Дифференциальное уравнение (11) с учетом аппроксимации принимает вид:

$$\frac{d^2u_r}{dr^2} + \frac{1}{r}\frac{du_r}{dr} - \frac{u_r}{r^2} = 0,005185 + 150,618r + 21948r^2.$$
(13)

Окончательно решение (7) с учетом граничных условий получено в виде: $u = 0.02255126\ddot{r} + 0.00172833r^2 - 20.71654r^3 + 1463.2r^4.$ (14)

Получены значения компонент напряжения $\sigma_r, \sigma_{\theta}, \sigma_z$ и деформаций $\varepsilon_r, \varepsilon_{\theta}$ в зависимости от координаты. Исследована их зависимость от времени облучения и свойств материала. Кроме того, проведено исследование влияния температуры и радиационного распухания на напряжения в отдельности.

Типичные зависимости напряжений от радиуса для момента времени t=1000 часов приведены на рисунке 2.

Ввиду отсутствия аналитических решений, сравнение проводилось с результатами решения термоупругой задачи при отсутствии радиационного воздействия [2]. Результаты сравнения подтверждают правильность разработанной методики.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Куликов, И.С. Прочность тепловыделяющих элементов быстрых газоохлаждаемых реакторов / Под ред. В.Б. Нестеренко. — Мн.: Наука и техника, 1984. — 103 с. Сталова и слав 2. Тимошенко, С.П. Теория упругости / С.П. Тимошенко, Дж. Гудьер. — М.: Наука, 1975. — 576 с.

志 2件 医安特克 计编辑字句 网络原

УДК 533.9

ИНТЕНСИФИКАЦИЯ ТЕПЛООБМЕНА РАЗВИТЫМ Турбулентным потоком плазмы

Сазонов М.И., Веремейчик А.И. Брестский государственный технический университет, Брест, Республика Беларусь

Для разработки методики расчета теплообмена между развитым турбулентным потоком плазмы и деталями создан дуговой плазмотрон постоянного тока с секционированной электроразрядной камерой и анодом. Изучены распределения тока и тепловых потоков вдоль анода, определены зона шунтирования дуги в аноде и область размещения деталей для исследования теплообмена за этой зоной. На рисунке 1 представлена схема анодного узла плазмотрона и нагреваемой детали.

10043-080903

対抗対抗になる

фС÷ л лъ.

 1 – анод, 2 – изолятор, 3 – шайба, 4 – упрочняемый пуансон, 5 – межсекционное кольцо закрутки
Рисунок 1 – Схема плазмотрона и электропитания

Для определения области расположения закаливаемой детали на рисунке 2 приведено распределение относительной плотности тока $i = i/\pi d \cdot \Delta l \cdot I$ при различных величинах расхода газа перед анодом g_a . Здесь I – полный ток дуги, $\Delta l = 4$ мм - толщина шайбы, i - усредненный по времени ток на шайбу анода. При отсутствии вдува газа перед анодом ($g_a=0$), величина i составляет примерно 1,1.10³ м⁻² на первой шайбе анода и уменьшается до 0,11:10³ м⁻² при $\overline{z} = 2,3$ (кривая 1). В этом случае большая часть тока протекает через первые шесть шайб анода, суммарная длина которых не превышает 1,5 калибра.

Эксперименты показали, что при постоянной величине расхода газа, вдуваемого в щель перед анодом, относительная плотность тока через шайбы не зависит от тока дуги в исследованном диапазоне параметров. Следовательно, при наличии развитого турбулентного течения газа в конце электродуговой камеры внутри анода практически весь ток дуги распределен на участке электрода длиной не более 1,5 калибра от внешнего края. Вследствие этого, с целью снижения до минимума тепловых потерь в анод длину электрода можно уменьшить до 1,5-2 калибров. Распределение относительной плотности тока вдоль анода

172

Установлено, что при отсутствии вдува газа перед электродом величина теплового потока на первую секцию анода была максимальной и быстро снижалась на следующих. При наличии слабого вдува холодного рабочего газа перед анодом тепловой поток на первые шайбы значительно снижается благодаря реализации газовой завесы, а при достаточно сильных вдувах он может быть и ниже, чем на последующих секциях. На расстояниях больших 1,5 калибра от входа в анод тепловые потоки при одинаковых вдувах совпадают между собой и приблизительно равны по величине расчетному конвективному тепловому потоку. Зависимость распределения тепловых потерь вдоль анода рассчитывалась по формуле для конвективного теплообмена потока горячего газа со стенкой трубы [1-3]:

$$q = St \rho v (h_0 - h_w). \tag{1}$$

Здесь $St = 0,023 \operatorname{Re}_{d}^{-0.2} \cdot \operatorname{Pr}^{-0.6}$; $\operatorname{Re}_{d} = \frac{\rho v d}{\mu_{0}}$; $h_{0} = \frac{\eta N}{G}$; Pr - число Прандтля,

