
Behavior Patterns of adaptive Multi-Joined Robot learned by
Multi-Agent Influence Reinforcement Learning

Anton Kabysh1, Golovko Vladimir2, Andrei Mikhniayeu3, Uladzimir Rubanau4,
Arunas Lipnikas 5)

1,2,3) Brest State Technical University, auton.kabysh@gmail.com, gva@brsu.by, ancto@gmail.com
4) Kaunas University of Technology, arunas.lipnickas@ktu.lt.

Abstract: This paper describes behavior patterns
produced by Multi-Joined Robot learned via Influence
Reinforcement learning. This learning technique used for
distributed, adaptive and self-organizing control in
multi-agent system. This technique is quite simple and uses
agent’s influences to estimate learning error between
them. As will show, this learning rule supports
positive-reward interactions between agents and does not
require any additional information than standard
reinforcement learning. The behavior patterns o f learned
robot shows that optimal behavior strategies differ for
various learning techniques. As we will show, every
algorithm produces his own behavior's patterns which are
optimal for that learning rule to produce a faster
convergence.

Keywords: Multi-Agent Influence Reinforcement
Learning, Eligibility Traces, Behavior Patterns.

1. INTRODUCTION
Machine learning being explored an important

component in multi-agent systems (MAS). For example,
many application domains are envisioned in which teams
of software agents or robots leam to cooperate amongst
each other and with human beings to achieve global
objectives [I]. Learning may also be essential in many
non-cooperative domains such as economics and finance,
where classical game-theoretic solutions are either
infeasible or inappropriate. Teams of agents have the
potential for accomplishing tasks that are beyond the
capabilities of a single agent. An excellent and demanding
example of multi-agent cooperation is in robot soccer. At
the same time, Multi-Agent learning (MAL) poses
significant theoretical challenges, particularly in
understanding how agents can learn and adapt in the
presence of other agents that are simultaneously learning
and adapting [2,3].

2. REINFORCEMENT LEARNING
Reinforcement learning is an approach to artificial

intelligence that emphasizes learning by the individual
from its interaction with its environment that produces
optimal behavior [4]. It is often used as one of the control
techniques, especially for learning autonomous agents in
unknown environment. It emerged at the intersection of
dynamic programming, machine learning, biology, studies
the reflexes and reactions of living organisms: reflex
theory, animal cognition [5,6]. RL is highly popular for
learning autonomous agents, for example autonomous
robotics, negotiating agents and so on. The math
foundation of RL is Markov Decision Pprocess (MDP), so

it widely used for learning in game theory, e.g.
TD-Gammon [10].

The core of all most Reinforcement Learning methods
is a Temporal Difference (TD) learning [4-9]. Temporal
Difference technique measures the inconsistency between
difference of quality for two actions done in some state
and received reward, shows expectation of agent.

Agent execute action a in particular state j , goes to next
state s ’ and receives reward r as a feedback of recent
action. During learning agent try to select the best action in
some state (best action usually more rewarded in future).
Visually, iteration of RL-agent on MDP is shown at Fig. I.

Possible actions

--..............select action ä
and do them

“ Next state $

Observe next actions

And do one of it - Si'

Fig. I. One iteration of Reinforcement learning

Where 6 - learning rate, r - discount factor, determines
the importance of future rewards.

Learning goal is to approximate (9-function (I), e.g.
finding true (9-values of (9-function for each action in
every state. Formula I shows SARSA learning rule.
Estimated in square brackets value is Temporal Difference
error.

A(9(s,a) ■- a[r + Q(s', a') - Q(s,a)] (I)

The natural extension of standard RL algorithm is
usage eligibility traces to remember previously visited
states. Eligibility trace is a temporary records of the
occurrence of an event, such as the visiting of a state or the
taking of an action [4]. At every time step, when a TD error
occurs, only the eligible states or actions are updated.

