Список цитированных источников

1. Бетонные и железобетонные работы. Справочник строителя. – Москва: Стройиздат, 1987. – 320 с.

2. Проблемы коррозии арматуры и долговечности железобетонных конструкций / Пер. с франц. // Транспортное строительство за рубежом. – Москва, 1984. – № 22. – С. 5–9.

УДК 621.762; 691.002(032)

ВЛИЯНИЕ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ НА СВОЙСТВА ЦЕМЕНТА

Рябчиков П.В., Батяновский Э.И., Якимович В.Д.

Введение. Для бетонов на цементном вяжущем из множества факторов, влияющих на процессы становления их свойств, определяющим является образование, накопление и системное взаиморасположение гидрокристаллов силикатной, алюминатной и ферритной составляющих портландцементного клинкера. Учитывая наноразмеры (~ 8-15 х 10-9 м) гидрокристаллов, специфику их образования и последующего взаимодействия, возможно предположить эффективность введения в такую систему твердофазных частиц иного, в частности, углеродного наноматериала. При этом возможно проявление эффективности двоякого рода: во-первых, ультрамикродисперсный углеродный наноматериал, характеризующийся огромным и сконцентрированным в нанообъеме потенциалом поверхности, может послужить катализатором процесса образования гидрокристаллов как более интенсивно (ускоренно) во времени, так и в значительно большем количестве; во-вторых, введение углеродных наноматериалов в виде волокон (нитей) могут способствовать проявлению армирующего эффекта на наноуровне, т.е. в формирующейся системе гидрокристаллических новообразований в объеме твердеющего цементного камня. В обоих случаях (но по различающимся схемам проявления эффекта) возможно повышение прочностных характеристик цементного камня, а на этой основе – бетона.

Для проверки выдвинутых гипотез в 2006 г. были начаты системные исследования, которые осуществляются совместно институтом тепло- и массообмена НАН Беларуси и Белорусским национальным техническим университетом на базе кафедры «Технология бетона и строительные материалы» и ее научно-исследовательской лаборатории.

Получение и разновидности углеродных наноматериалов. Вскоре после создания технологии получения фуллеренов (США, Р. Смоли, В. Курл, Т, Крото, 1984г.) было обнаружено, что в результате распыления графитового анода в электрической дуге наряду с молекулами фуллеренов образуются протяжённые структуры, представляющие собой свернутые в однослойную или многослойную трубку графитовые слои. Длина таких образований, получивших название «нанотрубки», достигает десятков микрон и на несколько порядков превышает их диаметр. При этом в отличие от фуллеренов, которые осаждаются вместе с сажей на стенках газоразрядной камеры, нанотрубки находятся преимущественно на поверхности катода. Как показали наблюдения, углеродные нанотрубки сочетают в себе свойства молекул и твердого тела и могут рассматриваться как промежуточное состояние вещества.

В процессе развития технологий получения углеродных наноматериалов (УНМ) [1-9 и др.] была выявлена множественность видов строения и размеров

формирующихся в различных условиях наноструктур, полученных различными методами и с использованием различных материалов, подвергавшихся разным способам модификации, разными приемами и веществами дополнительно обработанных (рис. 1).

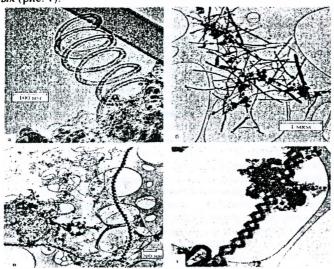


Рисунок I — Полученные с помощью электропного микроскопа фотографии структур углерода, образующихся в результате электролитического разрушения графитного катода

Результатами исследований по означенной проблеме, выполненных в институте тепло- и массообмена имени Лыкова НАН Беларуси, явилась разработка уникального способа их получения в плазме высоковольтного разряда [10] и создание соответствующего оборудования для реализации технологии производства УНМ [11]. Дальнейшее ее совершенствование позволило запатентовать способ получения углеродного наноматериала [12] в плазме высоковольтного разряда атмосферного давления (ВВРАД). Степень «чистоты» и качества полученного УНМ подтверждают данные работы [9, 13, 14] и данные института тепло- и массообмена НАН Беларуси [11, 12] по неочищенным углеродным наноматериалам.

