Учреждение образования «Брестский государственный технический университет» Факультет инженерных систем и экологии Кафедра теплогазоснабжения и вентиляциии

СОГЛАСОВАНО

Заведующий кафедрой

В.Г.Новосельцев

«28 ждекабря 2022 г.

СОГЛАСОВАНО

Декан факультета

— О.П.Мешик

«28 »декабря 2022 г.

ЭЛЕКТРОННЫЙ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «НАСОСЫ, ВЕНТИЛЯТОРЫ И КОМПРЕССОРЫ»

для специальности:

1-70 04 02 Теплогазоснабжение, вентиляция и охрана воздушного бассей ...

Составитель: Клюева Елена Владимировна, старший преподаватель кафедры теплогазоснабжения и вентиляции

Рассмотрено и утверждено на заседании Научно-методического совет. БрГТУ протокол № $\underline{3}$ от $\underline{29.12.2022}$.

per NYKER AR/23-91

ПЕРЕЧЕНЬ МАТЕРИАЛОВ В КОМПЛЕКСЕ

Электронный учебно-методический комплекс содержит:

1. Теоретический раздел

- Тема 1. Введение. Классификация и принцип действия нагнетателей
- <u>Тема 2. Устройство нагнетателей, устанавливаемых в инженерных</u> системах
- Тема 3. Движение жидкости в рабочем колесе нагнетателя
- Тема 4. Характеристики нагнетателей
- Тема 5. Работа нагнетателей в сети
- <u>Тема 6. Общие вопросы применения нагнетателей: устойчивость работы, монтаж, наладка и испытание насосов и вентиляторов</u>
- 2. Практический раздел
 - 2.1 Материалы для лабораторных работ по дисциплине «Насосы, вентиляторы и компрессоры»
- 3. Раздел контроля знаний
 - 3.1 Вопросы к экзамену
- 4. Вспомогательный раздел
 - 4.1 Учебная программа дисциплины «Насосы, вентиляторы и компрессоры»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Актуальность изучения дисциплины

Дисциплина «Насосы, вентиляторы и компрессоры» является основой профессиональной подготовки специалистов по специальности 1-70 04 02 «Теплогазоснабжение, вентиляция и охрана воздушного бассейна».

Дисциплина «Насосы, вентиляторы и компрессоры» является основой профессиональной подготовки специалистов по специальности 1-70 04 02 «Теплогазоснабжение, вентиляция охрана воздушного И Основной задачей изучения дисциплины является подготовка инженера, способного успешно реализовать свои знания при разработке и эксплуатации систем ТГВ, усвоение студентами теоретических основ функционирования, конструктивных особенностей, принципов применения, принципов способов работой нагнетателей, управления применяемых теплогазоснабжении квалификационной вентиляции И согласно характеристики.

Цели ЭУМК:

беспечение качественного методического сопровождения процесса обучения;

- обеспечение открытости и доступности образовательных ресурсов путем размещения ЭУМК в локальной сети университета;
 - организация эффективной самостоятельной работы студентов.

Структура электронного учебно-методического комплекса по дисциплине «Насосы, вентиляторы и компрессоры»:

Теоретический раздел ЭУМК содержит материалы для теоретического изучения учебной дисциплины и представлен конспектом лекций.

Практический раздел ЭУМК содержит материалы для проведения лабораторных учебных занятий в виде лабораторного практикума.

Раздел контроля знаний ЭУМК содержит материалы для двух промежуточных аттестаций и экзамена (экзаменационных вопросов), позволяющие определить соответствие результатов учебной деятельности требованиям образовательных обучающихся стандартов высшего учебно-программной документации образования И образовательных программ высшего образования.

Вспомогательный раздел включает учебные программы учреждения высшего образования по учебной дисциплине «Насосы, вентиляторы и компрессоры», список основной и дополнительной литературы.

Рекомендации по организации работы с ЭУМК:

- лекции проводятся с использованием персонального компьютера и мультимедийного проектора;
- при подготовке к экзамену, выполнению и защите лабораторных работ студенты могут использовать конспект лекций, техническую, основную и вспомогательную литературу;
- лабораторные занятия проводятся с использованием, представленных в ЭУМК, методических материалов лабораторного практикума;
- в течение семестра проводятся промежуточные аттестационные работы, экзамены проводятся в письменном виде, вопросы для экзамена приведены в разделе контроля знаний.

1. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

ТЕМА 1. ВВЕДЕНИЕ. КЛАССИФИКАЦИЯ И ПРИНЦИП ДЕЙСТВИЯ НАГНЕТАТЕЛЕЙ

- 1. Введение. Основные понятия и определения.
- 2. Классификация нагнетателей (по принципу действия, по назначению, по виду перемещаемой среды, по развиваемому давлению и производительности).
- 3. Применение нагнетателей в теплогазоснабжении, вентиляции и кондиционировании. (Основные требования к нагнетателям инженерных систем).
 - 4. Основные параметры нагнетателей.

1. Введение. Основные понятия и определения

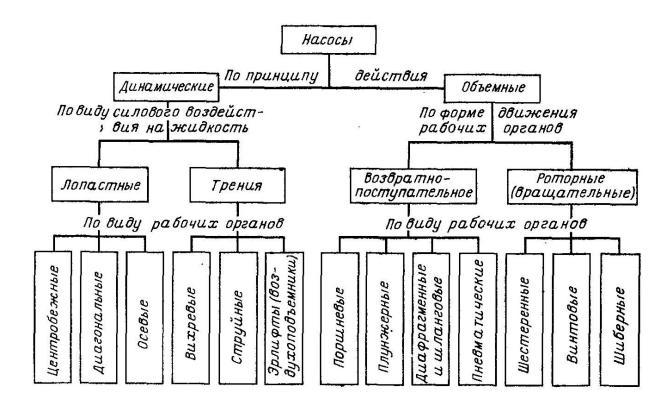
Гидравлической машиной называют устройство, преобразующее механическую работу в энергию потока жидкости и наоборот.

Гидравлическая машина, в которой происходит преобразование механической работы в механическую энергию жидкости называется нагнетателем.

К нагнетателям относятся насосы и воздуходувные машины. Воздуходувные машины служат для повышения давления и подачи воздуха или другого газа. В зависимости от степени сжатия воздуходувные машины разделяют на *вентиляторы и компрессоры*.

Вентилятор — воздуходувная машина, предназначенная для подачи воздуха (газа) под давлением до 15 кПа при организации воздухообмена.

Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха (газа) под давлением не ниже 0,2 МПа.


Hacoc – устройство, служащее для напорного перемещения (всасывания, нагнетания) жидкости в результате сообщения ей энергии.

2. Классификация нагнетателей

(по принципу действия, по назначению, по виду перемещаемой среды, по развиваемому давлению и производительности).

Объемные — работают по принципу вытеснения, когда давление перемещаемой среды повышается в результате сжатия.

Динамические нагнетатели — работают по принципу силового воздействия на перемещаемую среду.

По назначению:

- 1. Питательные (используемые в том случае, если давление в городской системе водоснабжения недостаточно для водоснабжения большого здания);
- 2. Циркуляционные (для систем ГВС, обеспечивающие наличие горячей воды в любое время в любом месте забора);
- 3. Откачивающие (для грязной воды, использование которых необходимо в том случае, если сточные воды или воды, содержащие фекалии, скапливаются, ниже уровня обратного подпора);
- 4. Конденсатные (для ТЭС);
- 5. Специальные насосы (используемые в домашнем хозяйстве и промышленности).

По принципу действия:

- 1. Объемные
- 2. Динамические
- 3. Вихревые

По развиваемому давлению:

- 1. Низкого
- 2. Среднего
- 3. Высокого

По производительности:

- 1. По напору:
- Низконапорные (до 20 м),
- средненапорные от (20 до 60),
- высоконапорные (свыше 60)
- 2. По мощности:

- микронасосы (до 0,4 кВт),
- мелкие (до 4 кВт),
- малые (до 100 кВт при подаче 0,5 м3/с),
- средние (до 400 кВт),
- крупные (свыше 400 кВт при подаче выше 0,5 м3/с),
- уникальные (свыше 8000 кВт при подаче свыше 20 м3/с).

По числу ступеней:

- 1.одноступенчатые
- 2.многоступенчатые

По числу сторон подвода воды к насосу:

- 1.одностороннее всасывание
- 2. двухстороннее всасывание

По коэффициенту быстроходности:

- 1.тихоходные
- 2.быстроходные

По роду перекачиваемой жидкости:

- 1.общего назначения (чистые среды t=105C)
- 2. сточные (загрязненные t=100C)
- 3. теплофикационные (для перекачивания жидкостей t более 100C)
- 4.химические
- 5.багерные (шлак)
- 6.шламовые (зола)
- 7. грунтовые (пульпа, песок)

По условиям монтажа:

- 1. наземные
- 2.погружные

3. Применение нагнетателей в теплогазоснабжении, вентиляции и кондиционировании

Нагнетатели различных типов находят широкое применение в системах вентиляции и кондиционирования воздуха гражданских, общественных и промышленных зданий, в системах тепло-, газо- и водоснабжения, в различных теплоэнергетических установках, в химической, добывающей, машиностроительной и других отраслях народного хозяйства.

Центробежные насосы применяют для:

- подачи сетевой волы в системах теплоснабжения;
- для гидрозолоудаления, питания котлоагрегатов и подачи конденсата в системе подогрева питательной воды в теплоэнергетических установках.

Радиальные вентиляторы используют для:

- отсасывания дымовых газов из топок котельных агрегатов (дымососы);
- подачи воздуха в топки котлоагрегатов (дутьевые вентиляторы);
- сжигания в топках котлоагрегатов неагрессивной угольной пыли (мельничными вентиляторами);

- создания микроклимата в ограниченном пространстве, охлаждения радиоэлектронной аппаратуры и обслуживания портативных фильтров.
- пневмотранспорта деревообрабатывающих, металлургических, машиностроительных и других предприятий.
- *прямоточные* радиальные вентиляторы используют в системах кондиционирования и установках с ограниченными размерами.

Осевые нагнетатели широко применяются как в качестве вентиляторов, так и θ качестве насосов.

Осевые вентиляторы используют:

- в установках местного проветривания для вентиляции отдельных выработок, стволов и участков шахтной вентиляционной сети;
 - в вентиляторных градирнях тепловых электростанций;
 - для проветривания станций и перегонных тоннелей метрополитена;
 - для подачи циркуляционной воды в конденсаторы турбин.

Смерчевые вентиляторы применяют для перемещения среды, которую нельзя подвергать механическому повреждению, а также для пневматического транспортирования материалов, вызывающих большой износ лопаток и дисков рабочих колес.

Дисковые вентиляторы устанавливаются в местных кондиционерах для вентиляции помещений.

Вихревые насосы:

- применяют в химической промышленности для подачи кислот, щелочей и других химически агрессивных реагентов; в системах перекачки сжиженного газа;
- используют в качестве вакуум-насосов и компрессоров низкого давления.

Диаметральные вентиляторы широко используются в системах вентиляции и кондиционирования воздуха кабин самоходных сельскохозяйственных машин, в лазерных технологических установках, в электротермическом оборудовании, в бытовых установках и т. п.

Поршневые насосы применяются:

- для питания паровых котлоагрегатов малой паропроиэводительности и в качестве дозаторов реагентов для поддержания требуемого качества питательной и котловой воды крупных котлоагрегатов;
- для обдува поверхностен нагрева котельных агрегатов с целью их очистки от летучих золы и сажи, а также для снабжения сжатым воздухом пневматического инструмента.

Струйные нагнетатели примененяются:

- в водоснабжении;
- в промышленной теплоэнергетике;
- в теплофикационных установках (в качестве элеваторов на вводах теплосети в здания);
- в системах вентиляции цехов химических предприятий, взрыво- и пожароопасных помещений (в качестве эжекторов в вытяжных установках;
 - в холодильных установках;

- в передвижных паросиловых установках (в качестве инжекторов);
- в установках пневмо- и гидротранспорта.

Газлифты применяются:

- при необходимости подачи агрессивных жидкостей на небольшую высоту в химической и пищевой промышленности.
- для подъема воды из буровых скважин основного или резервного хозяйственного водоснабжения на тепловых электростанциях.

Центробежные компрессоры используют:

- в химическом и металлургическом производстве;
- в системах магистрального газоснабжения;
- в различных пневматических устройствах на машиностроительных и металлообрабатывающих заводах;
- в горнодобывающей и нефтяной, промышленности, при производстве строительных и ремонтных работ;
- в газовой промышленности при добыче, транспортировке и использовании природных и искусственных газов.

4. Основные параметры нагнетателей

Работа любого нагнетателя характеризуется его рабочими параметрами, главными из которых являются: подача, напор (давление), мощность и КПД.

Основные параметры работы нагнетателей

Основные потребительские и технические	Энергетические (энергосберегаю щие)	Санитарно- гигиенические	Эксплуатационные
L -	N -потребляемая	Уровень шума	-вибрация
Производительно	мощность	(определяемый	Спец.условия:
сть (Q -подача)	η-КПД	окружной	-взрыво-,
Р-Давление		скоростью)	пожаробезопасность
H- Напор			-устойчивость к
			агрессивным средам
n -Число оборотов			и высоким t
РК (ω-угловая			-период
скорость)			эксплуатации до
u - Окружная			кап.ремонта
скорость			-гарантийный срок
			эксплуатации

Подача насоса или расход (\mathbf{Q}) — объем (масса) жидкости, подаваемой насосом в единицу времени (расход жидкости, проходящей в трубопроводе, равен подаче нагнетателя, сообщающего этой жидкости движение).

$$Q = V$$
, M^3/c $(M^3/4)$;

Напором или давлением **(H)** – называется приращение удельной энергии потока жидкости при прохождении ее черед рабочие органы насоса.

$$H = \frac{p_2 - p_1}{\rho g} = \frac{\Delta p}{\rho g}, M;$$

р₁ - давление жидкости на входе в насос, м;

р₂ - давление жидкости на выходе из насоса, м;

∆р - перепад давления;

 ρ - плотность перекачиваемой жидкости, кг/м³;

g - ускорение свободного падения, M/c^2 .

Мощность насоса (N) — мощность потребляемая насосом для создания определенных Q и H:

$$N = \frac{\rho g Q H}{\eta},$$

η - КПД насоса.

Полезная мощность насоса (N_n) — мощность сообщаемая насосом перекачиваемой жидкости.

$$N_{\pi} = H \rho g Q = \Delta p Q$$
, Bt.

Коэффициент полезного действия насоса — отношение полезной мощности к мощности насоса:

$$\eta = \frac{N_{\pi}}{N}$$

КПД учитывает снижение мощности насоса вследствие потерь и равен произведению:

$$\eta = \eta_{_{\Gamma}} \cdot \eta_{_{O}} \cdot \eta_{_{M}}$$

 $\eta_{\scriptscriptstyle \Gamma}$ - гидравлический КПД (оценивает гидравлические потери напора на движение жидкости в каналах гидромашины);

 η_{o} - объемный КПД (учитывает объемные потери на утечки и циркуляцию жидкости через зазоры внутри гидромашины из области высокого давления в область низкого);

 $\eta_{_{\rm M}}$ - механический КПД (оценивает механические потери на трение в подшипниках и уплотнениях гидромашины).

Вернуться в оглавление

ТЕМА 2. УСТРОЙСТВО НАГНЕТАТЕЛЕЙ, УСТАНАВЛИВАЕМЫХ В ИНЖЕНЕРНЫХ СИСТЕМАХ

1. Схемы и принцип действия нагнетателей разного типа:

- Радиальный вентилятор со спиральным кожухом.
- Осевой вентилятор.
- Прямоточный радиальный вентилятор.
- Смерчевой вентилятор.
- Дисковый вентилятор.
- Вихревой насос.
- Диаметральный вентилятор.
- Поршневой нагнетатель.
- Зубчатый (шестеренный) насос.
- Пластинчатый нагнетатель.
- Пневматический нагнетатель (подъемник), газлифты.
- 2. Достоинства и недостатки нагнетателей разного типа.

1. Схемы и принцип действия нагнетателей разного типа

В радиальном вентиляторе со спиральным кожухом (рис. 1) перемещаемая среда, двигаясь в осевом направлении через всасывающий коллектор, попадает на вращающееся рабочее колесо, снабженное лопатками, изменяет направление своего движения к периферии колеса, закручивается в направлении вращения, поступает в спиральный кожух и затем через отверстие выходит из нагнетателя. Рабочее колесо сидит на валу и приводится во вращение приводом. Вал вращается в подшипниках, укрепленных на станине или непосредственно на кожухе.