A Q(s,a) = a[r + Q(s',a') - Q(s,a)]e(s) (2)

ф) = | (3)
[A}&(s) + 1 oterwise

Formula (2) called for every previously visited state
ife (s) > 0 , where e(s) - is a eligibility value, Я - is a

392

mailto:auton.kabysh@gmail.com
mailto:gva@brsu.by
mailto:ancto@gmail.com
mailto:arunas.lipnickas@ktu.lt

eligibility discount factor, decay in time past eligibilities.
г» . : „ r . -------------------- T ---------: . . „ v i i
< \ с т к л U C i i i t u i J b c a i i i i n g w u i k » w u i u i u i u u c ,

agent. In case of multi-agents system Reinforcement
Learning update rule should be updated for better
convergence to reduce several limitations [2, 3, 4, 6]. It is
exponentially growing state-action space depending on
number of agents, curse of dimensionality, and
decentralization of learning process.

3. MULTI AGENT REINFORGEMEN LEARNING
In many articles multi-agent reinforcement learning

(MARL) has shown in context of game theory for founding
Nash equilibrium point for group of agents. Terms
‘coordination’ and ‘cooperation’ used in Multi-Agent
Systems is well known in game theory (e.g. zero sum
stochastic games and common-payoff). There are several
models of Game Theory approaches to multi-agent
learning. Works [1,12,13] provided generalized view to
this approach, and [14] pointed, that Multi-Agent learning
is a different kind of machine learning and still open
question. In robotics, multi-agent reinforcement learning
has been applied to teams of robots with Q-Ieaming as the
algorithm of action choice.

In previous papers [15-17] we purpose Influences
Reinforcement Learning as a simple reinforcement
learning technique for distributed multi-agent system with
local update rule and fast convergence.

Influences Reinforcement Learning (I-RL) based on
assumption if some problem solved cooperatively by
agents so their learning process is related to each other and
influences between agents can be used to estimate error
value between agents. In this case, actions from one agent
may be directed to another agents and change their states.

Let’s see to interconnected agents A and B. Agent A at
state sa execute action a over agent B, and set it into new
state sh. Agent in new state B select action b and execute it
somewhere (on another agent, or on environment). This
situation is shown at Fig. 2.

Reward Г

Fig. 2. Influences between two agents. Reinforcement
learning view.

Actions a and b has their Q-values Q(sa, a) and Q(sh, b)
respectively. After executing action and receiving reward
agent B can sent feedback to A. This feedback include Q-
-value Q(sb, b) and reward r as a response to action a.
Receiving this feedback agent A can calculate Temporal
Difference error between them and agent B and learn using
standard RL technique. Agent A update their g-value
Q{sa,a) corresponding to action a using formulas (4,5).

Sm = r + }Q(sh,b) - Q isa, a) (4)
A QisatO) = OSab (5)

Formula (4) defines a influence error as a temporal
difference error between agent A and B. Expression
r + yQ(sb,h) - is a feedback from agent B.

The most one important change in I-RL is that we
suppose a Q(sh,b)- is a "future” Q-value of agents, and in
this case (5) is equal to (I). Using this update rule, the best
influences from A to B will be more rewarded. In the end,
agent A can build the optimal interaction policy for agent
B. Feedback between agents included into update rule
produces coherence of their behaviors. The advantage of
this rule is simplicity and all single-agent RL algorithms
can be used without serious changes.

Including eligibility traces into agent interactions we
can reduce decentralization of learning process and update
coherent influences more than between two agents. In
influence trace we store history (set) of agent influences to
each other, as number of I-RL procedures.

For example, let’s see to more complicated and
distributed example from previous chapter. Introduce one
more agent C. This situation is shown at Fig. 3.

Fig. 3. Influences between two agents (common case).
Reinforcement !earning view.

Agents interact in following scenario:
1. Agent A acts to agent B with Q(sn, a). Agent B goes to

state sb.
2. Agent B acts to agent C with Q(sb, b). Agent C goes to

state sc.
3. Agent C acts with action c to environment Env and

receive their reward.
4. Agent C receive reward rc and send it to all agents who

influence to it.
5. Agent’s B receive reward rc for b and leam. Also,

agent B can calculate their own reward rb ant feedback
it to agent/I.

6. Agent A receive all reward’s and learn.
As we can see at fig. 3, there are direct interaction

between A-B, and B-C, and indirect interaction between A
and C. Using influence trace we can leam and update these
indirect interactions.

