explored by learning 
algorithm to find an optimal fixed point, to build optimal 
MJR structure.

The I-RL learning has two known limitations. One is 
decentralization problem for long indirect influences, and 
second one is problem of agent influences insurance. The 
agent should be sure, that received influences as much 
optimal, as possible. It is a guarantee of I-RL algorithm 
convergence. The future experiments and extension if I-RL 
is needed.
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