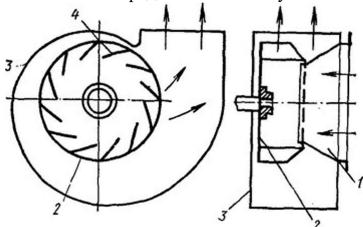


Рис. 1. Схема радиального вентилятора

1 - коллектор; 2 - рабочее колесо; 3 - спиральный кожух; 4 - лопатка

Аналогичную конструкцию и принцип действия имеет центробежный насос, изображенный на рис. 2.

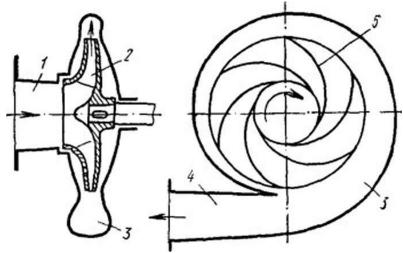


Рис. 2. Схема центробежного насоса 1 - входной патрубок; 2 - рабочее колесо; 3 - корпус; 4 - нагнетательный патрубок; 5 - лопатка.

В осевом вентиляторе (рис. 3а) поток движется пре имущественно в направлении оси вращения и некоторое закручивание приобретает лишь при выходе из колеса. Поток через коллектор поступает во входной направляющий аппарат, затем в рабочее колесо и в выходной направляющий аппарат. Колесо сидит на валу, вращающемся в подшипниках, укрепленных на стойках.

Колесо и направляющие аппараты заключены в кожух (обечайку). Втулка рабочего колеса имеет обтекатель.

Как в осевом, так и в радиальном вентиляторе передача энергии от двигателя потоку среды происходит во вращающемся рабочем колесе.

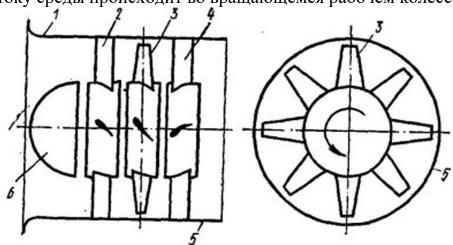


Рис. За. Схема осевого вентилятора

1 - коллектор; 2 - входной направляющий аппарат; 3 - рабочее колесо; 4 выходной направляющий аппарат; 5 - кожух (обечайка); 6 - обтекатель.

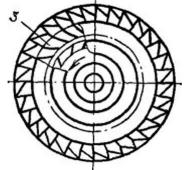


Рис. 36. Схема осевого насоса

Аналогичную конструкцию и принцип действия имеет осевой насос, схема которого изображена на рис. 3б (схема рабочего органа осевого насоса).

- 1 корпус, 2 ступица, 3 лопасти,
- 4 вращающийся аппарат с рядом лопастей, 5 вал.

В прямоточном радиальном вентиляторе (рис. 4) перемещаемая среда вначале также движется в осевом направлении и поступает во вращающееся рабочее колесо, где под действием центробежной силы проходит в радиальном направлении в межлопаточном пространстве и выходит в осевом направлении по кольцу через радиальный лопастной диффузор, стенки которого имеют криволинейную форму, а лопатки установлены на осесимметричном коленообразном участке диффузора. В диффузоре часть динамического давления преобразуется в статическое. КПД вентилятора достигает 70%. Одним из преимуществ вентиляторов такого типа является возможность размещения электродвигателя внутри кожуха, что приводит к улучшению шумовых характеристик установки. Изготовление таких вентиляторов несколько сложнее, чем обычных.

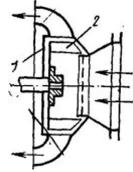


Рис. 4. Схема прямоточного вентилятора. 1 - корпус; 2 - рабочее колесо; 3 — диффузор.

Смерчевой вентилятор (рис. 5) имеет рабочее колесо с небольшим числом лопаток, прикрепленных к заднему диску. Это колесо размещено в специальной нише в задней стенке спирального кожуха. При вращении колеса возникает вихревое течение, аналогичное атмосферному вихрю смерчу, в центральной и периферийной частях которого образуется перепад давлений, являющийся побудителем движения воздуха. Вследствие этого основная часть потока с содержащимися в нем примесями проходит через нагнетатель, минуя рабочее колесо. КПД вентилятора не превышает 60%.

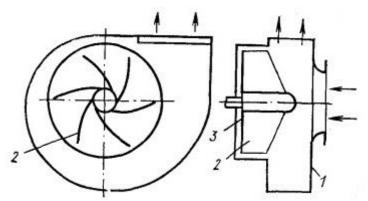


Рис. 5. Схема смерчевого вентилятора. 1 — кожух; 2 — лопатка; 3 — задний диск.

Дисковый вентилятор (рис. 6) относится к нагнетателям трения. Рабочее колесо у такого нагнетателя представляет собой пакет дисков (колец), расположенных с небольшим зазором перпендикулярно оси вращения колеса. Передача энергии от колеса потоку жидкости происходит в результате действия сил трения в пограничном слое, образующемся на лисках.

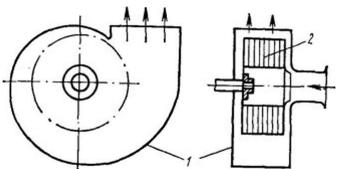


Рис. 6. Схема дискового вентилятора. 1 -корпус; 2 -рабочее колесо.

Вихревой насос (рис. 7) относится к машинам трения. Его рабочее колесо, аналогично колесу центробежного насоса, засасывает жидкость из внутренней части канала и нагнетает ее во внешнюю, в результате чего возникает продольный вихрь. При прохождении жидкости через рабочее колесо в вихревом насосе, как и в центробежном, увеличиваются кинетическая энергия жидкости (увеличивается ее скорость) и потенциальная энергия давления.

Рабочим органом насоса является рабочее колесо с радиальными или наклонными лопатками. Колесо вращается в цилиндрическом корпусе с малыми торцовыми зазорами. Жидкость поступает через всасывающее отверстие в канал, перемещается по нему рабочим колесом и выбрасывается через выходное отверстие.

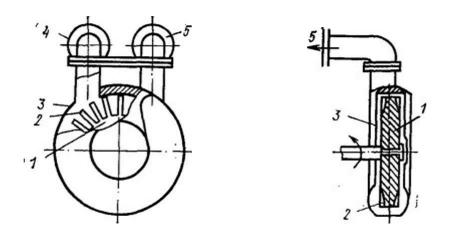


Рис. 7. Схема вихревого насоса 1 – рабочее колесо, 2 – лопатки, 3 – корпус, 4 – всасывающее отверстие, 5 – выходное отверстие.

Диаметральный вентилятор (рис. 8) имеет следующий принцип действия. Если во вращающееся колесо барабанного типа поместить неподвижное тело, расположенное несимметрично относительно оси колеса, то осесимметричный вихрь, образующийся вокруг колеса, смещается в сторону, и возникает течение воздуха через колесо в сторону меньшего сечения. Поперечное течение появляется также при установке лопаточного колеса в несимметричном коленообразном корпусе.

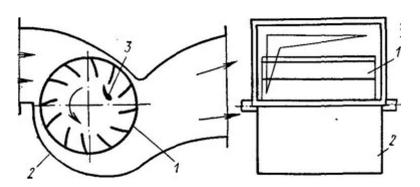


Рис. 8. Схема диаметрального вентилятора. 1 -рабочее колесо; 2 -корпус; 3 -неподвижное тело.

Поршневой нагнетатель (рис. 9) состоит из цилиндрического корпуса, внутри которого перемещается поршень с кольцами, всасывающего и нагнетательного клапанов. Поршень в корпусе совершает возвратно-поступательное движение. Преобразование вращательного движения привода

в возвратно-поступательное движение поршня осуществляется с помощью кривошипно-шатунного механизма. При движении поршня вправо открывается клапан 3, и жидкость заполняет пространство внутри корпуса. При этом клапан 4 закрыт. При движении поршня влево клапан 3 закрыт, открывается клапан 4, и жидкость выталкивается в нагнетательный трубопровод.

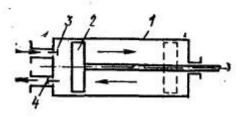


Рис. 9. Схема поршневого нагнетателя. 1 - корпус; 2 -поршень; 3 -всасывающий клапан; 4 -нагнетательный клапан.

Зубчатый (шестеренный) насос - это насос с рабочими органами в виде шестерен, обеспечивающих герметичное замыкание рабочих камер и передачу вращающего момента с ведущего вала на ведомый.

Шестеренный насос (рис. 10) состоит из двух шестерен, расположенных в корпусе. Одна из шестерен приводится в движение расположенным на одной оси электродвигателем, а вторая получает вращение от первой благодаря плотному зацеплению зубьев. При работе жидкость захватывается зубьями колес, отжимается к стенкам корпуса и перемещается со стороны всасывания на сторону нагнетания. Переток жидкости в обратном направлении практически отсутствует из-за плотного сцепления зубьев.

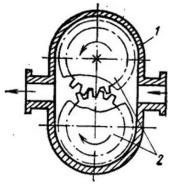


Рис. 10. Схема зубчатого насоса. 1 – корпус, 2 – шестерня.

Число зубьев в пределе может быть уменьшено до двух, при этом вращающиеся элементы будут иметь очертания, напоминающие восьмерку (рис. 11). В таком нагнетателе необходимо обеспечить привод от двигателя обеих «восьмерок», так как в отличие от зубчатых насосов они не имеют зацепления.

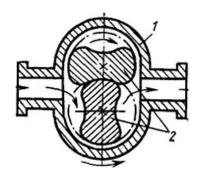


Рис. 11. Схема нагнетателя восьмерочного типа. 1 -корпус; 2 -рабочее колесо.

Пластинчатый насос — это роторно-поступательный насос с рабочими органами (вытеснителями) в виде плоских пластин. Могут быть однократного, двукратного или многократного действия.

Пластинчатый нагнетатель (рис. 12), как и зубчатый, относится к группе роторных машин. Он состоит из цилиндрического корпуса, в котором эксцентрично расположен массивный ротор с радиальными продольными пазами, где свободно размещены пластины, выполненные из материала, хорошо сопротивляющегося истиранию. При вращении ротора пластины под действием центробежных сил выходят из пазов, прижимаются к внутренней поверхности корпуса, захватывают на стороне всасывания жидкость и перемешают ее к нагнетательному трубопроводу, т. е. пластины, как бы, выполняют роль поршня.

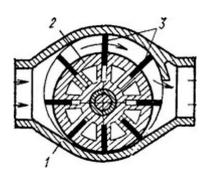


Рис. 12. Схема пластинчатого нагнетателя. 1-корпус; 2-ротор; 3-пластины.

Известны две конструктивные схемы струйных аппаратов. В аппаратах, выполненных по первой схеме (рис. 13), подмешиваемый поток поступает под углом 90° к оси аппарата.

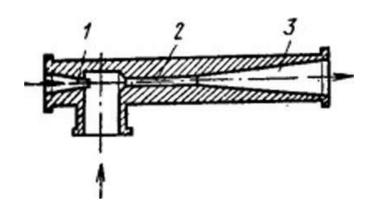


Рис. 13. Схема водоструйного нагнетателя. 1-сопло; 2 -камера смешения; 3-диффузор.

В аппаратах, выполненных по второй схеме (рис. 14), подмешиваемый поток подводится вдоль оси аппарата. При этом их КПД может быть доведен до 43,5%.

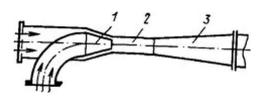


Рис. 14. Схема эжектора. 1 -сопло; 2 -камера смешения; 3-диффузор.

Любой струйный аппарат состоит из сопла, куда подается рабочая жидкость (вода, газ, пар), камеры смешения, где смешиваются рабочая и подсасываемая жидкости, и диффузора, в котором осуществляется преобразование кинетической энергии в потенциальную, т. е. создается давление.

Работает струйный аппарат следующим образом. Рабочая жидкость выходит из сопла с большой скоростью в виде струи, несущей большой запас кинетической энергии. Активная рабочая струя захватывает окружающую жидкость и передает ей часть своей энергии. Образовавшийся смешанный поток движется в проточной части аппарата. В камере смешения в результате обмена импульсами происходит выравнивание поля скоростей потока и за счет высвобождающейся кинетической энергии растет его Этическое давление. Затем поток поступает в диффузор, где вследствие уменьшения скорости и, следовательно, динамического давления потока происходит увеличение статического давления.

В пневматических нагнетателях (подъемниках) для подъема жидкости используется сжатый воздух или технический газ. Идея подъема жидкости сжатым воздухом возникла в конце 18 в., но только спустя столетие нашла практическое применение для подъема воды и нефти из

скважин. Аппарат, в котором подъем жидкости осуществляется сжатым воздухом получил название *газлифт* (эрлифт).

Существует три типа газлифтов (рис. 15): 1 - с двумя трубами: газовой и для подъема жидкости (жидкостной); 2 - с одной газовой и 3 - с одной жидкостной трубой, установленной в обсадной трубе и опущенной в скважину.

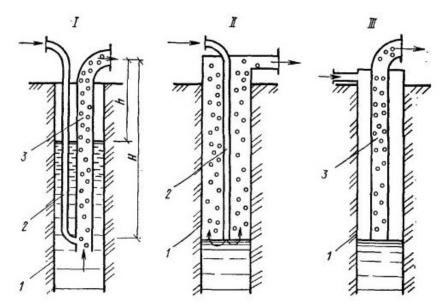


Рис. 15. Схема газлифта. 1-обсадная труба; 2- газовая труба; 3- подъемная труба.

В газлифте 1 и 2 типов сжатый воздух (или газ) под давлением нагнетается в скважину по газовой трубе, а в газлифте 3 типа воздух нагнетается в кольцевое пространство между обсадной и жидкостной трубами. В жидкостных трубах образуется смесь жидкости и воздуха (или газа) – эмульсия. Пузырьки воздуха (или газа) устремляются вверх, увлекая с собой жидкость. Достигнув верха труб, эмульсия изливается. Пузырьки воздуха (или газа) по мере движения вверх увеличиваются в объеме вследствие уменьшения в них давления, при этом возрастает скорость подъема эмульсии. При подъеме пузырьков часть жидкости не увлекается ими и падает вниз. Чем меньше скорость подъема эмульсии, тем больше утечка жидкости. При увеличении скорости быстро возрастают потери давления, а при ее уменьшении увеличивается скольжение пузырьков воздуха (или газа), что приводит к увеличению потерь жидкости. На выходе эмульсии из газлифта сепаратором производится разделение газа и жидкости. Сепаратором для воды служит отражатель в виде зонта, установленный в приемном баке. Эмульсия ударяется о внутреннюю поверхность отражателя, воздух улетучивается, а вода стекает с отражателя в бак, откуда по трубам направляется в систему водоснабжения.

К пневматическим подъемникам относится и пневматическое устройство периодического действия (рис. 16).

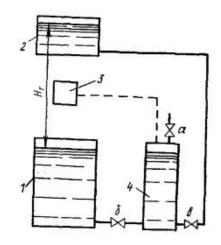


Рис. 16. Схема пневматического подъемника периодического действия. 1 – резервуар, 2 – бак, 3 – компрессор, 4 – баллон.

Подъем воды из резервуара 1 в бак 2 на высоту Нг осуществляется с помощью компрессора 3 и пневматического баллона 4. При отключенном компрессоре и открытых задвижках \mathbf{a} и \mathbf{b} , баллон заполняется водой. Закрыв задвижки \mathbf{a} и \mathbf{b} , открывают задвижку \mathbf{b} и, включив компрессор, вытесняют воду в бак. Цикл подачи осуществляется периодически.

2. Достоинства и недостатки нагнетателей разного типа

Радиальные вентиляторы со спиральным кожухом.

Достоинства:

- возможность использования для привода высокоскоростных электродвигателей,
 - высокий КПД (более 80%),
 - простота изготовления,
 - высокую равномерность подачи и простоту ее регулирования.

Недостатки:

- подача зависит от сопротивления сети.

Осевые вентиляторы.