For this purposes we introduce parameter influence
value i(d) into update rule, where d is a distance between
agents. This parameter shows how far away structurally
produced influence to this agent. For direct interactions d
is equal to 0; for indirect interaction d > 0, depending on
how many intermediate influences done between indirect
agents. For direct agent’s interactions A-B and B-C the
influence distance d equal to 0. For indirect interaction
A-C influence distance is equal to I. If we introduce one
more agent D after C, so influence distance between A-D
will be 2, and so on. The update rule changed as follows:

(6)

393

8AC =rc + iQ(sc,e)-Q {sa,d)

A Q(s„,a) = a S ACi(d) (7)

i(d) = r ~ ' (8)

Where S 4c - is a influence error between agent A and

С, X - is a coefficient of influence discount factor.
Influence value i(d) is depends from discount factor

X and reduced with increasing influence distance between
agents. If X = I , then all influences will be updated with
full power. If X = 0 only direct interactions will be
updated. If 0 < X < I then indirect interactions will be
updated with decay.

4. MODEL OF MULTI-JOINED ROBOT
Multi-Joined Robot (MJR) learning task is a simple

decentralized model, which simulate robot arm with
N-degrees of freedom, where N - is a number agents in
MAS. Every segment - is an intellectual agent learned via
Reinforcement Learning. The goal of experiment is to
Ieam MJR reach some target point. This problem requires
synchronization of local agent behaviors to achieve one
common goal.

MJR contains one root segment R, several intermediate
segments S 1, S2, ... , S„ and one terminal segment T
connected into chain from R to T (Fig. 6). Every segment,
excluding terminal, can rotate at full circle (360") all next
segments. At one time step each segment, excluding
terminal, can rotate all next segments at 5 " to left or right,
or do nothing.

First acts root segment R, then first intermediate S h
then second S2, and so on, until Sm,. Root segment can’t
move, can’t be moved and don’t change their position.
Terminal segment verify reaching the target and receive
actions from previous segments that change their own
position.

Fig. 6: Multi-Joined Robot with 4 segments R, Sh S2, T.
a,b,c- Agent actions. fa, f b, Q - Feedback reward

corresponds to actions.

Used next learning procedure (one training start):
1. MJR moved to initial position.
2. Every segment selects and executes action in order

to structure of MJR. States of all next agents are
changed.

3. Terminal segment calculate distance to target
point.

4. If target is reached then MJR count grand-prix
reward and learned. Go to I .

5. Else, terminal segment produce feedback reward
for previous agent to learn it. Feedbacks are

propagated into MJR, so agents learn via RTD
until root segment will be reached.

6. If simulation time is ended (1000 simulation steps)
go to I . If average RTD-Enor (7) lover than limit
value, then learning is over.

7. Next time step. Go to 2
Reinforcement Learning parameters include: CC

(learning rate) = 0.05-0.1; у (discount factor) = 0.7;
X (eligibility discount factor) = 0.7-0.99, d (influence
discount factor) = 0.5-0.7

^EXPERIMENTAL RESULTS
Earlier, behavior patterns in multi-agent systems were

researched at [18]. Simulation of MJR behavior shows
intension to find optimal structure of segments for the
robot. During learning synchronization of behaviors
between segments (successful learning) produces optimal
interactions from which robot can reach the target.

In our experiments was used two basic reinforcement
learning technique: SARSA, described above, and
Q-Learning, using the following update formula:

AQ(s,a) = a [r+ y maxa,^ Q (s',a')-Q (s,a)] (9)

One of extensions of Q-Learning wich eligibility traces
is known as Wankins-Q(n), where л - it is a eligibility
discount factor. This learning rule was also used in
experiments.

Convergence. In experiments we used MJR with 5
active segments. It is good compromise between model
complexity and decentralization of agent actions. The case
of MJR with more than 5 segments is described below. The
norma! convergence process using Q-Learning update ruie
illustrated at fig 7.

Fig. 7: Average I-RL error per episode for every segment.

As been shown, there are direct dependencies between
agent’s actions and errors. Every next segment can be
placed at more states (has biggest state-action space), than
others, and its error value become higher.