В результате в Беларуси были созданы основы производства УНМ в количестве, достаточном не только для изучения свойств этих материалов, но и для

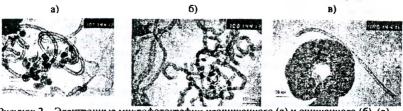


Рисунок 2 – Электронные микрофотографии неочищенного (a) и очищенного (б), (в) углеродного наноматериала

исследований по их практическому применению, в частности, в строительной отрасли. Задачами исследований, результаты которых частично приведены в настоящем материале, являлось установление закономерностей влияния разнообразных углеродных наноматериалов, полученных в ИТМО НАН Беларуси, на стандартизированные свойства цемента, на прочность и кинетику твердения цементного камня, его морфологию и структурообразование, на возможные изменения эффективности УНМ в зависимости от фазового состояния и способа введения вещества добавки в цемент и т.д.

Введение УНМ в цемент (раствор, бетон). В экспериментах использовали твердофазные вещества «УНМ», полученные в плазменном разряде; «УНМ-торф» — полученные из органического сырья; «УНМ-ПАВ» — полученные с введением поверхностно-активных веществ; суспензионные вещества (в воде), а также готовое вяжущее — портландцемент, с введенным в его состав УНМ путем совместного домола в лабораторной (шаровой) мельнице. Одной из задач исследований было решение проблемы равномерного распределения малых дозировок вещества УНМ: 0,1....0,001 % от массы цемента, в его объеме, которое осуществлено следующими приемами:

- предварительным смешиванием сухого вяжущего с сухим порошкообразным веществом в скоростных лопостных минисмесителях:

предварительным смешиванием вяжущего с сухим порошкообразным веществом путем совместного домола в шаровой лабораторной мельнице;

– введением суспензионных и сухих порошкообразных УНМ в воду и образование суспензии в объеме воды затворения цемента путем интенсивного перемешивания (эмульгирования) перед введением ее в цемент;

- введение сухого порошкообразного УНМ в цемент (раствор, бетон) путем «эжекции», т.е. факелообразным направленным распылением с помощью сжатого воздуха, в процессе приготовления цементного теста (раствора, бетона).

Стандартизированные свойства цемента. В процессе выполнения исследований осуществлена проверка стандартизированных свойств цемента и бетонных смесей на вяжущем, модифицированном веществом УНМ. Из полученных экспериментальных данных следует, что введение в цемент с $K_{\rm NT}\sim 0.25-0.28$ вещества УНМ как в сухом, так и в суспензионном виде не изменяет практически величин коэффициента нормальной густоты вяжущего.

Установлено, что вещество добавки УНМ способно как сокращать сроки схватывания (эта тенденция благоприятна с позиций возможного ускорения гидролизно-гидратационного процесса и связанного с ним коагуляционного структурообразования), так и увеличивать их для УНМ, полученных из органических веществ, а также содержащих ПАВ, в сравнении с чистым вяжущим.

Проверка равномерности изменения объема показала, что введение в цемент всех исследуемых разновидностей УНМ до 0,1 % от его массы не вызывает ухудшения этого показателя.

Испытания на активность цементов М400–М600 показали, что введение в цемент некоторых разновидностей УНМ позволяет повысить ее до 30% от исходной и зависит от вещественного состава добавки, что требует выполнения дополнительных исследований с целью выявления причин и закономерностей данного явления.

Прочность и морфология цементного камня. На рисунках $\mathbb{N}\mathbb{N}$ 1 (а-г) приведены систематизированные, наиболее характерные и значимые данные результатов экспериментальных исследований влияния различных УНМ на прочность цементного камня.