Достоинства:

- простота,
- компактность,
- реверсивность,
- возможность перекачивания загрязненных жидкостей.
- более высокие КПД и подачу при относительно низком давлении (напоре) по сравнению с радиальными нагнетателями.

Прямоточные радиальные вентиляторы.

Достоинства:

- возможность размещения электродвигателя внутри кожуха, что приводит к снижению шума.

Недостатки:

Их изготовление сложнее обычных.

Дисковые вентиляторы.

Достоинства:

- устойчивой работе дисковых машин с малым шумом.

Недостатки:

- низкий КПД (40-45 %).

Вихревые насосы.

Достоинства:

- простая и дешевая конструкция;
- обладают самовсасывающей способностью; могут работать на смеси жидкости и газа;
- меньшая зависимость подачи от противодавления сети.

Недостатки:

- низкий КПД (18 40%),
- быстрый износ,
- непригодность для подачи жидкости, содержащей абразивные частицы.

Диаметральные вентиляторы.

Достоинства:

- могут присоединяться к воздуховодам, имеющим сечение в форме вытянутого прямоугольника;
- создают значительные давления при невысоких окружных скоростях рабочих колёс.

Недостатки:

- невысокий КПД (60-65%);
- повышенный уровень шума;
- неустойчивые режимы работы при увеличении подачи и росте давления;
 - перегрузки электродвигателя при уменьшении сопротивления сети.

Зубчатые насосы.

Достоинства:

- компактность,
- простота конструкции,
- отсутствие клапанов,
- возможность использования для привода высокоскоростных электродвигателей,
 - независимость подачи от противодавления сети,
 - реверсивность,

- возможность получения высоких давлений.

Недостатки:

- быстрый износ рабочих органов,
- невысокой подаче,
- низкий КПД (до 0,75%).

Пластинчатые нагнетатели.

Достоинства:

- простота конструкции,
- отсутствие подвижных элементов.

Недостатки:

- низкий КПД (25 - 45%.).

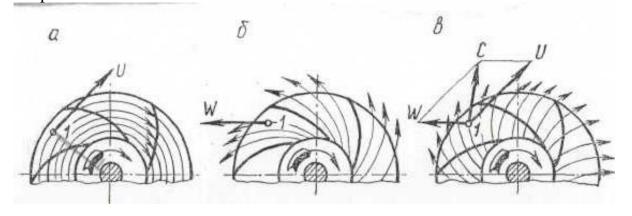
Пневматические нагнетатели (газлифты).

Достоинства:

- простота устройства,
- отсутствие в скважине механизмов,
- надежность и бесперебойность действия,
- невысокие требования к качеству жидкости.

Недостатки:

- малый КПД (15 - 36%).


Вернуться в оглавление

ТЕМА 3. ДВИЖЕНИЕ ЖИДКОСТИ В РАБОЧЕМ КОЛЕСЕ НАГНЕТАТЕЛЯ

- 1. Треугольники и параллелограммы скоростей.
- 2. Основное уравнение работы центробежного нагнетателя. Уравнение Эйлера для работы лопастного колеса.
 - 3. Влияние угла выхода лопаток на напор нагнетателя.

1. Параллелограммы и треугольники скоростей

Жидкая среда к рабочему колесу насоса подводится в осевом направлении, и каждая ее частичка движется поступательно с абсолютной скоростью C. Попав в межлопаточное пространство колеса каждая из них принимает участие в сложном движении. На рис. 1. показаны схемы движения частиц жидкой среды в одном и том же рабочем колесе в некоторый момент времени. Движение частицы, вращающейся вместе с колесом (рис. 1 а), характеризуется вектором окружной (переносной) скорости U, направленным перпендикулярно к радиусу вращения (или по касательной к окружности вращения). Кроме того, эта же частица перемещается относительно колеса (рис. 1 6) и характеризуется вектором относительной скорости W, направленным по касательной к линии тока в относительном потоке (поскольку линия тока в относительном потоке совпадает с поверхностью лопатки, вектор относительной скорости будет направлен по касательной к поверхности лопатки. Абсолютное движение вектором абсолютной характеризуется скорости, геометрической сумме векторов окружной и относительной скоростей (рис. 1 в), т. е. С—U—W. Таким образом, в любой точке межлопаточного канала колеса можно построить треугольник (или параллелограмм) скоростей.

Рис. 1. Схемы движения частиц жидкой среды в колесе насоса. а - окружное (переносное) движение; δ - относительное движение; ϵ - абсолютное движение

Для рассмотрения кинематики потока при движении жидкой среды в рабочем колесе принято строить треугольники скоростей па входной *1* и выходной 2 кромках лопатки (рис. 2), предполагая при этом, что во всех точках сечений на входе в рабочее колесо и. на выходе из него треугольники скоростей будут такими же. На рис. 2 так же приведены основные величины, характеризующие размеры рабочего колеса.

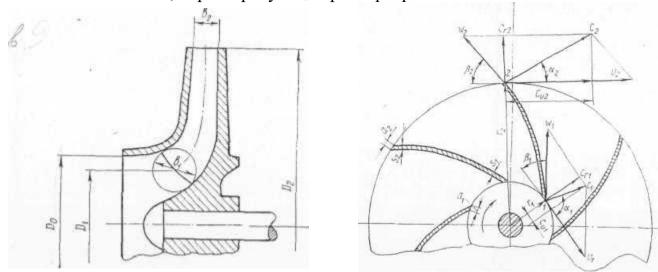
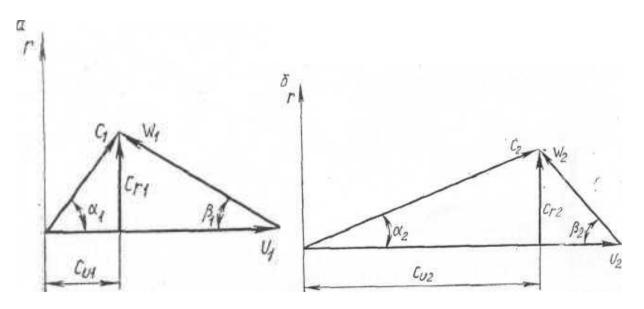


Рис. 2. Схема рабочего колеса насоса и треугольники скоростей.

 D_0 - диаметр входного отверстия колеса; D_1 и D_2 - диаметры на входе в каналы и на выходе из них (диаметры входа и выхода); r_1 , r_2 - радиусы входа и выхода; b_1 и b_2 - ширина лопатки (каналов) на входе и выходе; S_1 , S_2 - толщина лопатки на входе и выходе; $U_1,\ U_2$ - окружные скорости на входе и выходе; W_1 , W_2 - относительные скорости на входе и выходе; C_1 , C_2 - абсолютные скорости на входе и выходе; α_1 , α_2 - углы между векторами абсолютных и окружных скоростей на входе и выходе; β_1 , β_2 - углы между векторами относительных и продолжениями векторов окружных скоростей на входе и выходе; Cu_1 , Cu_2 - проекции абсолютных скоростей на направление окружной скорости на входе и выходе; Cr_1 , Cr_2 - проекции на скоростей направление радиуса (меридиональные абсолютных скорости), σ_z- коэффициент учитывающий влияние конечного числа лопастей на напор центробежного насоса, у- коэффициент стеснения потока.

Треугольники скоростей могут быть построены вне схемы рабочего колеса, но при этом следует соблюдать условие: *за направление радиуса принимается вертикаль, а за направление окружной скорости - горизонталь* (рис. 3 а, б).


Окружная скорость определяется по формуле:

$$U = \pi \cdot D \cdot n/60$$
,

где D - диаметр окружности, на которой определяется скорость, м; n - частота вращения рабочего колеса.

Кроме векторов скоростей (U, W и C), параллелограмм включает элементы, основными из которых являются Cr - проекция абсолютной скорости на направление радиуса и Cu - проекция абсолютной скорости на направление окружной.

По проекции абсолютной скорости на направление радиуса определяется подача жидкой среды рабочим колесом насоса.

Рисунок 3. Треугольники скоростей а) входа, б) выхода

2. Основное уравнение работы центробежного нагнетателя. Уравнение Эйлера для работы лопастного колеса.

Если центробежный насос включить в работу при закрытом запорном устройстве на напорном патрубке, жидкая среда не протекает в каналах рабочего колеса, и частицы ее, вращаясь вместе с колесом, имеют окружную скорость. В результате в межлопаточных каналах рабочего колеса образуется осевой вихрь, направленный против вращения колеса (см. правую часть рис. 4) в сторону увеличения относительной скорости на тыльной стороне лопатки и уменьшения ее на лицевой стороне.

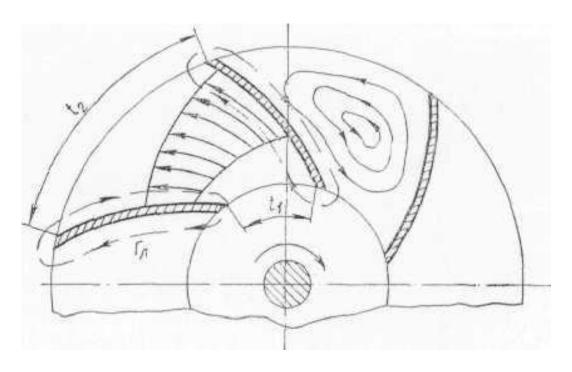


Рис. 4. Схемы осевого вихря и распределения относительной скорости в цилиндрическом сечении рабочего колеса.

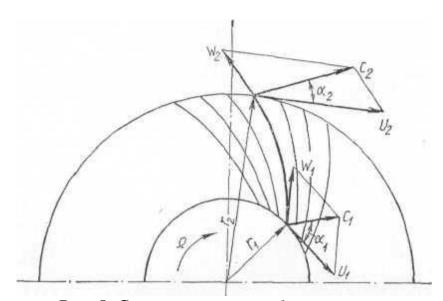


Рис. 5. Схема условного рабочего колеса.

При открытом запорном устройстве, когда насос перекачивает жидкую среду, интенсивность вихря ослабевает, но в результате влияния его на перераспределение относительных скоростей возникает циркуляция скорости вокруг лопатки $\Gamma_{\rm n}$.

Таким образом, в межлопаточных каналах происходит сложное движение, относительные скорости W в радиальных сечениях каналов не одинаковы (см. левую часть рис. 4) и параллелограммы скоростей входа и выхода потока на участках t_1 и t_2 (t - шаг решетки лопастей) отличаются. Учесть все явления, происходящие в рабочем колесе, при выводе основного уравнения работы насоса не представляется возможным.

Поэтому примем следующие допущения:

- 1. Условное рабочее колесо (рис. 5) имеет бесконечно большое число Z бесконечно тонких лопаток. Тогда можно считать, что между лопатками будут элементарные потоки струйки, и относительное движение в таких элементарных каналах можно характеризовать одним вектором скорости. Следовательно, при Z = const все струйки в цилиндрических сечениях колеса имеют одинаковые треугольники скоростей и энергию.
- 2. Жидкая среда, подаваемая условным рабочим колесом, идеальна, т.е. несжимаема, и в ней отсутствуют силы вязкости.

Действительный напор центробежного насоса равен:

$$H = \frac{\sigma_z \eta_r}{g} \left(U_2 C_{U_2} - U_1 C_{U_1} \right)$$

 σ_{z} - коэффициент учитывающий влияние конечного числа лопастей на напор центробежного насоса,

 U_1, U_2 - окружные скорости на входе и выходе;

 C_{U1} , C_{U2} - проекции абсолютных скоростей на направление окружной скорости на входе и выходе;

Это выражение представляет собой основное уравнение работы центробежного насоса.

Уравнение Эйлера для работы лопастного колеса.

В схеме движения потока жидкости через рабочее колесо нагнетателя предполагается, что все траектории жидких частиц в рабочем колесе на входе и выходе с лопаток одинаковы. Такое движение возможно лишь в том случае, когда рабочее колесо нагнетателя имеет бесконечное число лопаток, расстояние между которыми мало. В этом случае проекцию абсолютной скорости на переносную скорость на входе потока в рабочее колесо обозначают символом C_{2u}^{∞} , а на выходе из рабочего колеса - символом C_{2u}^{∞} .

В конструкциях, где жидкость подводится к рабочему колесу без предварительной закрутки, часто полагают $C_{1u}^{\infty}=0$. В этом случае уравнение Эйлера для лопастных нагнетателей используют в виде:

$$H_{T} = C_{2u}^{\infty} \cdot u_{2} / g$$
, (1); $\Delta P_{T} = \rho \cdot u_{2} \cdot C_{2u}^{\infty}$. (2)

 $H_{\scriptscriptstyle T}$ - теоретический напор насоса,

 $\Delta P_{_{\mathrm{T}}}$ - теоретическое давление вентилятора.

Уравнение Эйлера в виде выражения (1) или (2) широко используется при анализе работы лопастных нагнетателей. Особенность этого уравнения состоит в том, что оно получено в предположении, что все струйки в рабочем колесе движутся одинаково. Это возможно только тогда, когда рабочее

колесо нагнетателя имеет бесконечное число лопаток, между которыми существует бесконечно малое пространство. В действительности рабочее колесо, например центробежного насоса, имеет всего шесть - восемь лопаток, следовательно, существует значительное межлопастное пространство, в котором поток деформируется.

3. Влияние угла выхода лопаток на напор нагнетателя

Угол выхода потока зависит от формы лопаток. Существуют три вида лопаток:

- загнутые (по ходу вращения) назад (рис. 6 а);
- с радиальным выходом (рис. 6 б);
- загнутые вперед (рис. 6 в).

При равных геометрических размерах колес и постоянном значении U_2 с возрастанием β_2 увеличивается окружная составляющая Cu_2 абсолютной скорости.

Следовательно, на основании уравнения Эйлера можно сделать вывод, что с увеличением угла β_2 напор насоса увеличивается и у рабочего колеса с лопатками, загнутыми вперед, он будет наибольшим. Однако в практике насосостроения чаще всего используются рабочие колеса с лопатками, загнутыми назад. Это объясняется следующими причинами.

Более совершенным является насос с большим коэффициентом статического напора. Из рис. 1.10 следует, что с увеличением угла β_2 абсолютная скорость C_2 . Следовательно, возрастает выхода потока динамической увеличение напора происходит за возрастания счет составляющей H_{∂} .

Колесо с лопатками, загнутыми вперед, имеет малый коэффициент статического напора (Kc < 0.5).

Лопатки, загнутые назад, с гидродинамической точки зрения более удобообтекаемы при переменном режиме работы насоса, диапазон скоростей безотрывного обтекания значительно шире. Следовательно, гидравлические потери при движении жидкой среды по каналам будут меньше, а КПД насоса выше. Обычно принимают следующие значения углов входа и выхода для лопаток, загнутых назад:

$$\beta_1 = 14...25^{\circ}$$
 и $\beta_2 = 15...40^{\circ}$.

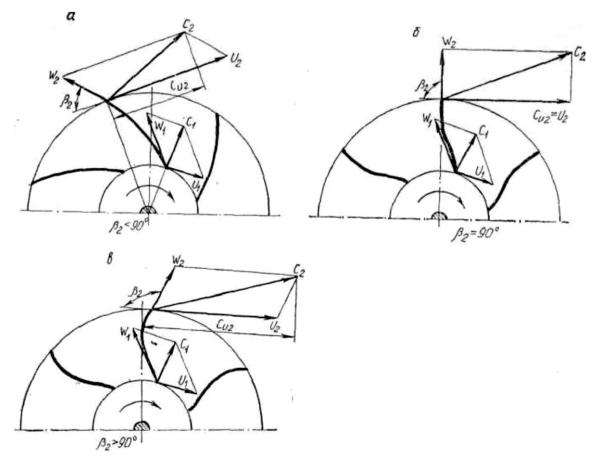


Рис. 6. Три вида лопаток.

Вернуться в оглавление

ТЕМА 4. ХАРАКТЕРИСТИКИ НАГНЕТАТЕЛЕЙ

- 1. Общие сведения о характеристиках нагнетателей. Графические характеристики.
- 2. Характеристики радиальных нагнетателей. Характеристики осевых нагнетателей.
 - 3. Законы подобия. Пересчет характеристик нагнетателей.
 - 4. Коэффициент быстроходности.
- <u>5. Кавитационный запас дополнительный параметр к характеристике</u> насоса (Высота всасывания насоса. Кавитация).

