

Рисунок 2 – Расчетная область и условия на границе длинного тела двусвязной цилиндрической геометрии

В случае многослойного цилиндрического тела, считая, что соседние слои не имеют свободы перемещений относительно друг друга, предполагается дополнительно задавать:

$$\sigma_{rr}^{I}(R_{ext}^{I}) = \sigma_{rr}^{I+1}(R_{int}^{I+1}); \sigma_{r\theta}^{I}(R_{ext}^{I}) = \sigma_{r\theta}^{I+1}(R_{int}^{I+1});$$

$$u^{I}(R_{ext}^{I}) = u^{I+1}(R_{int}^{I+1}); \vartheta^{I}(R_{ext}^{I}) = \vartheta^{I+1}(R_{int}^{I+1}).$$
(5)

Здесь I=1,2... J- номер слоя, J- количество слоев; R^I_{int}, R^I_{ext} -радиусы I-го слоя.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Лихачев, Ю.И. Прочность тепловыделяющих элементов ядерных реакторов / Ю.И. Лихачев, В.Я. Пупко. – М.: Атомиздат, 1975.

2. Куликов, И.С. Прочность, элементов конструкций при облучении / И.С. Куликов,
 В.Б. Нестеренко, Б.Е. Тверковкин. – Минск: Навука і тэхніка, 1990. – 143с.
 3. Писаренко, Г.С. Прочность и пластичность материалов в радиационных потоках / Г.С. Пи-

3. Писаренко, Г.С. Прочность и пластичность материалов в радиационных потоках / Г.С. Писаренко. – К.: Наук. думка, 1979.

4. Olander, D. R. Fundamental Aspects of Nuclear Reactor Fuel Elements' D.R. Olander. – USA: Technical Information Center Energy Research and Development Administration, 1976. – 720 p.

³ 5. Ширвель, П.И. Модель расчета неосесимметричного напряженно-деформированного состояния облучаемых тел цилиндрической геометрии в условиях ползучести / П.И. Ширвель, И.С. Куликов // Весці НАН Беларусі. Серыя фіз.-тэхн. навук.-2012.-№ 4.-С. 51-62.

УДК 539.3

ОСЕСИММЕТРИЧНОЕ ТЕРМОУПРУГОЕ ДЕФОРМИРОВАНИЕ ЦИЛИНДРИЧЕСКИХ ТЕЛ ПРИ НАГРЕВЕ И ОБЛУЧЕНИИ

1.5.002.04.0

WA ANTARA PARA

Хвисевич В.М., Веремейчик А.И., Гарбачевский В.В., Мороз Е.А. Брестский государственный технический университет, Брест, Беларусь

Основным конструктивным элементом <u>активной зоны ядерного реактора</u> является тепловыделяющий элемент (твэл). В современных энергетических реакторах сердечник твэла представляет собой длинный цилиндрический стержень, работающий в условиях радиационного распухания и подверженный температурной нагрузке. От надежной работы твэлов зависит работоспособность всего реактора, поэтому исследование напряженно-деформированного состояния (НДС) цилиндрических тел при терморадиационном нагружении приобретает особое практическое значение. В данной работе рассматривается бесконечно длинный однородный цилиндр,

который подвергается воздействию радиационной, температурной нагрузки и внешнего давления. Расчетная схема приведена на рисунке 1.

Рисунок 1 - Расчетная схема цилиндра

В связи со спецификой заданных нагрузок и с учетом физической и геометрической симметрии НДС цилиндра можно оценить, реализовав осессимметричную задачу теории упругости.

Дифференциальное уравнение равновесия имеет вид:

$$\sigma_r - \sigma_\theta + r \frac{d\sigma_r}{dr} = 0, real is a second with the real (1)$$

(3)

где $\sigma_r, \sigma_{\theta}$ - радиальное и касательное напряжение, r - переменный радиус. Граничные условия задачи: $u_r = 0$ при r = 0, $\sigma_r = -P$ при r = R, где P - внешнее давление, R - наружный радиус цилиндра.