Несмотря на существенный (а в отдельных случаях и взаимоисключающий) разброс величин прочности (на сжатие) образцов цементного камня $20 \times 20 \times 20$ мм, модифицированного тем или иным вариантом УНМ, относительно прочности «чистого» цементного камня, принятой за 100 % и полученной «при прочих равных условиях», выявлены вещества, способствующие в малых (до 0,05%) дозировках росту его прочности.

Подтверждена эффективность введения УНМ в цемент совместным домолом, что позволяет рассчитывать на эффективность введения УНМ в вяжущее на стадии его производства, например, при помоле портландцементного клинкера.

Введение в цемент потенциально активного вещества УНМ может вызвать изменения как в развитии реакций его взаимодействия с водой, так и в образующихся при этом продуктах гидратации. С целью проверки данного предположения были выполнены начальные исследования проб затвердевшего цементного камня методом термического разложения (детермического анализа) и рентгено-фазового анализа.

Полученные дериватограммы (рис. 2, а и б) температурного разложения проб (приведены частично) цементного камня без и с наличием вещества УНМ (0,05% от МЦ) свидетельствуют об их подобии вплоть до температуры, примерно в 600 °C. За пределами этой температуры есть отличия в графиках «ДТА» и «ДТГ», свидетельствующие об изменении реакций разложения в этой температурной области в пробах цементного камня с УНМ. Эти данные подтверждают результаты рентгено-фазового анализа (не приведены в статье). Можно предположить, что это явление связано с влиянием вещества УНМ на морфологию новообразований, т.к. температурная «зона» разложения основной части гидрокристаллов (выделения химически связанной ими воды) приходится, примерно, на ≥ 600 °C (см. дериватограмму «чистого» цементного камня, рис. 2,а). Не исключено также, что рассматриваемые изменения дериватограмм связаны с разложением собственно вещества УНМ, т.к. температурное разложение разновидностей графита соответствует диалазону значений t ~ 670-830°C (для сажи), t ≥ 900°С (для чистого графита). С учетом этого обстоятельства выполняются дальнейшие исследования.

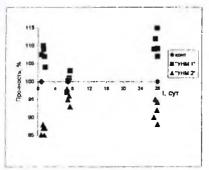
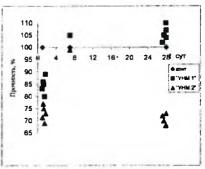
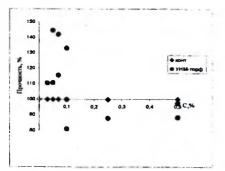
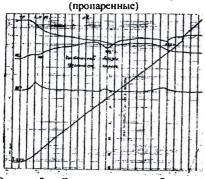


Рисунок 1а – Прочность цементного камня с УНМ (С-0,05% от МЦ) нормально-влажностного твердения


Рисунок 16 – Прочность цементного камня с УНМ (С-0,05% от МЦ) пропаренные

| 120 | 170

Рисунок 1в – Прочность цементного камия с УНМ-торф в зависимости от дозировки

Рисунок 1r – Прочность цементного камия с УНМ-торф домолотого

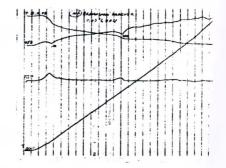


Рисунок 2a – Дериватограмма пробы «чистого» цементного камня

Рисунок 26 – Дериватограмма пробы цементного камня, содержащего 0,05 % УНМ от МЦ

Заключение. Накопленный опыт теоретических и экспериментальных исследований свидетельствует о перспективности применения УНМ в цементных бетонах. Основными направлениями выполняемых работ являются исследования их эффективности в высокопрочных (более 100 МПа) бетонах и материалах поризованной структуры, в которых применение УНМ представляется наиболее перспективным.