1. Общие сведения о характеристиках нагнетателей. Графические характеристики

[3] c. 34; [4] c. 24-25; [5] c.35

При подборе нагнетателей для конкретных установок необходимо знать зависимость одних параметров нагнетателя от других.

В качестве независимого переменного параметра при построении характеристик принимают подачу (производительность), т.к. она непосредственно связана с расходом рабочей жидкости (газа) в системе трубопроводов (воздуховодов) данной установки.

<u>Характеристика нагнетателя</u> — зависимость параметров P, H, N, η нагнетателя от его производительности L (подачи Q) при постоянной частоте вращения рабочего колеса (n=const).

(при постоянных вязкости и плотности жидкости на входе в насос)

2. Характеристики радиальных нагнетателей. Характеристики осевых нагнетателей

[1] с.83-85, рис. 4.14, 4.15; [3] с.24-25

- Полные характеристики радиальных и осевых нагнетателей. Определение рабочей зоны нагнетателя.
- Универсальные и безразмерные характеристики нагнетателей.

Каждая из характеристик отдельно называется <u>неполной</u> характеристикой нагнетателя.

Комплекс этих характеристик дает полное представление о возможностях нагнетателя и называется <u>полной</u> характеристикой. Эта информация дается производителем на основании экспериментальных исследований.

Универсальные и безразмерные характеристики

При изменении частоты вращения рабочего колеса <u>n=var</u>:

Устройство современных нагнетателей позволяет получить широкий набор чисел оборотов и для каждого надо строить полные характеристики. С целью упрощения процедур применения полных характеристик на практике разработан метод их совмещения. Это привело к созданию универсальной

характеристики — это координатное поле, на котором даны параметры работы одного нагнетателя с различным числом оборотов.

Широкое использование получили характеристики в безразмерных координатах. Этот вид характеристик представляет параметры всей серии нагнетателей одного типа, что позволяет:

- дать оценку рабочим параметрам нагнетателя любого типоразмера, зная n, об/мин;
- их применяют для выбора более оптимального нагнетателя из данной серии (*применение несерийного нагнетателя*).

Безразмерную характеристику нагнетателя получают путем пересчета по определенным формулам результатов испытания нескольких нагнетателей одного типоразмера (одной аэродинамической серии). Например, безразмерную характеристику давления \acute{P} можно получить на основании формулы $P = \psi \cdot \rho \cdot U_2^2$

В технической литературе встречаются обозначения:

L=
$$\hat{\mathbf{L}} = \mathbf{\phi}$$
; $\mathbf{P} = \hat{\mathbf{P}} = \mathbf{\psi}$; $\hat{\mathbf{N}} = \hat{\mathbf{N}} = \hat{\lambda}$; $\hat{\mathbf{\eta}} = \mathbf{\phi} \cdot \hat{\mathbf{\psi}} / \hat{\lambda}$

3. Законы подобия на примере центробежных насосов. Пересчет характеристик нагнетателей

[1] с.83-85, рис. 4.14, 4.15; [3] с.24-25

При конструировании и эксплуатации центробежных насосов пользуются законами их подобия и в первую очередь законом подобия рабочих колес этих насосов. Различают геометрическое, кинематическое и гидродинамическое подобие рабочих колес.

<u>Геометрическое подобие рабочих колес</u> — (сохранение линейных размеров без изменения угловых размеров) означает пропорциональность всех соответственных размеров их проточной части (диаметра, ширины лопаток, радиусов кривизны лопаток и т. п.).

$$D_{\scriptscriptstyle M}/D_{\scriptscriptstyle H}=b_{\scriptscriptstyle M}$$
 / $b_{\scriptscriptstyle H}=\ldots=k=const$

(м-модель, н-натура)

<u>Кинематическое подобие</u> (пропорциональное изменение треугольников скоростей в сходственных точках проточной части) предполагает одинаковые направления векторов скорости в сходственных точках потоков.

$$C_{U2_{M}} \, / \, C_{U2_{H}} = C_{r2_{M}} \, / \, C_{r2_{H}} = U_{2_{M}} \, / \, U_{2_{H}} = D_{_{M}} \, n_{_{M}} / D_{_{H}} \, n_{_{H}} = const$$

<u>Гидродинамическое подобие</u> предполагает равенство гидродинамических критериев (критерий Эйлера, число Рейнольдса и др.).

Если геометрически подобные рабочие колеса диаметром D и D_1 вращаются соответственно с частотой n и n_1 , то при этом развиваются напоры H и H_1 . Пользуясь формулой (1) и принимая во внимание, что скорости u^2 и v^2 пропорциональны диаметру рабочего колеса D, можно найти

$$H_1/H = (n_1/n)^2 (D_1/D)^2,$$
 (1)

что справедливо в случае η_r =const.

$$Q_1/Q = (n_1/n) (D_1/D)^3$$
. (2)

<u>Мощность</u>, потребляемая насосом, пропорциональна произведению Q на H:

$$N_1/N = (n_1/n)^3 (D_1/D)^5$$
. (3)

Соотношения (1)–(3) отражают законы подобия центробежных насосов. Эти соотношения можно применять, если геометрические размеры сравниваемых насосов не отличаются более чем в 2—3 раза и если сравниваемые насосы перекачивают одинаковую жидкость.

4. Коэффициент быстроходности

[1] c.101-104; [5] c.33-35

Обобщенным критерием оценки различных рабочих колес центробежных и осевых насосов принято считать так называемый коэффициент быстроходности насоса n_s . **Коэффициентом быстроходности** принято называть частоту вращения рабочего колеса, мин⁻¹, которое геометрически подобно рассматриваемому колесу насоса и при подаче жидкости Q = 75 л/с обеспечивает напор H = 1 м. Значение коэффициента быстроходности n_s находят при H = 1 м и Q = 0.075 м³/с.

$$n_s = 3,65 \frac{n V Q_{\text{OBT}}}{H_{\text{OBT}}^{3/4}}$$
 (4)

где $Q_{\text{опт}}$ — подача в оптимальной точке характеристики насоса, м³/с; $H_{\text{опт}}$ — напор в оптимальной точке характеристики насоса, м; n — частота вращения, мин⁻¹.

Для насосов с двусторонним входом жидкости в рабочее колесо в формулу (4) вместо Q подставляют Q/2.

Зная коэффициент быстроходности, можно сравнивать рабочие колеса различных типов и исследовать работу больших насосов по их уменьшенным моделям. Коэффициент быстроходности па характеризует тип рабочего колеса и соотношение его основных размеров. В табл. 4.1 схематически показаны различные типы колес и приведены соотношения их основных размеров, а также коэффициенты быстроходности.

Tuxoxo∂ныe центробежные насосы (50<n_s<80) имеют малую подачу, но развивают большой напор. Поэтому у тихоходных насосов отношение D_2/D велико, а отношение ширины колеса у выхода b2 к диаметру мало (b2/D2≈0,03). Вследствие большого диаметра колеса и малой ширины проходных каналов общий КПД тихоходных насосов, как правило, невелик.

Таблица 4.1

Насос	Коэффициент быстроходности	Схема сечения рабочего колеса	D2/D1	Форма характеристики
Тихоходный	50-80	D_1	2.5-3	H G
Нормальный	80-150	D_1 D_2	2	H Z Q
Быстроходный	150-350	D_1	1.4-1.8	H Z Z G
Диагональный полуосевой	350-500	n_{z}	1.1-1.2	H N N
Осевой	500-1500		1	H N N N N N N N N N N N N N N N N N N N

Центробежные насосы *нормальной* быстроходности ($80 < n_s < 150$) имеют несколько больший КПД, так как у них за счет уменьшения напора увеличено от ношение b_2/D .

В быстроходных центробежных насосах (150<n $_s$ <350) из-за значительного уменьшения отношения D_2/D и увеличения отношения b_2/D необходимо изменять форму лопастей рабочего колеса и переходить к лопастям двойной кривизны.

У диагональных насосов ($350 < n_s < 500$) выходные кромки лопастей колеса имеют наклонное положение относительно оси насоса, что позволяет значительно сократить общий диаметр насоса.

Осевые насосы ($500 < n_s < 1500$) имеют наибольший коэффициент быстроходности и предназначены для перекачивания больших масс жидкости при низких напорах.

В связи с переходом на систему единиц СИ формулы для определения коэффициента быстроходности меняются. Международный стандарт ИСО 2548 рекомендует вместо коэффициента быстроходности применять коэффициент, характеризующий тип насоса, — так называемый коэффициент конструкции насоса

$$k = \frac{2\pi Q_{\text{ont}}^{1/2}}{(gH_{\text{ont}})^{3/4}} \tag{5}$$

Между коэффициентом быстроходности и коэффициентом конструкции насоса существует следующая зависимость: & = 0,00515п. Законы подобия центробежных насосов находят практическое применение при необходимости изменения подачи насоса и развиваемого им напора путем уменьшения диаметра (обточкой или подрезкой) рабочего колеса. При $b_i = b$ получены зависимости:

$$H_{00}/H = (D_{00}/D)^2;$$

 $Q_{00}/Q = (D_{00}/D)^2,$ (5)

где Ноб и Qo6 — соответственно напор и подача насоса при обточенном рабочем колесе; Doб — диаметр рабочего колеса после обточки.

Для колес центробежных насосов с n_s <150 при изменении зазоров более точный результат определяют не по формуле (5). а по выражению

$$Q_{00}/Q = D_{00}/D_{\cdot(6)}$$

Для сохранения высокого КПД насосов — целесообразно придерживаться следующих пределов обточки (подрезки) колес, проценты: $50 < n_s < 120......15 — 20$

$$120 < n_s < 200...... 11 - 15$$

 $200 < n_s < 300..... 7 - 11$

<u>5. Кавитационный запас — дополнительный параметр к характеристике насоса (Высота всасывания насоса. Кавитация)</u>

[1] c.167-175; [5] c.27-30

- Допустимая высота всасывания насоса (минимальный избыточный напор всасывания).
- Кавитация. Отрицательное воздействие кавитации.
- Мероприятия по предотвращению кавитации.

<u>Кавитация</u> – образование пузырьков газа в результате появления локального давления ниже давления парообразования перекачиваемой жидкости на входе в рабочее колесо. (от лат. - пустота)

Кавитация возникает из-за: 1) увеличения температуры перекачиваемой жидкости; 2) увеличения сопротивления во всасывающем трубопроводе; 3) увеличения длины всасывающего трубопровода.

Отрицательное воздействие кавитации:

 скачки давления вызывающие вибрацию, которые могут повредить гидравлическую систему.

- шум в рабочем колесе и его эрозия; внутренний треск;
- при развитой кавитации в насосных установках наблюдаются удары;
- снижение КПД

Предотвращение кавитации:

- соблюдение min высоты всасывания: высота всасывания должна быть меньше допустимой высоты всасывания (которая зависит от типа РК и частоты вращения и от температуры жидкости и атмосферного давления);
- повышение статического давления; (снижение разрежения)
- снижение температуры жидкости (снижение давления парообразования);
- выбор насоса с меньшим значением гидростатического напора.
- эксплуатация насоса в режимах близких к расчетным (*если увеличить* подачу при сохранении существующей высоты всасывания— это может привести к формированию кавитации).
- минимизация сопротивления всасывающей магистрали.
- недопустимость дросселирования на всасе (допускается установка только запорной арматуры).

Литература к теме 4:

- 1. Дячек П.И. Насосы, компрессоры и вентиляторы: Учебное пособие. М.: Издательство ABC, 2013. 432с.
- 2. Насосы, вентиляторы, компрессоры в инженерном оборудовании зданий / А.М. Гримитлин, О.П. Иванов, В.А. Пухкал. Учебное пособие. СПб: Издательство «АВОК Северо-Запад», 2006.
- 3. Толстых, А.В. Насосы, вентиляторы и компрессоры: Учебное пособие / А.В. Толстых, Ю.Н. Дорошенко, В.В. Пенявский. Томск : Изд-во Том. гос. архит.-строит. ун-та, 2018. 160 с.
- 4. Галдин В.Д. Вентиляторы и компрессоры: Учебное пособие. Омск: Изд-во СибАДИ, 2007. 105 с.
- 5. Карасев Б.В. Насосные и воздуходувные станции: Учеб. для вузов. Мн.: Изд-во «Высшая школа», 1990. 326 с.
- 6. Wilo Насосная азбука: Справочное пособие по технологии повышения давления. 112 с.

Вернуться в оглавление

ТЕМА 5. РАБОТА НАГНЕТАТЕЛЕЙ В СЕТИ

- 1. Характеристика сети. Совместная работа нагнетателя и сети (Способ наложения характеристики насоса и сети для получения параметров совместной работы).
- 2. Необходимость совместной работы нагнетателей. Параллельное и последовательное включение одинаковых и различных нагнетателей.
- 3. Построение суммарной характеристики при совместной работе нагнетателей.
 - 4. Анализ совместной работы нагнетателей на сеть.

1. Характеристика сети. Совместная работа нагнетателя и сети

[1] с.13, 46-48, 49 рис.3,2 а, 50 табл.1.

Совместная работа нагнетателя и сети (Способ наложения характеристики насоса и сети для получения параметров совместной работы. Рабочая точка). [5] с. 50-53, рис.1.26; [1] с.91.

2. Необходимость совместной работы нагнетателей

[1] c.344

Параллельное и последовательное включение одинаковых и различных нагнетателей с. [1] с.318, рис.9.3.

3. Построение суммарной характеристики при совместной работе нагнетателей

- Параллельная работа двух одинаковых нагнетателей [1] с.319-321; презентация 3, слайд 10; видео 6
- Параллельная работа двух различных нагнетателей [1] с.325-326; презентация 3, слайд 11
- Последовательная работа двух одинаковых нагнетателей [1] с.328-330;презентация 3, слайд 12; видео 7
- Последовательная работа двух различных нагнетателей [1] с.331.

4. Анализ совместной работы нагнетателей на сеть

Ознакомиться со статьей В.Г. Караджи, Ю.Г. Московко «Особенности совместной работы вентиляторов».

Литература к теме 5:

- 1. Дячек П.И. Насосы, компрессоры и вентиляторы: Учебное пособие. М.: Издательство ABC, 2013. 432с.
- 2. Насосы, вентиляторы, компрессоры в инженерном оборудовании зданий / А.М. Гримитлин, О.П. Иванов, В.А. Пухкал. Учебное пособие. СПб: Издательство «АВОК Северо-Запад», 2006.

- 3. Толстых, А.В. Насосы, вентиляторы и компрессоры: Учебное пособие / А.В. Толстых, Ю.Н. Дорошенко, В.В. Пенявский. Томск: Изд-во Том. гос. архит.-строит. ун-та, 2018. 160 с.
- 4. Галдин В.Д. Вентиляторы и компрессоры: Учебное пособие. Омск: Изд-во СибАДИ, 2007. 105 с.
- 5. Карасев Б.В. Насосные и воздуходувные станции: Учеб. для вузов. Мн.: Изд-во «Высшая школа», 1990. 326 с.
- 6. Wilo Насосная азбука: Справочное пособие по технологии повышения давления. 112 с.

Вернуться в оглавление

ТЕМА 6. ОБЩИЕ ВОПРОСЫ ПРИМЕНЕНИЯ НАГНЕТАТЕЛЕЙ: УСТОЙЧИВОСТЬ РАБОТЫ. МОНТАЖ, НАЛАДКА И ИСПЫТАНИЕ НАСОСОВ И ВЕНТИЛЯТОРОВ

1. Особенности работы нагнетателей в составе систем.

Требования к эксплуатации нагнетателей, надежности и устойчивости их работы в сетях.

- 2. Принципы применения, подбора и эксплуатации серийно выпускаемых нагнетателей.
 - 3. Регулирование работы нагнетателей.
- 4. Вибрация и шум нагнетателей. Акустические характеристики вентиляторов. Звуковая мощность и звуковое давление.
 - 5. Испытание и наладка насосов и вентиляторов.

1. Особенности работы нагнетателей в составе систем.

[1] c.344

Требования к нагнетателям инженерных систем [1] с.11- повторение Необходимость совместной работы нагнетателей. [1] с.344- повторение Причины отклонения рабочих параметров от заданных (кратко перечислить) [1] с.344-356.

Устойчивость работы нагнетателей в сетях [1] с.358-360. Помпаж [1] с.363-365.

2. Принципы применения, подбора и эксплуатации серийно выпускаемых нагнетателей

[1] c.381-385.