Learning decentralization. Quality of convergence
depends from number of segments. IfMJR have more than
6 segments then probability of convergence is much lower.
The main problem in this case is decentralization of agent
actions. Fig. 8-a shows situation where actions in the
beginning of robot not synchronized with actions in the
end of robot. The memory techniques, such as eligibility
traces, are not enough for MJR containing more 7

394

step-by-step interactions between agents, and new
!rlLi^c o f lM m in ff f n r r p H n r i n o rn m n lp Y itv shnnlH h p .

used.
Another problem is direct dependencies between

agents. For example, if one agent in the beginning of MJR
learns unsuccessfully (broken agent), then behavior of all
next segments can becomes unstable, if they are can’t
compensate wrong action from broken agent. Fig. 8-b
illustrate situation, where wrong actions from first agent
cause for others agents take a wrong action. Every next
agent should be sure that executed on it action is correct, in
other words every selected action should guarantee
convergence of learning and reaching the target. The
described I-RL learning rule should be updated with these
properties, or another, more complicated and more
researched rule should be used [19,20].

Fig. 8: Two examples where decentralization of actions
occur. In the left example, actions of R and SI segment are
inconsistent with action from other segments. The right
example shows grouping of agents.

behavior in coordination of agent actions. After learning,
the following stmctural/behavior patterns were observed:

1. Direct. MJR try to reach target in a straight way. MJR
structure reconfigured on-line, agent’s actions is
compensating each-other in goal to reaching target.
Behavior may look as chaotic. Number of actions:
High. IllustratedonFig. 10-a.

2. Partial-Rotation. MJR prefer to rotate some part of
segments with segment reconfiguration to reach the
target. Behavior looks partially synchronized.
Number of actions: High-medium. Illustrated on Fig.
10-b.

(c)
Fig. 10: SARSA/Q-Learning structural/bchavior

patterns.

Behavior patterns. Behavior policy variously changed
in way of use different algorithms and learning parameters.
I-RL algorithms with influence traces such as SARSA(n),
Watkins-(9(л) shown more smooth behavior and better
synchronization than algorithms without it (9-Learning.

The MJR learning contains with two parts. Fist part — it
is a !earning of optimal behavior. In this part robot explore
the world trying to create (learn) best behavior policy. The
second part uses found best behavior policy to finding
optimal structure of MJR. Using this structure, MJR should
reach target in shortest way with minimum number of
actions. Usually, the better strategy is rotating with
minimum segments reconfigurations. In this case only one
segment does actions.

..........Wiitkini-Q -Q-LedrmnR ----------- SARSA

20

Fig. 9: SARSA, Q-Learning and Watkins-Q(i) I-RL
convergence comparison.

Q-Learningpatterns. This algorithm show longest, but
slabie convergence with better synchronization and
behavior properties. Q-Leaming has better approximation
of Q-Function which can produce better actions for agent.
The observed patterns are:

1. Partial-rotation. The same behavior with partial
synchronization. Number of actions: High-medium.
Illustratedon Fig. 10-c.

2. Rotation with fixed points. An unobvious result was
seen in robot behavior at second stage, where learning
process was freezed, the learned behavior policy was
used to select robot actions. In this stage MJR select a
several fixed points for its segments and rotate without
reconfigurations reaching target every time, at every
rotation. This fixed point can be shown as points
producing optimal behavior with rotation. Rotation
will guarantee, that target will be reached without
structural reconfigurations. Behavior looks absolutely
synchronized. Number of actions: minimal. Examples
of this pattern shown at Fig 11.

SARSA patterns. This algorithm show fast
convergence but worse synchronization properties.
SARSA(n) with eligibility traces show more smooth

395

Fig. 11: Rotation behavior strategy with two fixed points.

6. CONCLUSION
This work suggests new approaches to Multi-Agent

Reinforcement Learning named Influence Reinforcement
Learning. This technique was designed to change standard
Reinforcement Learning model in a best essential way to
Multi-Agent Learning. Using I-RL we can apply RL model
between agents locally.

This technique was used to produce observed behavior
patterns during learning multi-joined robot. This patterns
was classified as direct reaching, partial rotation and
synchronization and rotation around fixed points. Fixed
point rotation it is an optimal pattern with minimum
number of required actions to reach the target. The
state-action space should be explored by learning
algorithm to find an optimal fixed point, to build optimal
MJR structure.

The I-RL learning has two known limitations. One is
decentralization problem for long indirect influences, and
second one is problem of agent influences insurance. The
agent should be sure, that received influences as much
optimal, as possible. It is a guarantee of I-RL algorithm
convergence. The future experiments and extension if I-RL
is needed.