Список цитированных источников

- 1.Kroto, H.W. et al. Nature. 1985. Vol. 318. -162 p.
- 2. Iijima, S. Nature. 1991. Vol. 354. -56 p.
- 3. Ebbesen, T. W. and Ajayan, P.M., Nature. 1992. Vol. 358. P. 220-222.
- 4. Dresselhaus, M.S. Nature 1992 Vol. 358. 195 p.
- 5. Yudasaka, Masako, Kikuchi, Rie, Matsui, Takeo, Ohki, Yoshimasa, Yoshimura, Susumu, and Ota, Etsuro, Applied Physics Letters. 1995. Vol. 67. 17 p.
 - 6. Kraetschmer, W. et al. Nature. 1990. Vol. 347. 354 p.
 - 7. Tsang, S.C., Harris, P.J.F., Green, M.L.H. Nature. 1993. Vol. 362. 520 p.
 - 8. Pederson M.R. Broughton J.Q. Phys. Rev. Lett., 1992, Vol. 69, p.2689.
 - 9. Елецкий, А.В. УФН, 1997 Т. 167. №9. С. 945-972.

- 10. Zhdanok, S.A. et al. Fifth ISTC Scientific Advisory Committee Seminar «Nanotechnologies in the area of physics, chemistry and biotechnology» St Petersburg, Russia, 27-29 May, 2002.
- 11. Жданок, С.А., Крауклис, А.В., Самцов, П.П., Волжанкин, В.М. Установка для получения углеродных наноматериалов. патент № 2839
- 12. Жданок, С.А., Крауклис, А.В. [и др.] Плазмохимический реактор конверсии утлеводородов в электрическом разряде: патент № 3125.
 - 13. Hsu, W.K. et al. Nature. 1995. Vol. 677. 687 p
 - 14. Hsu, W.K. et al. Chem. Phys. Lett. 1996. Vol. 262. 161 p.

УДК 69.057.5:532.11:691.327

ВЛИЯНИЕ ИНТЕНСИВНОСТИ БЕТОНИРОВАНИЯ И ВНУТРЕННЕГО ВИБРИРОВАНИЯ НА БОКОВОЕ ДАВЛЕНИЕ БЕТОННОЙ СМЕСИ НА ОПАЛУБКУ

Марковский М.Ф.

Введение. В реальной практике строительства бетонирование монолитных конструкций во многих случаях происходит с различными темпами и с применением внутреннего вибрирования для уплотнения бетонной смеси. Известно, что боковое давление бетонной смеси в начальный период близко к гидростатическому. По мере гидратации вяжущего происходит снижение бокового давления смеси на опалубку. Нам необходимо понимать, что происходит во время укладки бетона, и уметь прогнозировать развитие максимального бокового давления в зависимости от скорости бетонирования. Вне зоны действия внутреннего вибратора колебания в бетонной смеси затухают и смесь приобретает свойства реологического тела со своими параметрами.

Влияние интенсивности бетонирования на распределение бокового давления бетонной смеси. Ранее нами исследовалось распределение давления бетонной смеси на вертикальную опалубку стен и колонн [1]. Полученные зависимости показывают линейный характер распределения давления по высоте опалубки, близкий к гидростатическому распределению.

По мере гидратации вяжущего происходит рост прочности свежеуложенного бетона до тех пор, пока в конце процесса твердения бетона t_{k_0} он может выдержать любую нагрузку от собственного веса вышележащего бетона без учета сопротивления опалубки. Этот параметр t_E использован в ряде работ, а также при разработке немецких норм по расчету бокового давления бетонной смеси [2, 3].

Временной фактор оказывает влияние на рост реологических параметров бетонной смеси в объемс и пристенном слое и соответственно на изменение коэффициента бокового давления ($\xi(t)$)

$$\xi(t) = \frac{\sigma_{s}(t)}{\sigma_{t}(t)} = \frac{\sigma_{s}(t)}{\sigma_{s}(t)},\tag{1}$$

где $\sigma_{x}(t)$, $\sigma_{y}(t)$, $\sigma_{x}(t)$ – компоненты напряжения в бетонной смеси в соответствии с [1].

Аналитическое описание изменения во времени бокового давления бетонной смеси на опалубку может базироваться на следующей модели.