Ознакомиться: Приложение 1.«Пример подбора вентилятора»

Общие методические указания к выбору нагнетателей

- 1. Выполнять требования государственных нормативных документов, технических условий на их применение, представляемые производителем принятого к установке изделия.
 - 2. Знать необходимый расход (L или Q) и давление (P) или напор (H):
 - вентиляторы:

давление = потерям давления в воздуховодах производительность = расходу в сети

— насосы:

по напору и подаче — выбирается типоразмер, потом параметры уточняются по индивидуальной характеристике устанавливается число оборотов и параметры привода

— **компрессоры** (магистральные): производительность

степень повышения давления

- 3. К установке принимать несколько, совместно работающих нагнетателей (желательно одинаковых), если:
- не обеспечивается требуемый расход в сети (L) применяется *параллельное* соединение.

$$L_{\kappa} = L / n$$
,

где n – число принятых к установке нагнетателей.

 P_{κ} = аэродинамическим потерям в сети.

— не обеспечивается требуемое давление в сети (P) применяется **последовательное** соединение.

$$P_{\kappa} = P / n$$

 L_{κ} = расходу в обслуживаемой сети.

Групповая установка различных нагнетателей на параллельную и последовательную работу требует дополнительного обоснования.

4. Знать характеристику места установки нагнетателя и знать трассировку сети.

— для вентилятора:

важно установить требуемое вращение рабочего колеса и рабочее положение кожуха.

— для насоса:

влияет на исполнение насоса и привода

— для компрессора:

учет изменения температуры перемещаемого газа, влияние окружающей среды на режим работы, необходимость выбора ресивера и осушителя воздуха на всасывании для установок, потребляющих сжатый воздух в переменном режиме.

5. Учитывать условия применения и свойства перемещаемой среды.

— вентиляторы

(взрывозащищенные, коррозионно-стойкие, пылевые, крышные);

— насосы

(для воды чистой, с примесями, химические,

циркуляционные, подпиточные, повысительные и т.д.)

— компрессоры

(аммиачные, фреоновые, воздушные, газовые,

магистральные, строительные, стационарные, передвижные и т.д.)

- 6. Соблюдать зону энергоэкономичности нагнетателя:
- вентиляторы $\eta = 0.9 \, \eta_{max}$
- насосы $\eta = 0.93 \, \eta_{max}$

Учитывать комплектацию рабочими колесами с различными диаметрами (возможность обточки) для расширения диапазона характеристик в пределах этой зоны.

7. Для насосов:

— параметры перемещаемой жидкости во всасывающем патрубке насоса должны гарантировано исключать режим кавитации.

8. Для компрессоров:

— в сетях с большим диапазоном изменения расхода газа необходимо избегать режима помпажа в работе осевых и центробежных компрессоров (диапазон 70-100% от номинальных значений)

Требования, обязательные для исполненения при выборе вентиляторов:

- по техническим характеристикам и условиям применения вентилятор полностью должен удовлетворять параметрам перемещаемой среды и месту его установки;
- вентилятор должен обеспечивать безопасное ведение технологического процесса, удовлетворять требованиям охраны окружающей среды, охраны труда и техники безопасности;
- вентилятор должен обеспечивать эффективное использование потребляемой энергии; в соответствии с требованиями ГОСТ 10616 его действительный к.п.д. должен удовлетворять условию $\eta \ge 0.9 \, \eta_{\text{max}}$.

Производительность вентилятора следует определять с учетом потерь или подсоса воздуха в воздуховодах и в вентиляционном оборудовании установки, т.е.

$$L = L$$
расч $+ \Delta L$

При выборе расчетной величины L учитывается ее большее значение, полученное при определении подсоса в воздуховодах до вентилятора или потерь воздуха в воздуховодах после вентилятора. Величина подсоса (потерь) воздуха в воздуховодах определяется:

 $\Delta L = 0.1 L_{\text{расч}} - \text{при суммарной длине воздуховодов до 50м;}$

 $\Delta L = 0.15 \ \dot{L}_{pacy} -$ при суммарной длине воздуховодов более 50м.

Характеристики вентиляторов, приведенные в каталогах производителей или в справочной литературе, представлены для стандартных условий: $t=20^{\circ}\text{C};\;\psi=50\%;\;B=0,101\text{M}\Pi a\;(760\;\text{мм.рт.ст.})\;\text{и}$ $\rho=1,2\;\text{кг/м}^3.\;\Pi o$ этой причине расчетную величину аэродинамических потерь давления в сети $(P_{\text{расч}})$ перед выбором вентилятора необходимо приводить к нормальным условиям, т.е.

$$P = P_{\text{pacy}} ((273 + t_{\text{pacy}})/273) (0.101/B_{\text{pacy}}) (1.2/\rho_{\text{pacy}})$$

При этом требуется и расчет установленной мощности привода, которая может отличаться от комплектации вентилятора двигателем для стандартных условий:

$$N_9 = k_3 ((1+k\mu) PL)/(3600 * 1000 \eta_B \eta_{\Pi})$$

где: $P_{\text{расч}}$ - аэродинамические потери давления (Па) в сети, определяемые из условий течения в трубопроводах воздуха (газа), имеющего параметры, соответствующие стандартным;

L _{расч} - расход воздуха (газа) в сети, м3/ч, определяемый как сумма расчетных расходов его у потребителей без учета утечек (подсоса) через неплотности;

 ΔL - расчетный подсос воздуха в сети, м3/ч;

 $t_{\text{расч}},\ B_{\text{расч}},\ \rho_{\text{расч}}$ - расчетная температура (С), барометрическое давление (МПа) и объемная масса перемещаемого газа, кг/м3;

N_Э - установленная мощность привода вентилятора, кВт;

- k₃ коэффициент запаса, вводимый на снижение негативного воздействия на электродвигатель пускового момента и на температурные условия эксплуатации электродвигателя /9,10/;
- k коэффициент, учитывающий вид механических примесей в перемещаемом газе;

μ- концентрация механических примесей в долях единицы;

 η_B , η_Π - коэффициенты полезного действия вентилятора и передачи, выраженные в долях единицы.

При определении развиваемого вентилятором давления необходимо учитывать влияние на его аэродинамический режим подводящих и отводящих каналов.

Особо значимо влияние подводящих каналов на параметры вентиляторов с загнутыми вперед лопатками. У вентиляторов данного типа снижение развиваемого давления может быть до уровня 50% от значения, представленного в каталогах и справочниках. По этим причинам при выборе вентиляторов необходимо учитывать указанные обстоятельства и вносить корректировку в каталожные характеристики вентиляторов, а также осознанно назначать конфигурацию подводящих и отводящих каналов.

3. Регулирование работы нагнетателей

Способы управления работой нагнетателей [1] с. 195-202.

4. Вибрация и шум нагнетателей. Акустические характеристики вентиляторов. Звуковая мощность и звуковое давление.

[1] с. 407 – вибрация, с.409-411, 414-417 – шум.

5. Испытание и наладка насосов и вентиляторов.

[1] c. 420-422

Литература к теме 6:

1. Дячек П.И. Насосы, компрессоры и вентиляторы: Учебное пособие. – М.: Издательство ABC, 2013. – 432с.

Вариант подбора вентилятора

Задание:

В помещение необходимо подобрать промышленный вентиляционный агрегат для перемещения газовоздушных масс с параметрами, которые максимально приближены к среднестатистическим. Предусмотренная проектировщиком производительность составляет 3050 м³/ч с аэродинамическим сопротивлением вентиляционной сети Р=400 Па. Вариант решения задачи:

Расчетным параметрам, заданным в проекте, соответствует радиальный вентилятор низкого давления ВР 80-75. По имеющимся тех. характеристикам предварительно делаем вывод, что исходным данным соответствует вентилятор типоразмера номер 4, имеющий при n= 1450об/мин. (обороты РК) параметры в рабочей зоне: производительность V= 1850-4300 м³/ч, полное давление от 290 до 520 Па.

По этой аэродинамической характеристике вентилятора BP на графике (рис.1) находим его так называемую «рабочую точку» и все соответствующие ей параметры:

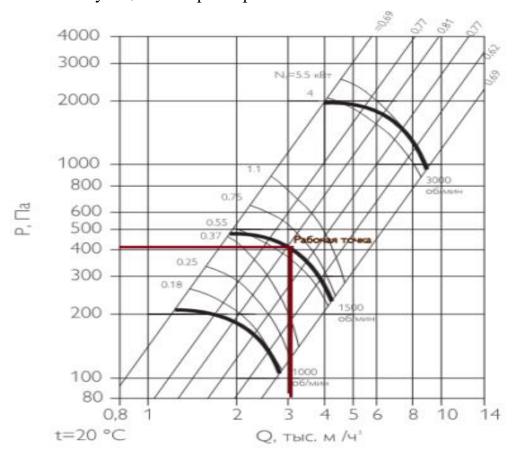


Рис. 1 Аэродинамическая характеристика вентилятора ВР80-75

Производительность $Q - 3050 \text{ м}^3/\text{ч}$ Полное давление P - 420 Па

Частота вращения РК – 1450 оборот/мин.

КПД - 0.8

Максимальный КПД вент-ра – 0,81

Мощность электродвигателя Ny, kBt - 0.75

Проверим выполненные условия задачи:

n > = 0.9 * nmax

 $n_{\beta} = 0.8 \ge 0.9 * 0.81 = 0.729$

Требуемая мощность на валу эл. двигателя, кВт

 $N = (3050*400)/(3600*n_{\beta}) = 464.8 \text{ BT} = 0.5 \text{ kBT}$

Установленная мощность электродвигателя, кВт при коэффициенте запаса K_3 = 1,5 (таб.1)

 $Ny = K_3*N = 1,5*464,8 = 697,2 B_T$

Установленная мощность эл. двигателя в комплек те Ny- 750 Вт

Таблица 1. Коэффициенты запасов мощности

Мощность на валу электродвигателя, Вт	<0,5	0,51-1	1,01-2	2,01-5	>5
Коэффициент запаса мощности, К ₃	1,5	1,3	1,2	1,15	1,1

Для того что бы пересчитать аэродинамические характеристики вентагрегатов типа ВР на другое количество оборотов рабочего колеса n', его диаметры, а также плотности перемещаемого воздуха р' без поправок, учитывающим изменение «критерия Рейнольдса (Re)» и влияние сжимаемости производят по данным формулам:

$$\begin{split} P_{v}' &= P_{v} \left(\frac{n'}{n}\right)^{2} \left(\frac{D'}{D}\right)^{2} \left(\frac{\rho'}{\rho}\right); \qquad P_{sv}' &= P_{sv} \left(\frac{n'}{n}\right)^{2} \left(\frac{D'}{D}\right)^{2} \left(\frac{\rho'}{\rho}\right); \\ P_{dv}' &= P_{dv} \left(\frac{n'}{n}\right)^{2} \left(\frac{D'}{D}\right)^{2} \left(\frac{\rho'}{\rho}\right); \qquad Q' &= Q \left(\frac{n'}{n}\right) \left(\frac{D'}{D}\right)^{3}; \\ N' &= N \left(\frac{n'}{n}\right)^{3} \left(\frac{D'}{D}\right)^{5} \left(\frac{\rho'}{\rho}\right); \qquad \eta' &= \eta = \frac{Q*P_{v}}{N}; \\ \eta_{s}' &= \eta_{s}; \end{split}$$

Вернуться в оглавление

2. ПРАКТИЧЕСКИЙ РАЗДЕЛ

2.1 Материалы для лабораторных работ по дисциплине «Насосы, вентиляторы и компрессоры»

- 2.1.1 Лабораторная работа № 1
- 2.1.2 Лабораторная работа № 2
- 2.1.3 Лабораторная работа № 3
- 2.1.4 Лабораторная работа № 4
- 2.1.5 Лабораторная работа № 5
- 2.1.6 Лабораторная работа № 6
- 2.1.7 Лабораторная работа № 7
- 2.1.8 Лабораторная работа № 8

Лабораторная работа № 1

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ ДЛЯ ПРОВЕДЕНИЯ САНИТАРНО-ГИГИЕНИЧЕСКИХ ИСПЫТАНИЙ И ОБСЛЕДОВАНИЙ ВЕНТИЛЯЦИОННЫХ СИСТЕМ

Цель работы: Ознакомится с устройством и действием контрольноизмерительных приборов:

- 1. Термометры: жидкостный, инфракрасный термометр testo 830-T1;
- 2. Манометр: дифференциальный манометр цифровой ДМЦ-01М, барометр-анероид метеорологический БАММ-1, микроманометр с наклонной трубкой ММН-2400 (5)-1,0;
 - 3. Термоанемометр testo 410-1;
 - 4. Анемометры: чашечный МС-13, крыльчатый АСО-3;
 - 5. Гигрометр психрометрический типа ВИТ-1;
 - 6. Термогигрометр ТГЦ-МГ4;
 - 7. Тахометр часовой ТЧ 10-Р;

Основные термины и определения

Контрольно-измерительные приборы и инструменты находят широкое применение не только в сфере производства, но и при эксплуатации, диагностике технических систем, обеспечении их экологической безопасности.

Uзмерение — нахождение значения физической величины (Φ B) опытным путем с помощью специальных технических средств.

Прямое измерение — измерение, при котором искомое значение физической величины находят непосредственно из опытных данных.

Косвенное измерение — измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Совокупные измерения — производимые одновременно измерения нескольких величин.

Средство измерения (СИ) — техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства.

Измерительный прибор – СИ, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

Измерительный преобразователь — СИ, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не воспринимаемой непосредственно наблюдателем.

Диапазон измерения (предел измерения) — диапазон значений измеряемой величины, который может быть измерен данным средством измерения и для которого нормируется допускаемая погрешность средства измерения.

Погрешность измерения — отклонение результата измерения от истинного значения измеряемой величины.

Термометры

Температура может быть определена как параметр теплового Измерение температуры осуществляется состояния. бесконтактным способами. Контактным способом температура измеряется с помощью термометров расширения жидкостных. Жидкостные термометры построены на принципе теплового расширения жидкости в стеклянном резервуаре. В качестве рабочих веществ применяют ртуть и органические жидкости. Жидкостные стеклянные термометры расширения состоят из стеклянного капилляра, заполненного термометрической жидкостью, и стеклянного корпуса со шкалой. При нагревании объем термометрической жидкости увеличивается, уровень в капиллярной трубке повышается, что определяется по градуированной шкале. Ртутно-стеклянные термометры применяют для измерения температуры от -30 до +500°C. Термометры с жидкостями называют низкотемпературными. применяется этиловый спирт до -130°C, толуол до -90°C, петролейный эфир до -30°C и пентан до -190°C.

Для измерения температуры воздуха в рабочей зоне помещения термометры устанавливают на высоте 1,5 м от пола, вдали от холодных наружных ограждений и оборудования, излучающего тепло, и вне зоны действия приточных струй и солнечных лучей. Температуру воздуха в воздуховодах рекомендуется измерять термометрами, вводимыми внутрь воздуховодов через специальное отверстие или лючки. Места измерения температуры воздуха в воздуховодах должны выбираться с учетом того, что установленные термометры не должны подвергаться вибрации и тряске, на показания термометров не должно оказывать влияние лучистое тепло от калориферов, должна быть также исключена возможность попадания капель воды на термометр при замерах после камер орошения.

При измерении температуры холодных и горячих поверхностей очень удобны бесконтактные термометры с инфракрасным датчиком. К числу таких приборов относится *инфракрасный термометр testo 830-T1*. У

материалов различный коэффициент излучения, т.е. они излучают различный уровень электромагнитной радиации. Инфракрасное измерение представляет собой оптическое измерение поверхности. Инфракрасный термометр предназначен для бесконтактного измерения температуры поверхности. Диапазон ИК-измерений – от -30 до $+400^{\circ}$ C; ИК-погрешность $\pm 1,5$ - 2° C.

Манометры

Приборы для измерения давления в зависимости от назначения и пределов измерения можно разделить на следующие группы:

Барометр-анероид метеорологический БАММ-1 — для измерения атмосферного давления в наземных условиях при температуре от 0 до 40 °C и относительной влажности до 80 %. Диапазон измеряемого давления 80-106 (600-800) кПа (мм рт. ст.); пределы допускаемых погрешностей составляет $\pm 0.2-0.5$ кПа (мм рт. ст.).