Эмпирическая функция радиационного распухания принимается согласно [1]:

$$S(T(r),t) = 4,9 \cdot 10^{-51} \cdot (\Phi \cdot t)^{1,71} \cdot 10^{\frac{15490}{T}} \cdot 5.9810^{2}},$$
 (2)

где t – время, Ф – нейтронный поток, Т – температурное поле как функция координаты:

$$T=T_{s}+\frac{q_{v}}{4\lambda}\left(R^{2}-r^{2}\right),$$

 T_s - температура на наружной поверхности, q_v - объемное тепловыделение, λ - коэффициент теплопроводности материала.

Уравнения обобщенного закона Гука при температурном и радиационном нагружении:

$$\varepsilon_{r} = \frac{1}{E} \left(\sigma_{r} - \nu \left(\sigma_{\theta} + \sigma_{z} \right) \right) + \alpha \cdot T(r) + \frac{S(T(r), t)}{3},$$

$$\varepsilon_{\theta} = \frac{1}{E} \left(\sigma_{\theta} - \nu \left(\sigma_{r} + \sigma_{z} \right) \right) + \alpha \cdot T(r) + \frac{S(T(r), t)}{3},$$

$$\varepsilon_{z} = \frac{1}{E} \left(\sigma_{z} - \nu \left(\sigma_{\theta} + \sigma_{r} \right) \right) + \alpha \cdot T(r) + \frac{S(T(r), t)}{3},$$
(4)

где а – коэффициент линейного расширения материала. Геометрические соотношения Коши, связывающие перемещения и деформации:

$$\varepsilon_r = \frac{du_r}{dr}, \ \varepsilon_\theta = \frac{u_r}{r}, \ \varepsilon_z = 0.$$
(5)

Учитывая (4), (5), выразим компоненты напряжений рассматриваемой задачи через перемещения:

$$\sigma_{\sigma} = \frac{E}{(1-2\nu)(1+\nu)} \cdot \left(\left(1-\nu\right) \cdot \frac{du_{r}}{dr} + \nu \cdot \frac{u_{r}}{r} - (1+\nu) \cdot \left(\alpha \cdot T + \frac{S}{3}\right) \right),$$

$$\sigma_{\sigma} = \frac{E}{(1-2\nu)(1+\nu)} \cdot \left((1-\nu) \cdot \frac{u_{r}}{r} + \nu \cdot \frac{du_{r}}{dr} - (1+\nu) \cdot \left(\alpha \cdot T + \frac{S}{3}\right) \right), \quad (6)$$

$$\sigma_{z} = \frac{E}{(1-2\nu)} \cdot \left(\frac{\nu}{1+\nu} \cdot \left(\frac{du_{r}}{dr} + \frac{u_{r}}{r} \right) - \left(\alpha \cdot T + \frac{S}{3} \right) \right).$$

Решая совместно уравнения (1), (6), получим дифференциальное уравнение равновесия в перемещениях.

$$\frac{d^2u_r}{dr^2} + \frac{1}{r}\frac{du_r}{dr} - \frac{u_r}{r^2} = \frac{1+\nu}{1-\nu}\left(\alpha \cdot \frac{dT}{dr} + \frac{1}{3}\frac{dS}{dr}\right),\tag{7}$$

где v – коэффициент Пуассона.

그들 물건을 많은 것 같아. 그는

Решение полученного неоднородного дифференциального уравнения разыскивается в виде суммы \overline{u}_{r} общего решения однородного уравнения

$$\frac{d^2 u_r}{dr^2} + \frac{1}{r} \frac{du_r}{dr} - \frac{u_r}{r^2} = 0$$
 и частного решения u_r^* неоднородного уравнения (7):

$$(a) u_r = \overline{u}_r + u_r^*.$$
 (8)

Общее решение, удовлетворяющее однородному уравнению, имеет вид:

$$\overline{u}_r = C_1 \cdot r + \frac{C_2}{r}, \tag{9}$$

где C₁, C₂ – постоянные интегрирования.