 η - к.п.д. межэлектродной вставки, N – мощность дуги, G – суммарный расход газа. Тепловые потери в цилиндрическом аноде плазмотрона с МЭВ определяются конвективным теплопереносом от турбулентного потока плазмы к стенке, а также излучением столба дуги и тепловым потоком через пятно дуги:

$$Q = Q_{\kappa} + Q_{\pi} + Q_{\pi}. \tag{2}$$

Лучистым тепловым потоком можно пренебречь, поскольку передача энергии излучением от дуги в процессе теплообмена в выходном электроде плазмотрона с МЭВ при атмосферном давлении и средних температурах воздуха до $5 \cdot 10^{-3} K$ не превышает нескольких процентов от полного теплового потока в электрод.

Тепловой поток через анодное пятно в медный электрод в воздушной среде может быть оценен по формуле:

$$O_n = 5.85I$$
, BT. (3)

Основной вклад в тепловой поток в стенку анода вносят конвективные тепловые потери. Удельный конвективный тепловой поток в цилиндрический выходной электрод может быть определен по формуле (1). В зоне шунтирования дуги в аноде к ним добавляется тепловой поток через пятно дуги и радиального участка дуги в аноде.

Расчет тепловых потерь в выходном электроде с учетом распределения токов дает удовлетворительное согласие с экспериментальными данными [3]. Сравнение экспериментальных и рассчитанных по вышеуказанной методике тепловых потерь в выходном электроде плазмотрона с межэлектродной вставкой приведено на рисунке 3. Наибольшее различие между расчетом и экспериментальными данными наблюдается на первых секциях анода при отсутствии вдува газа перед ним. Основную роль в интенсификации теплообмена в аноде играет реализация развитого турбулентного течения и вращение радиального участка дуги, обладающего высокой вязкостью по сравнению с окружающим газом.

Рисунок 3 - Сравнение результатов расчета тепловых потоков вдоль анода с экспериментальными данными

$$d = 2 c_{M}; \overline{a} = 20,5; I = 90A; G = 10\frac{c}{c}; g_{I} = 0; g_{a} = 2\frac{c}{c}; g_{T} = 3, 6\frac{c}{c}; \overline{c}_{T} = 7,5$$

На основании проведенных исследований установлено, что тепловые потоки в выходном электроде при развитом турбулентном течении можно с удовлетворительной точностью рассчитывать по формулам для теплообмена турбулентного потока газа со стенкой трубы с учетом тепловых потерь через анодное пятно дуги и теплоотдачи от участка дуги в анод.

Реализация развитого турбулентного потока плазмы позволяет интенсифицировать теплоотдачу от плазменного потока к стенке цилиндрического канала анода и нагреваемой детали.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Кутателадзе, С.С. Тепломасообмен и трение в турбулентном пограничном слое / С.С. Кутателадзе, А.И. Леонтьев.- М.: Энергия, 1972. – 342 с.

2. Жуков, М.Ф. Прикладная динамика термической плазмы / М.Ф. Жуков, А.С. Коротеев, Б.А. Урюков. – Новосибирск, Наука, 1975. – 198 с.

3. Аньшаков, А.С. Электродуговые генераторы с межэлектродными вставками : монография / А.С. Аньшаков, М.Ф. Жуков, И.М. Засыпкин. – Новосибирск: Наука, 1981. – 221 с.

УДК 669.2

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ СТАЛИ Х12М

Бартош Д.В., Сазонов М.И., Хвисевич В.М., Черноиван Н.В. Брестский государственный технический университет, Брест, Беларусь

Высокохромистая сталь X12M обладает высокой износостойкостью и хорошо закаливается. Ее широко применяют для изготовления различных по форме инструментов сложной формы: вырубных, отрезных, чеканочных штампов повышенной точности, накатных роликов и др. Эти стали близки к быстрорежущим: по структуре после отжига относятся к ледебуритному классу, после нормализации – к мартенситному. Их высокая износостойкость обуславливается большим количеством карбидов (CrFe)₇C₃.