Микроманометры бывают жидкостными И электронными. Микроманометр многодиапазонный с наклонной трубкой ММН-2400 (5)-1,0 – предназначен для измерения избыточного, вакуумметрического давления и разности давлений газов, неагрессивных к стали, латуни, полиэтилену в пределах от 600 до 2400 Па при статическом давлении не более 10 000 Па. Класс точности – 1,0. Рабочая жидкость – спирт этиловый ректификованный. Жидкостный микроманометр устроен по принципу простого U-образного манометра, только одна трубка заменена резервуаром, а вторая со шкалой может наклоняться и фиксироваться в определенном положении. Принцип действия прибора основан на том, что измеряемое давление воздуха уравновешивается давлением столба рабочей жидкости, который образуется в наклонной трубке (к трубке подводится меньшее давление). При этом условии уровень спирта в измерительной трубке будет повышаться, а в резервуаре – понижаться.

Наряду с жидкостными микроманометрами при наладке вентсистем широко применяются электронный \mathcal{L} ифференциальный манометр \mathcal{L} МЦ-01М. Это цифровой прибор для измерения давления, разрежения, скорости и объемного расхода воздушного потока в воздуховоде. Диапазон измерения перепада давления — 0 ... 2,0 кПа (0 ... 200 мм вод.ст.); погрешность 1%.

<u>Термоанемометр</u>

Термоанемометр testo 410-1 служит для измерения скорости потока воздуха и температуры. Прибор подходит для измерения скорости потока воздуха на выходах воздуховодовов вентиляционных систем. Наряду с измерением температуры можно провести анализ климатических условий. Диапазон измерения: $0,4\dots 20$ м/с; $-10\dots 50$ °C. Погрешность $\pm 0,2$ м/с +2% измерения; $\pm 0,5$ °C.

Анемометры

Скорость движения воздуха измеряют анемометрами — крыльчатыми, чашечными, электронными, цифровыми универсальными.

Крыльчатый анемометр ACO-3 служит для измерения средней скорости направленного воздушного потока в диапазоне измерения 0,3...5 м/сек. Предел допускаемой погрешности не более $\pm 0,1+0,05$ V м/с.

Вентприемником анемометра служит крыльчатка, насаженная на трубчатую ось с подшипниковыми втулками. На конце трубчатой оси закреплен червяк, передающий вращение ветроприемника зубчатому редуктору счетного механизма. Счетный механизм имеет три стрелки, его циферблат имеет соответственно три шкалы: единиц, сотен, тысяч.

Чашечный анемометр МС-13 предназначен для измерения средней скорости воздушного потока в промышленных условиях и средней скорости ветра скорости от 1,0 до 20 м/сек. Предел допускаемой погрешности не более $\pm 0,3$ + 0,05V м/с. Ветроприемником анемометра служит четырех чашечная вертушка. Ветроприемник анемометра соединен с редуктором счетного механизма.

Психрометр

Относительную влажность воздуха в помещениях определяют с помощью психрометров. *Простой психрометр* представляет собой корпус, на котором закреплены два одинаковых ртутных термометра. Баллон одного термометра «сухой», а баллон другого — обернут тканью, конец ткани опущен в стакан с водой. По психрометрической разности и показанию «сухого» термометра, пользуясь специальными таблицами или номограммами, определяют относительную влажность воздуха. Показания прибора существенно зависят от скорости воздуха, обдувающего «мокрый» термометр, что необходимо учитывать при определении относительной влажности.

Гигрометр психрометрический

Психрометрический гигрометр типа ВИТ-1 предназначен измерения относительной влажности и температуры воздуха в помещении. влажности относительной _ от 20 Диапазон измерения температурный диапазон измерения влажности – от 5 до 25°C; диапазон измерения температуры – от 0 до 25°C. Абсолютная погрешность введения поправок $\pm 0.2^{\circ}C;$ термометров после составляет допускаемой погрешности гигрометра при аспирации от 0,5 до 1 м/с составляет $\pm 5 - 7$ %. В качестве термометрической жидкости в термометрах гигрометра используется толуол. Гигрометр типа ВИТ-1 относится к приборам полного погружения, т.е. находится полностью в измеряемой среде. Время выдержки гигрометра в измеряемой среде до начала отсчета температуры не менее 15 минут. Гигрометр представляет собой прибор, собранный на основании из полистирола. К основанию крепятся два термометра со шкалой, психрометрическая таблица, стеклянный питатель, заполняемый водой. Резервуар термометра под надписью «Увлажн.» увлажняется водой из питателя с помощью фитиля.

Метод измерения относительной влажности гигрометром основан на зависимости между влажностью воздуха и психрометрической разностью – разностью показаний «сухого» и «увлажненного» термометров, находящихся в термодинамическом равновесии с окружающей средой. Затем по показаниям «сухого» термометра и разности показаний «сухого» и

«увлажненного» термометров определяют относительную влажность воздуха по психрометрической таблице.

Термогигрометр

Для измерения относительной влажности в жилых и рабочих помещениях, а также на открытом воздухе применяются *термогигрометры типа ТГЦ-МГ4*, которые состоят из блока индикации и измерительного преобразователя, соединенных между собой гибким кабелем. Преобразователь установлен на корпусе индикации, а гибкий кабель в смотанном состоянии находится внутри блока индикации.

Тахометр

Приборы для измерения числа оборотов называются тахометрами. Тахометры бывают контактного и бесконтактного измерения. Тахометр *часовой ТЧ10-Р* контактного типа со сменными наконечниками предназначен для кратковременного (4-5 сек) измерения частоты вращения частей машин и механизмов, имеющих центровочные элементы, и линейных скоростей способом непосредственного присоединения. Обеспечивает диапазон измерения частоты вращения от 50 до 1000 и от 1000 до 10 000 оборотов в минуту, линейных скоростей от 10 до 100 и от 100 до 1000 м/мин. Погрешность этого прибора составляет $\pm 1\%$ от верхнего предела измерений. Тахометр состоит из счетного и часового механизмов и механизма возврата стрелок. Счетный механизм показывает число оборотов на циферблате. Для измерения частоты вращения применяются два вида наконечников с прямым и обратным конусами. Для измерения линейных скоростей применяется дисковой наконечник.

Порядок проведения работы и оформления отчета

- 1. Ознакомиться с техническими характеристиками контрольно-измерительных приборов;
 - 2. Изучить сведения об устройстве и принципе работы приборов;
 - 3. Провести измерения воздуха в помещении с помощью приборов;
 - 4. Данные измерений занести в таблицу 1:

Контрольные вопросы.

- 1. Что такое измерение и средства измерения?
- 2. Какие есть виды измерений?
- 3. Что такое диапазон измерения и погрешность измерения?
- 4. Как работают контактные термометры расширения?
- 5. Для чего предназначены манометры? Какие приборы используют для измерения давления в вентиляционной сети?
- 6. Для чего предназначены анемометры? Какие виды анемометров вы знаете?
 - 7. Какими приборами измеряют относительную влажность воздуха?
 - 8. Для чего предназначен часовой тахометр?

Вернуться в оглавление

Таблица 1.

№ КИП Измеряемые величины Примечания 1. Жидкостный термометр Температура воздуха в помещении, °С ————————————————————————————————————				таолица т.
Температура воздуха в помещении, °C 2. Чашечный анемометр MC-13 Скорость потока воздуха, м/с 3. Крыльчатый анемометр ACO-3 Скорость потока воздуха, м/с 4. Тахометр часовой ТЧ10-Р Частота вращения, об./мин 5. Инфракрасный термометр testo 830-T1 Температура поверхности отопительного прибора, °C Температура поверхности вентилящионного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТТЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па	№	кип	_	Примечания
Температура воздуха в помещении, °C 2. Чашечный анемометр MC-13 Скорость потока воздуха, м/с 3. Крыльчатый анемометр ACO-3 Скорость потока воздуха, м/с 4. Тахометр часовой ТЧ10-Р Частота вращения, об./мин 5. Инфракрасный термометр testo 830-T1 Температура поверхности отопительного прибора, °C Температура поверхности вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Динамическое давление, Па Динамическое давление, Па	1.	Жидкостный термометр		1
2. Чашечный анемометр MC-13 Скорость потока воздуха, м/с 3. Крыльчатый анемометр ACO-3 Скорость потока воздуха, м/с 4. Тахометр часовой ТЧ10-Р Частота вращения, об./мин 5. Инфракрасный термометр testo 830-Т1 Температура поверхности отопительного прибора, °С Температура поверхности вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТП-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухс, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Динамическое давление, Па				
Скорость потока воздуха, м/с 3. Крыльчатый анемометр ACO-3 Скорость потока воздуха, м/с 4. Тахометр часовой ТЧ10-Р Частота вращения, об./мин 5. Инфракрасный термометр testo 830-Т1 Температура поверхности отопительного прибора, °C Температура поверхности вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТТЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па	2.			L
3. Крыльчатый анемометр ACO-3 Скорость потока воздуха, м/с 4. Тахометр часовой ТЧ10-Р Частота вращения, об./мин 5. Инфракрасный термометр testo 830-ТІ Температура поверхности отопительного прибора, °С Температура поверхности вентилящионного воздуховода, °С 6. Исихрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТТЦ-МГ4 Относительная влажность в помещении, % Относительная влажность в помещении, % 0 Относительная влажность на открытом воздухе, % 12. Диференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		*		
Скорость потока воздуха, м/с 4. Тахометр часовой ТЧ10-Р Частота вращения, об./мин 5. Инфракрасный термометр testo 830-T1 Температура поверхности отопительного прибора, °С Температура поверхности вентиляционного воздуховода, °С 6. Исихрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТТЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па	3.			L
4. Тахометр часовой ТЧ10-Р Частота вращения, об./мин 5. Инфракрасный термометр testo 830-Т1 Температура поверхности отопительного прибора, °C Температура поверхности вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТТЦ-МТ4 Относительная влажность в помещении, % Относительная влажность в помещении, % 11. Термогигрометр Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па		1		
Частота вращения, об./мин 5. Инфракрасный термометр testo 830-T1 Температура поверхности отопительного прибора, °C Температура поверхности вентиляционного воздуховода, °C 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °C 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °C 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °C 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Диференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па	4.	•		L
 5. Инфракрасный термометр testo 830-T1 Температура поверхности отопительного прибора, °С Температура поверхности вентиляционного воздуховода, °С Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па 		Частота вращения, об./мин		
Температура поверхности отопительного прибора, °С Температура поверхности вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па	5.	•		l
отопительного прибора, °С Температура поверхности вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па				
Температура поверхности вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па				
вентиляционного воздуховода, °С 6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па		1 1		
6. Психрометрический гигрометр ВИТ-1 Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТТЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па				
Относительная влажность, % Температура воздуха в помещении, °С 7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па	6.			l
7. Барометр-анероид метеорологический БАММ-1 Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % 11. Термогигрометр Относительная влажность в помещении, % Потносительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па				
8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		Температура воздуха в помещении, °С		
Атмосферное давление, кПа (мм рт.ст.) 8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па	7.	Барометр-анероид метеорологический	БАММ-1	1
8. Термоанемометр testo 410-1 Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па				
Скорость потока воздуха, м/с Температура охлаждения ветром, °С 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность в помещении, % Полносительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па	8.			L
 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па 				
 9. Термоанемометр testo Скорость потока воздуха, м/с Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па 		Температура охлаждения ветром, °С		
Температура охлаждения ветром, °С 10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па	9.			1
10. Термогигрометр ТГЦ-МГ4 Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		Скорость потока воздуха, м/с		
Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		Температура охлаждения ветром, °С		
Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па	10.	Термогигрометр <i>ТГЦ-МГ4</i>		
Относительная влажность на открытом воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па				
Воздухе, % 11. Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		%		
Термогигрометр Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		Относительная влажность на открытом		
Относительная влажность в помещении, % Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		воздухе, %		
% Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па	11.	Термогигрометр		
Относительная влажность на открытом воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		Относительная влажность в помещении,		
воздухе, % 12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па		%		
12. Дифференциальный манометр ДМЦ-01М Полное давление, Па Статическое давление, Па Динамическое давление, Па ————————————————————————————————————		Относительная влажность на открытом		
Полное давление, Па Статическое давление, Па Динамическое давление, Па		воздухе, %		
Статическое давление, Па Динамическое давление, Па	12.	Дифференциальный манометр ДМЦ-01	IM	
Динамическое давление, Па		Полное давление, Па		
		Статическое давление, Па		
Скорость движения воздуха, м/с		Динамическое давление, Па		
		Скорость движения воздуха, м/с		

Лабораторная работа №2

ИЗУЧЕНИЕ КОНСТРУКЦИИ ЦЕНТРОБЕЖНЫХ НАСОСОВ С МОКРЫМ РОТОРОМ

Цель работы: Изучить устройство центробежных циркуляционных насосов WILO TOP S 50/7 и GRUNDFOS UPS 25-60.

Общие сведения о центробежных насосах с мокрым ротором

Насос – гидравлическая машина для создания потока жидкой среды.

Наиболее распространёнными в системах отопления и водоснабжения являются центробежные насосы. Это объясняется простотой конструкции, широким диапазоном подачи и напора, высоким КПД и удобством эксплуатации.

В центробежных насосах передача энергии перекачиваемой жидкой среде осуществляется за счет взаимодействия лопаток рабочего колеса с потоком. Под действием центробежной силы, жидкая среда перемещается от центра рабочего колеса к его периферии.

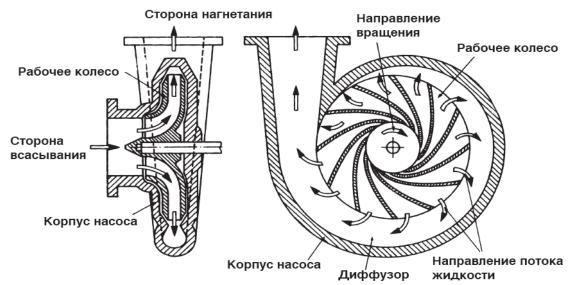
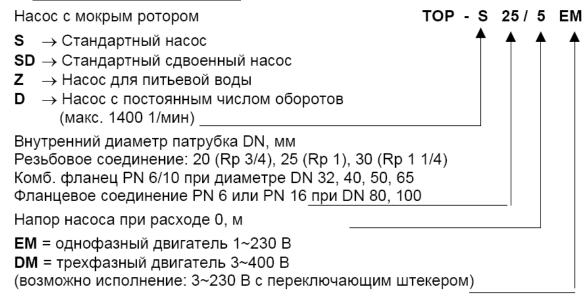


Рис. 1 Устройство центробежного насоса

Наиболее распространены насосы с «сухим» и «мокрым» роторами. Ротор «мокрого» насоса вместе с рабочим колесом погружен в перекачиваемую жидкость. Она смазывает подшипники вала и одновременно охлаждает мотор. Герметичность находящейся под напряжением части двигателя обеспечивает разделительный стакан или гильза, изготовленный из нержавеющей немагнитной стали.


Достоинства насосов с «мокрым» ротором: нет утечек жидкости из насоса во внешнее пространство, не требует техобслуживания (так как нет уплотнений вала), низкий уровень шума. Недостаток этих насосов – низкий КПД (до 50%); у насосов с «сухим» ротором – до 80%.

В качестве примера далее рассматриваются циркуляционные насосы ведущих европейских фирм по производству насосного оборудования — WILO и GRUNDFOS.

Устройство насоса WILO TOP S 50/7

Насосы ТОР S применяются для подачи жидкостей в системах отопления и охлаждения, холодного и горячего водоснабжения. Корпус насоса выполнен из серого чугуна, рабочее колесо — из пластика, вал — из нержавеющей стали, подшипник — из металлографита. Рабочие характеристики насоса ТОР S 50/7 см. в приложении 1.

Типовой код насосов ТОР

Насос имеет мотор однофазного тока $(1\sim)$. Мотор имеет 2-х ступенчатое переключение числа оборотов. Переключение на нужное число оборотов производится вручную в клеммной коробке поворотом переключателя или, в зависимости от типа клеммной коробки, изменением положения переключающего штекера. Установленная ступень числа оборотов видна при закрытой крышке клеммной коробки через смотровое окошко. Воздух из насоса удаляется автоматически через короткое время после запуска.