Для определения частного решения (6) применен принцип суперпозиции: $u_r^* = u_{r1}^* + u_{r2}^*$, где u_{r1}^*, u_{r2}^* - частные решения ДУ

$$\frac{d^2 u_r}{dr^2} + \frac{1}{r} \frac{du_r}{dr} - \frac{u_r}{r^2} = \alpha \cdot \frac{1 + \nu}{1 - \nu} \frac{dT}{dr},$$
(10)

$$\frac{d^2 u_r}{dr^2} + \frac{1}{r} \frac{du_r}{dr} - \frac{u_r}{r^2} = \frac{1}{3} \cdot \frac{1+\nu}{1-\nu} \cdot \frac{dS}{dr}$$
(11)

соответственно.

Решение u_{r1}^* получено в виде:

$$u_{r_1}^* = -\frac{1}{16} \cdot \frac{\alpha q_v}{\lambda} \cdot \frac{1+v}{1-v} \cdot r^3.$$
 (12)

Ввиду сложности эмпирической функции радиационного распухания полобрать частное решение (11) в аналитическом виде не удалось. Проведена аппроксимацию функции S полиномом 3-й степени $y = A + Br + Cr^2 + Dr^3$. Определение постоянных A, B, C, D ввиду громоздкости математических вычислений проводилось с учетом характеристик для материала ОХ16H15M3Б, где принято $\Phi = 2,81 \cdot 10^{19}$ нейтр./(см²·ч), $\alpha = 16 \cdot 10^{-6}$ град⁻¹, $\nu = 0,3$, $E = 1,5 \cdot 10^{11}$ Па, $T_s = 700^{\circ}C, \lambda = 12$ Вт/ (м·град), $q_{\nu} = 2,234 \cdot 10^{8}$ Вт/м³, t=1000 ч. [1]. Окончательно получена следующая зависимость аппроксимирующей функции от радиуса: $y = 0,002267 + 0,005185r + 75,309r^2 + 7316r^3$.

しょうかんごう

Дифференциальное уравнение (11) с учетом аппроксимации принимает вид:

$$\frac{d^2u_r}{dr^2} + \frac{1}{r}\frac{du_r}{dr} - \frac{u_r}{r^2} = 0,005185 + 150,618r + 21948r^2.$$
(13)

Окончательно решение (7) с учетом граничных условий получено в виде: $u = 0.02255126\ddot{r} + 0.00172833r^2 - 20.71654r^3 + 1463.2r^4.$ (14)

Получены значения компонент напряжения $\sigma_r, \sigma_{\theta}, \sigma_z$ и деформаций $\varepsilon_r, \varepsilon_{\theta}$ в зависимости от координаты. Исследована их зависимость от времени облучения и свойств материала. Кроме того, проведено исследование влияния температуры и радиационного распухания на напряжения в отдельности.

Типичные зависимости напряжений от радиуса для момента времени t=1000 часов приведены на рисунке 2.

Ввиду отсутствия аналитических решений, сравнение проводилось с результатами решения термоупругой задачи при отсутствии радиационного воздействия [2]. Результаты сравнения подтверждают правильность разработанной методики.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Куликов, И.С. Прочность тепловыделяющих элементов быстрых газоохлаждаемых реакторов / Под ред. В.Б. Нестеренко. — Мн.: Наука и техника, 1984. — 103 с. Сталова и слав 2. Тимошенко, С.П. Теория упругости / С.П. Тимошенко, Дж. Гудьер. — М.: Наука, 1975. — 576 с.

志 2件 医安特克 计编辑字句 网络原

УДК 533.9

ИНТЕНСИФИКАЦИЯ ТЕПЛООБМЕНА РАЗВИТЫМ Турбулентным потоком плазмы

Сазонов М.И., Веремейчик А.И. Брестский государственный технический университет, Брест, Республика Беларусь

Для разработки методики расчета теплообмена между развитым турбулентным потоком плазмы и деталями создан дуговой плазмотрон постоянного тока с секционированной электроразрядной камерой и анодом. Изучены распределения тока и тепловых потоков вдоль анода, определены зона шунтирования дуги в аноде и область размещения деталей для исследования теплообмена за этой зоной.