7. REFERENCES
[1] Vidal, Hose M. Fundamentals o f Multiagent Systems

with NetLogo Examples, www.multiagent.com, 2009.

[2] Liviu Panait, Sean Luke. "Cooperative Multiagent
Learning: The State of Art." Autonomous Agents and
Multiagent Systems, Volume 11, 2005 : 387-434.

[3] Eduardo Alonso, Mark DTnverno, Daniel Kudenko,
Michael Luck, Jason Noble. "Learning in Multi-Agent
Systems." Science Report, Discussion. UK’s Special
Interest Group on Multi-Agent Systems, 2001.

[4] Richard S. Sutton, Andrew G. Barto. "Reinforcement
Learning: An Introduction." (MIT Press.) 1998.

[5] Worgotter, F. and Porr, B. "Temporal sequence
learning, prediction and control - A review of different
models and their relation to biological mechanisms."
Neural Computation, Volume 17, 2005: 245-319.

[6] Dr. Florentin Woergoetter, Dr. Bernd Porr.
"Reinforcement Learning ."
http://www. scholarpedia. org. 2008.
http://www.scholarpedia.org/article/Reinforcement_l
earning.

[7] Sutton, Richard S. "Learning to Predict by the
Methods of Temporal Differences." Machine
Learning, 3, 1988: 9-44.

[8] Barto, Dr. Andrew G. " Temporal difference
learning." Scholarpedia.org. 2007.
http://www.scholarpedia.org/article/Temporal_differe
nce_leaming.

[9] Peter Dayan, Terrence J Sejnowski. ” I D(Iamda)
ConvergeswithProbability I." 1994.

[10] Tesauro, G. J. "TD-gammon, a self-teaching
backgam-mon program, achieves master-level play.."
Neural Computa-tion, 6(2),
(http://www. research.ibm.com/massive/tdl. html) ,
1994: 215-219.

[11] Bab A, Brafman R I. "Multi-Agent Reinforcement
Learning in Common Interest and Fixed Sum
Stochastic Games: An Experimental Study." Journal
o f Machine Learning Research 9, 2008: 2635-2675.

[12] Tan, Ming. "Multiagent Reinforcement Learning.
Independent vs Cooperative Agents." Autonomous
Agents and Multiagent Systems, v.10 n.3, 2005:
273-328.

[13] Yoav Shoham, Rob Powers, Trend Grenager. "If
multi-agent learning is the answer, what is the
question." Journal o f Artificial Intelligence, 2006.

[14] Stone., Peter. "Multiagent learning is not the answer.
It is a question." Artificial Intelligence, 171, May 2007
:402-405 .

[!5]Кабь:ш A. C., Головко В. А. Принципы
коллективного подкрепляющего обучения /
Конференция Нейроинформатика-2010. // РФ, г.
Москва, МИФИ 25-29 января 2010 г. Сборник
научных трудов, часть 1, стр. 199-208 (1-е место в
конкурсе)

[16] Kabysh, V. Golovko. Supporting Coherence in
Multiagent System: Relational Temporal Difference
with Influence Trace. H The 5lh International
Conference on Neural Network and Artificial
Intelligence (ICNNAI’2010)//June I -4,2010, Brest
State Technical University, Brest, Belarus.

[17] Kabysh A.S. Coherence Behaviour in Multi-Agent
Systems based on Reinforcement Learning H Xl
International PhD Workshop - OWD 2010, 23-26
October 2009, Wisla, Poland, p. 453-459

[18] Kabysh A., Golovko V. "Proceedings of the Tenth
International Conference “Pattern Recognition and
Image Processing” PRIP2009." Collective Behavior in
Multiagent Systems Based on Reinforcement
Learning. Minsk, Republic of Belarus, 2009.

[19] Littman, M. L. (2001). Firend-or-foe Q-Ieaming in
general-sum games. 18-tn Conference on Machine
Learning , pages 322 - 328.

[20] Greenwald A., H. K. (2003). CorreIated-Q learning. In
Proceedings o f the Twentieth International
Conference on Machine Learning, pages 242- 249.

396

http://www.multiagent.com
http://www
http://www.scholarpedia.org/article/Reinforcement_l
http://www.scholarpedia.org/article/Temporal_differe
http://www