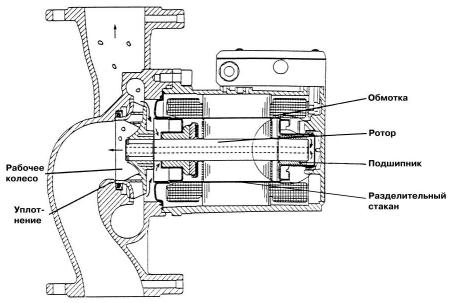


Рис. 2 Hacoc TOP S с мокрым ротором

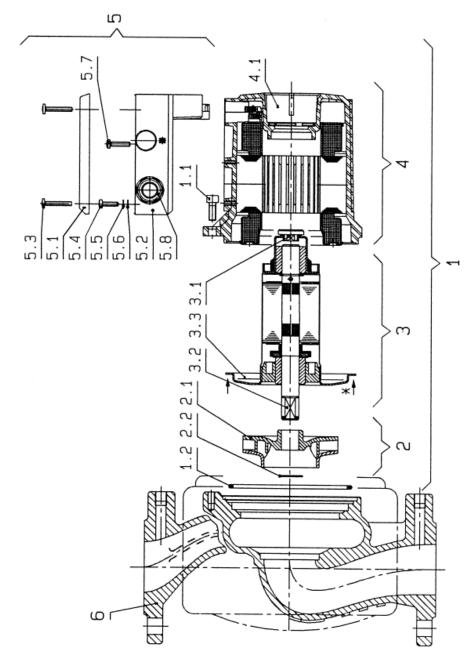
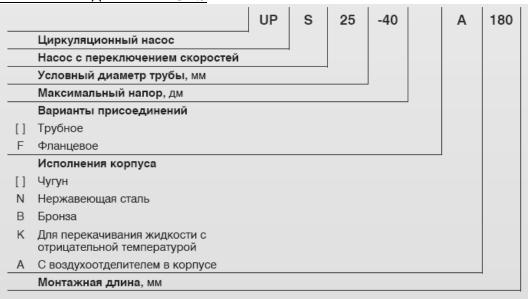


Рис. 3 Устройство насоса ТОР S с мокрым ротором

- 1.1 винты, 1.2 уплотняющее кольцо, 2.1 рабочее колесо,
- 2.2 кольцевой замок, 3.1 пробка, 3.2 вал ротора,
- 3.3 стакан ротора, 4.1 статор,
- 5.1 5.8 -элементы клеммной коробки.

Порядок разборки и сборки насоса:


- вывернуть винты 1.1 и извлечь мотор из корпуса насоса;
- снять кольцевой замок 2.2. и затем рабочее колесо;
- при помощи отвертки выпрессовать разделительный стакан с ротором;
 - вывернуть винты клеммной коробки и снять ее крышку; Сборка насоса производится в обратной последовательности.

Устройство насоса GRUNDFOS UPS 25-60 серии 100

Циркуляционные насосы серии 100 предназначены специально для работы в системах отопления. Насосы также применяются для циркуляции в системах горячего водоснабжения, а также в системах охлаждения и кондиционирования воздуха. Рабочие характеристики насоса UPS 25-60 см. в приложении 2.

Насосы модели UPS имеют три скорости вращения вала.

Типовой код насосов UPS

Насос всегда должен устанавливаться так, чтобы вал электродвигателя находился в горизонтальном положении. При пуске необходимо обеспечить вентиляцию защитной гильзы, для чего удаляется резьбовая пробка электродвигателя. В течение короткого времени оставшийся воздух через полый вал вытесняется в систему отопления.

Максимальная потребляемая мощность насоса UPS 25-60 составляет 70 Вт.

Насосы характеризуются ДЛЯ систем отопления ПО классу энергоэффективности. Класс энергоэффективности указывается на наклейке, на упаковке насоса. В системе используемых обозначающих класс энергоэффективности, буква А означает высший класс, G – низший. Hacoc UPS 25-60 имеет класс энергоэффективности С. Hacoc TOP S 50/7 имеет класс энергоэффективности Е с однофазным двигателем, класс энергоэффективности D с трехфазным двигателем.

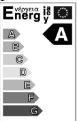


Рис. 4 Наклейка с указанием уровня потребления энергии насоса. На рисунке 4 класс энергоэффективности насоса – A.

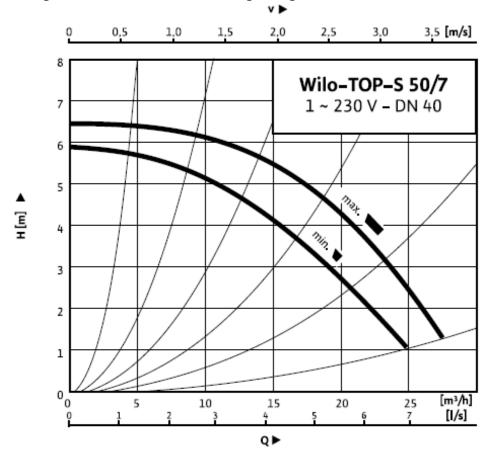
Рис. 5 Устройство насоса UPS с мокрым ротором

Порядок разборки и сборки насоса:

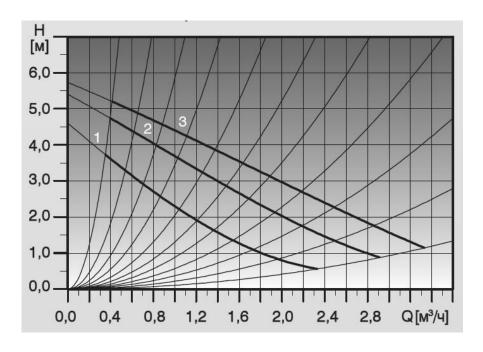
Разборка насоса производится в следующем порядке:

- вывернуть винты и извлечь мотор из корпуса насоса;
- выпрессовать рабочее колесо;
- вывернуть резьбовую пробку;
- при помощи отвертки выпрессовать гильзу ротора.

Сборка насоса производится в обратной последовательности.


Порядок выполнения работы и оформления отчета

- изучить и записать типовой код насоса, дать расшифровку кода (марки) изучаемого насоса, ознакомиться с данными типовой таблички насоса;
 - изучить рабочие характеристики насоса (приложение 1, 2);
 - разобрать насос;
 - изучить устройство насоса и дать его описание,
- произвести измерения диаметра рабочего колеса, разделительного стакана, вала ротора, всасывающего или нагнетательного патрубка;
 - результаты записать в таблицу 1.


Таблица 1

		Марка насоса				
№ Параметры насоса		WILO TOP S 50/7	GRUNDFOS UPS 25-60 серии 100			
1	Материал:					
2	рабочего колеса					
3	вала ротора					
4	корпуса насоса					
5	Габаритная длина, мм					
6	Способ присоединения к трубопроводу					
7	Номинальный внутренний диаметр					
	патрубка, мм					
8	Диаметр рабочего колеса, мм					
9	Диаметр вала ротора, мм					
10	Диаметр разделительного стакана, мм					

Приложение 1. Рабочие характеристики насоса ТОР S 50/7

Приложение 2. Рабочие характеристики насоса UPS 25-60

Вернуться в оглавление

Лабораторная работа № 3

ИЗУЧЕНИЕ КОНСТРУКЦИИ РАДИАЛЬНЫХ И ОСЕВЫХ ВЕНТИЛЯТОРОВ

Цель работы: ознакомиться с компоновкой оборудования и конструкцией вентиляторов: радиального, осевого фланцевого ВО-Ф-1,5, канального ВК 30-15, канального ВКК 100, осевого крышного ВКО-3,15В, радиального крышного ВКР-190.

Общие сведения о вентиляторах

Вентиляторы — лопаточные машины, предназначенные для перемещения воздуха или других газопаровоздушных смесей. Основное назначение вентилятора заключается в перемещении требуемого количества воздуха, для чего вентилятор должен создавать определенное давление, необходимое для преодоления сопротивления воздушного тракта и выпуска потока с определенной скоростью.

Вентиляторы подразделяются:

- *по конструктивному решению* на радиальные (центробежные) одностороннего и двустороннего всасывания, осевые, диаметральные;
- *по развиваемому давлению* низкого (до 1 кПа), среднего (до 3 кПа) и высокого (до 12 кПа) давления;
- по условиям эксплуатации на вентиляторы общего назначения из углеродистой стали, оцинкованной стали, пластмассы для перемещения чистого или мало запыленного воздуха и неагрессивных газовоздушных смесей с температурой до 80°С и специальные (из разнородных материалов, сплавов) для перемещения газопаровоздушных, взрывоопасных смесей с агрессивными примесями;
- *по схеме соединения с электродвигателем* непосредственно с электродвигателем на одной оси, с помощью эластичной муфты и клиноременной передачи;
 - по вращению правого и левого (со стороны всасывания);
- *по назначению, расположению в сети воздуховодов* на бытовые, канальные, крышные.

Наиболее важными характеристиками вентиляторов являются:

- аэродинамические характеристики;
- акустические характеристики;
- габаритно-массовые показатели;
- эргонометрические показатели.

Аэродинамические характеристики — это давление, развиваемое вентилятором, производительность, которую он имеет и потребляемая при этом мощность.

Акустические (шумовые) характеристики — это волны сжатия, распространяющиеся в воздухе. В связи с расширением области применения вентиляторов существенно повышаются требования к их шуму и вибрациям. Измерение шума производят при помощи шумомера. При измерениях шума, в том числе шума вентиляторов, используют, в основном, две физические

величины: звуковое давление P (Па), либо P (дБ, дБА) и звуковую мощность W (Вт), либо W (дБ, дБА).

Габаритно-массовые параметры зависят от аэродинамической характеристики вентилятора, выбираемых акустических параметров, типа аэродинамической схем, потребляемой мощности.

Эргономические параметры (внешний вид вентилятора) характеризуют отношение производителя к выпускаемой продукции. Это относится к внешнему виду и качеству лакокрасочного покрытия, удобству монтажа и обслуживания.

Устройство радиальных вентиляторов

Радиальный (центробежный) вентилятор (рис.1) состоит из трех основных элементов: лопаточного радиального колеса 1 с лопатками 2, закрепленного на валу 3 электродвигателя, входного или всасывающего патрубка 4, нагнетательного патрубка 5 и кожуха вентилятора 6. Лопаточное рабочее колесо расположено в спиральном корпусе. При вращении колеса воздух, поступающий через входное отверстие, попадает в каналы между лопатками колеса, под действием возникающей центробежной силы перемещается по этим каналам, собирается спиральным корпусом и направляется в его выпускное отверстие.

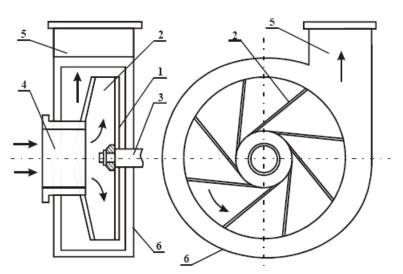


Рисунок 1 – схема центробежного вентилятора

Радиальные колеса состоят из лопаток, переднего диска, заднего диска и ступицы. Литые или точеные ступицы, предназначенные для насаживания колес на валы, крепят на заклепках, прикрепляют болтами или приваривают к задним дискам. К дискам, в свою очередь, прикрепляют лопатки с помощью заклепок или сварки.

Конструктивное исполнение радиальных вентиляторов регламентирует ГОСТ 5976-90 «Вентиляторы радиальные общего назначения. Общие технические условия».

Устройство осевых вентиляторов

Простейший осевой вентилятор (рис.2) представляет собой расположенное в цилиндрическом корпусе 1 лопаточное рабочее колесо пропеллерного типа 2. При вращении колеса воздух, поступающий через входное отверстие, под воздействием лопаток перемещается между ними в осевом направлении, причем давление увеличивается. Далее воздух поступает в впускное отверстие.

Осевые колеса состоят из втулок и прикрепленных к ним лопаток. В зависимости от профиля лопаток колеса называют нереверсивными или реверсивными.

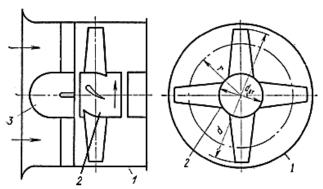


Рисунок 2 – схема осевого вентилятора

Лопатки выполняют из металла или пластмасс, листовые и объемные, причем последние могут быть монолитными (литыми) или пустотелыми. Втулки осевых вентиляторов изготавливают сварными, литыми и штампованными. Штампуют одновременно лопатки и втулки, т.е. все колесо полностью. В центре втулок располагают ступицы для посадки колеса на вал привода. Лопатки к втулкам крепят на стержнях или приваривают.

В значительной степени на работу осевого вентилятора влияет зазор между концами лопаток и внутренней поверхностью цилиндрического корпуса — он не должен превышать 1,5% от длины лопатки.

Обычные осевые вентиляторы используют при давлениях от 30 до 300 Па. Их производительность при больших диаметрах колес может достигать нескольких миллионов кубических метров в час.

Проточные размеры и другие параметры осевых вентиляторов регламентированы ГОСТом 11442-90 «Вентиляторы осевые общего назначения. Общие технические условия».

Устройство диаметральных (тангенциальных) вентиляторов

Диаметральный вентилятор состоит из рабочего колеса барабанного типа с загнутыми вперед лопатками и корпуса, имеющего патрубок на входе и диффузор на выходе.

Рабочее колесо тангенциального вентилятора представляет собой колесо барабанного типа с загнутыми вперед лопатками в корпусе. Корпус таких вентиляторов имеет патрубок на входе воздуха и диффузор на выходе.

Воздух проходит рабочее колесо тангенциального вентилятора в поперечном направлении. Действие диаметральных вентиляторов основано на двукратном поперечном прохождении потока воздуха через рабочее колесо. Применяются такие вентиляторы обычно в агрегатах вентиляции и кондиционирования.

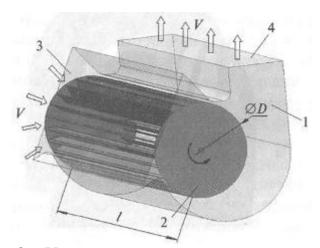


Рисунок 3 — Устройство диаметрального вентилятора: 1 — корпус вентилятора; 2 — рабочее колесо; 3 — прямоугольное входное отверстие; 4 — прямоугольное выходное отверстие

Диаметральные вентиляторы характеризуются более высокими аэродинамическими другими параметрами, ПО сравнению типами вентиляторов, в частности, они создают плоский равномерный поток воздуха удобством компоновки, позволяющей осуществлять большой ширины; поворот потока широких пределах; компактностью установки, позволяющей существенно сократить объем, занимаемый вентиляционной установкой.

Рисунок 4 – рабочее колесо диаметрального вентилятора

Благодаря этим качествам диаметральные вентиляторы нашли самое широкое применение в различных агрегатированных установках вентиляции и кондиционирования воздуха: фанкойлах, внутренних блоках сплит-систем, воздушных завесах.

Преимущества тангенциальных вентиляторов:

- создают равномерный плоский поток воздуха;
- удобная компоновка позволяет легко изменять направление потока;
- большой КПД (достигает 0.65 07);
- компактные размеры.

Устройство осевого вентилятора фланцевого ВО-Ф-1,5

Осевой вентилятор ВО-Ф предназначен для использования в системах общеобменной и технологической вентиляции ресторанов, магазинов, мастерских, складов и других помещений.

Вентилятор рекомендуется для подачи воздуха с малым содержанием пыли, а также низкоагрессивных газов и паров при малых аэродинамических сопротивлениях. Запыленность воздуха не должна превышать 10 мг/м³. В воздухе недопустимы включения, агрессивные к сталям обыкновенного качества, а также липкие, абразивные и волокнистые материалы.

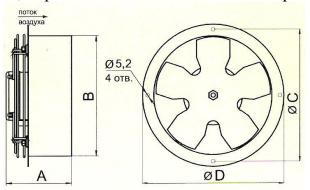


Рисунок 5 – Устройство осевого вентилятора ВО-Ф-1,5

Корпус вентилятора со специальным фланцем для крепления к стене выполнен из стали с защитным покрытием порошковой краской. Рабочее колесо вентилятора изготовлено из алюминия. Вентилятор оборудован двигателем с управлением скоростью вращения, класс защиты электродвигателя вентилятора - IP 42. Термоконтакты, установленные внутри, предохраняют двигатель от перегрева.

Устройство канальных вентиляторов

Конструктивное отличие канальных вентиляторов (рис. 6) от всех заключается в наличии спрямляющего аппарата спирального корпуса, т.е. устройства, снижающего закрутку потока на выходе ИЗ радиального колеса. По этому признаку вентиляторы большие группы: подразделяют на две канальные вентиляторы co спрямляющим аппаратом (прямоточные) и канальные вентиляторы спиральным корпусом.

К первой группе относятся вентиляторы с круглыми, квадратными или прямоугольными корпусами. Отличительной чертой этих вентиляторов является то, что ось вращения колеса расположена параллельно направлению потока во входном/выходном воздуховоде. Эти агрегаты всегда имеют спрямляющий аппарат. У вентиляторов с круглым корпусом функцию такого аппарата выполняют специальные стойки крепления электродвигателя, у вентиляторов с прямоугольным (квадратным) корпусом эту роль играют углы корпуса и стойки крепления электродвигателя.

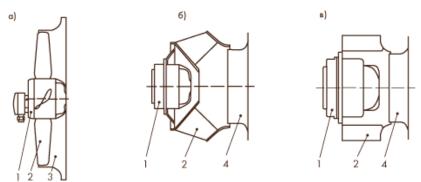


Рисунок 6 — Схемы канальных вентиляторов (а — с осевым, б — с диагональным, в — с радиальным колесами) 1 — двигатель, 2 — рабочее колесо, 3 — обечайка, 4 — коллектор

Вентиляторы второй группы, т.е. канальные вентиляторы со спиральным корпусом, отличительной чертой которых является то, что ось вращения колеса расположена перпендикулярно направлению потока во входном/выходном воздуховоде. В эту группу входят вентиляторы с прямоугольными корпусами, т.н. «положенные на бок колеса» и вентиляторы со спиральными корпусами, установленные в боксы или ящики. Вентиляторы этой группы всегда имеют спиральный корпус или его упрощенный элемент для организации выхода потока.

Устройство радиального канального вентилятора ВК 30-15

Прямоугольный канальный вентилятор применяется в приточновытяжных системах вентиляции с воздуховодами прямоугольного сечения административных, общественных и промышленных помещениях.

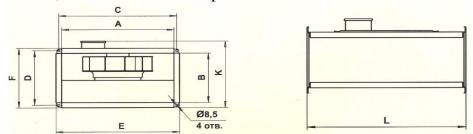


Рисунок 7 – Устройство канального вентилятора ВК 30-15

Корпус вентилятора изготовлен из стального или оцинкованного листа. Для перегрева защиты вентиляторы оснащены встроенными OT термоконтактами. Прямоугольные вентиляторы могут канальные устанавливаться В любом положении. Вентилятор электрически подключается к клеммной коробке, установленной на корпусе.

Устройство радиального канального вентилятора ВКК 100

Круглый канальный вентилятор применяется в системах общей вентиляции. Вентилятор оснащен двигателем с внешним ротором и крыльчатками с загнутыми назад лопатками.



Рисунок 8– Устройство канального вентилятора ВКК 100

Корпус изготовлен из высокопрочной термостойкой пластмассы. Для защиты от перегрева двигателя вентилятор оборудован встроенными термоконтактами. Степень защиты IP 44. Канальный вентилятор может устанавливаться в любом положении. Вентилятор электрически подключается к клеммной коробке, установленной на корпусе.

Устройство крышных вентиляторов

Крышные вентиляторы предназначены для удаления воздуха из помещений непосредственно через крышу или через воздуховоды. Крышные вентиляторы устанавливаются на специальные пьедесталы (строительные стаканы или конструкции, подобные им) для защиты от снежного покрова.

Вентиляторный агрегат (рис.9) состоит из рабочего колеса 1, основания 2, колпака 3, электродвигателя 4, виброизоляционных прокладок, ограждения 5 и шумоглушителей, заключенных в одном корпусе.

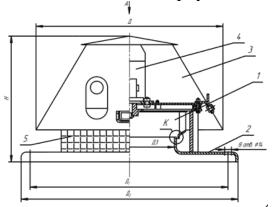


Рисунок 9 – Устройство крышного вентилятора

Крышные вентиляторы предназначены для организации свободного выхода потока. В качестве вентиляторов в составе этих агрегатов обычно применяют осевые или радиальные вентиляторы с прямоугольными, квадратными или круглыми корпусами. Радиальные вентиляторы со спиральным корпусом и особенно с загнутыми вперед лопатками рабочего колеса в качестве крышные вентиляторы подразделяют на два типа: вентиляторы с радиальным (веерным) выбросом и вентиляторы с факельным выбросом. В изготовлении обоих этих типов вентиляторов применены рабочие колеса вентилятора с загнутыми назад лопатками.

Вентилятор с радиальным (веерным) выбросом — это вентилятор со свободно вращающимся радиальным колесом, у которого поток на выходе распределяется в радиальных направлениях. У такого типа вентиляторов радиальная скорость потока на выходе затухает очень быстро, поэтому поток не выбрасывается далеко от колеса.

Вентилятор с факельным выбросом очень похож на канальный прямоточный вентилятор, в котором поток на выходе выбрасывается вверх в осевом направлении.

Устройство радиального крышного вентилятора ВКР-190

Радиальный крышный вентилятор предназначен для вытяжной вентиляции помещений. Вентилятор предназначен для вентиляции промышленных, сельскохозяйственных и общественных зданий.

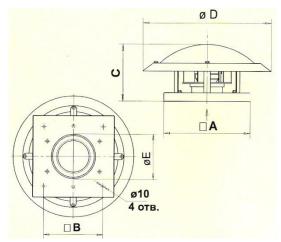


Рисунок 10 – Устройство крышного вентилятора ВКР-190

Вентилятор оснащен двигателем с внешним ротором и рабочим колесом с загнутыми назад лопатками. Корпус крышного вентилятора изготовлен из стали с полимерным порошковым покрытием. Для защиты от перегрева двигатель оснащен встроенными термоконтактами.

Преимущества вентилятора ВКР:

- простое управление подачей воздуха с помощью регуляторов скорости;
 - низкий уровень шума;
 - простота монтажа и эксплуатации.

Устройство осевого крышного вентилятора ВКО-3,15В

Осевой крышный вентилятор ВКО предназначен для использования в системах приточной и вытяжной вентиляции производственных, сельскохозяйственных и административных помещений. Крышный вентилятор может устанавливаться на плоских, односкатных, двухскатных или арочных крышах.

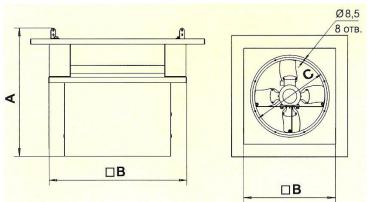


Рисунок 11 – Устройство крышного вентилятора ВКО-3,15В

Корпус крышного вентилятора выполнен из оцинкованной стали или стали с полимерным порошковым покрытием. Для предотвращения утечки теплого воздуха из помещения и попадания атмосферных осадков крышный вентилятор снабжен обратным воздушным клапаном. Крышный вентилятор оборудован трехфазным асинхронным двигателем, класс защиты электродвигателя вентилятора – IP 54 или IP 55.

Вентиляторы ВКО являются отличным решением вентиляции через крышу. При помощи переходной монтажной плиты вентилятор может устанавливаться на ранее установленную шахту круглой или прямоугольной формы. Скорость вращения электродвигателя может изменяться при помощи частотного регулятора.

Порядок проведения работы

- 1. Ознакомиться с конструкцией и компоновкой радиального, осевого, канального, крышного вентиляторов;
 - 2. Измерить габариты.

Порядок оформления отчета

- записать марку вентилятора и его технические характеристики (приложение 1);
 - дать описание устройства вентиляторов;
- составить эскизный чертеж вентилятора с указанием его основных геометрических параметров;
 - результаты измерения заносятся в таблицу 1.

Таблина 1

Название	٨	p	С	D	D	D	Е	E	K	Ţ	
вентилятора	A	A	D		ט	D_1	D_2	נו	1	IX.	נ
ВО-Ф-1,5											
BK 30-15											
BKK 100											
BKP-190											
BKO-3,15B											

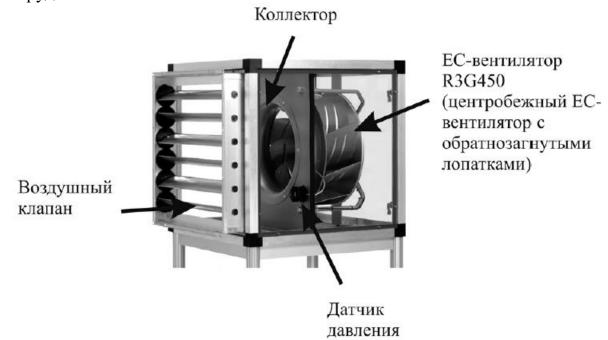
Приложение 1. Технические характеристики вентиляторов

Полимонородию нокороженя	BO-	ВК	ВКК	ВКР-	ВКО-
Наименование показателя	Ф-1,5	30-15	100	190	3,15B
Подача воздуха, $M^3/4$	175	570	247	470	2000
Мощность	5	58	58	58	120
электродвигателя, Вт	3	36	36	30	120
Частота вращения, об/мин	1500	2500	2500	2500	1500
Питание	220B	220B	220B	220B	380B
Уровень шума, дБ(А)	48	55	49	62	68
Степень защиты	IP 42	IP 44	IP 44		IP 54
Масса, кг	2,8	7,0	2,2	4,8	16
Полное давление, Па		310	295	320	

Контрольные вопросы

- 1. Назовите типы вентиляторов.
- 2. Каковы основные характеристики вентиляторов?
- 3. По каким признакам классифицируются вентиляторы?
- 4. В чем отличие осевых вентиляторов от радиальных?
- 5. Где применяются канальные вентиляторы?
- 6. Для чего предназначены крышные вентиляторы?
- 7. Устройство и принцип действия диаметрального вентилятора?

Вернуться в оглавление


Лабораторная работа № 4

ИССЛЕДОВАНИЕ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕКТРОННО-КОММУТИРУЕМОГО ВЕНТИЛЯТОРА EBM-PAPST CO ВСТРОЕННОЙ ЭЛЕКТРОНИКОЙ

Цель работы: Изучить работу вентилятора с электроннокоммутируемых двигателем, построить его аэродинамическую характеристику.

Общие сведения, описание лабораторной установки

Для испытания используется специальный лабораторный стенд, произведенный фирмой Ebm-papst Mulfingen GmbH & Co. KG (Германия) с использованием EC вентилятора R3G450-AG33-11. Электроннокоммутируемые (EC) двигатели это инновация фирмы ebm-papst, которая заключается в том, что электроника встраивается непосредственно в двигатель. По данным производителя, за счет этого достигается высокая эффективность работы и снижение уровня рабочего шума. Потребление электроэнергии уменьшается до 50%, а эксплуатационные затраты — на 30%. Встроенная электроника обеспечивает плавную и точную регулировку, широкие возможности программирования, а также компьютерное управление вентиляционной системой. К примеру, поддержание постоянного расхода через вентилятор независимо от сопротивления сети. В обычных же необходимо двигателях ДЛЯ этого использовать дополнительное оборудование.

Преимущества вентиляторов с электронно-коммутируемых двигателем:

- 1. Высокий КПД (93%), экономия электроэнергии обеспечивает снижение эксплуатационных расходов минимум на 30%;
- 2. Компактные размеры и низкий уровень шума при сравнительно высокой мощности;
 - 3. Управляющая электроника встроена в двигатель вентилятора;

- 4. Возможность плавной и точной регулировки производительности вентилятора в зависимости от уровня температуры, давления, степени задымленности;
- 5. Защита двигателя от механических воздействий и электрических перегрузок;
 - 6. Быстрое и простое подключение;
- 7. Не требует сервисного обслуживания. Имеет длительный срок службы (более 60 000 часов, т.е. 6,8 лет непрерывной работы).

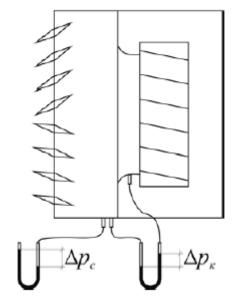


Рис. 1 Лабораторная установка

Лабораторная установка состоит из вентилятора R3G450-AG33-11, дифференциального коллектора, датчика давления И регулируемого сопротивление клапана, всасывании воздушного создающего на сопротивление вентиляционной Лабораторная имитирующего сети. компьютеру. Для установка подключена к управления двигателем вентилятора имеется программное обеспечение – программа LISA5. На рис. 1 представлена схема лабораторной установки. Давление $_{\Delta}P_{\kappa}$ измеряется автоматически при помощи встроенных датчика и контроллера. Значение $_{\Lambda}P_{\kappa}$ отображается в диалоге программы

Это, так называемое, «активное» давление, равное динамическому давлению в коллекторе установки, и позволяющее определить расход воздуха проходящего через вентилятор, по формуле:

$$L = 217 \cdot \sqrt{_{\Delta}P_{\kappa}}, M^3/4$$

Порядок выполнения работы и оформления отчета

Во вкладке вентилятор программы LISA5, в поле «Установить значение», установить заданное значение «активного» давления или скорости

вращения рабочего колеса. Нажать кнопку «Установить» и дождаться пока в поле «Актуальное значение» установится значение близкое к заданному (± 1 -2%).

Далее изменением положения (угла наклона) жалюзийной решетки воздушного клапана добиться заданного значения скорости вращения рабочего колеса вентилятора(±0,5-1%).

После чего при помощи трубки статического давления, и дифференциального микроманометра измерить давление перед вентилятором $_{\Delta}P_{c}$, которое будет равно падению давления на жалюзийной решетке (имитирующей вентиляционную сеть).

Измерения необходимо провести при нескольких значениях «активного» давления $_{\Delta}P_{\kappa}-$ 50, 75, 100, 125, 150, 175, 200 Па и одном значении скорости вращения рабочего колеса вентилятора.

Результаты занести в таблицу 1.

Таблица 1

	Заданное	Актуальное	Расход	Скорость	
No	значение	значение	воздуха	вращения	Потребляемая
опыта	давления	давления	$L, M^3/q$	рабочего колеса	мощность N,Вт
OHBITA	$_{\Lambda}P$ $_{\Pi a}$	$_{\Lambda}P_{\kappa}$, Πa	D, M / T	вентилятора,	1101111001111,131
	Δ = ,11a	Δ^{1}_{K} , 11a		об/мин	

На основании данных таблицы 1 построить график зависимости потребляемой мощности от изменения скорости вращения рабочего колеса вентилятора, график аэродинамических характеристик вентилятора (зависимость $_{\Delta}P_{c}$ от L).

Вернуться в оглавление

Лабораторная работа № 5

ОПРЕДЕЛЕНИЕ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ОСЕВОГО ВЕНТИЛЯТОРА

Цель работы: Определение по результатам испытания аэродинамических характеристик осевого вентилятора ВОК – 1,5 и сравнение их с данными технического паспорта

Краткие сведения из теории.

В соответствии с требованиями ГОСТ 10616-90 аэродинамические параметры вентиляторов должны быть представлены производительностью $L_{\rm B}$ (относится к условиям входа), давлением (полным P ($P_{\rm v}$), динамическим $P_{\rm cr}(P_{\rm cv})$), мощностью $N_{\rm B}$, коэффициентом полезного действия η (полным и статическим), быстроходностью и габаритностью, а также безразмерными параметрами. Аэродинамические характеристики вентиляторов устанавливаются путем экспериментальных исследований. В технической литературе они представлены в виде графических зависимостей $P=f_1(L_{\rm B}),\ N_{\rm B}=f_2(L_{\rm B}),\ \eta=f_3(L_{\rm B})$ для практически реализуемых чисел оборотов P=10, а при поворотных лопатках (колеса или направляющего (спрямляющего) аппарата) — в зависимости от угла их установки P=11, у вентиляторов общего назначения при работе с присоединяемой сетью за рабочий участок характеристики принимается та ее часть, на которой значение полного КПД удовлетворяет условию P=11, P=12, P=13, P=14, P=14,

Аэродинамические свойства вентилятора определяются его количественными и качественными характеристиками. Последние используют при оценке качества воздушного потока на выходе из вентилятора.

Количественные характеристики могут быть *размерными* и *безразмерными*.

Количество воздуха, подаваемого вентилятором в сеть, называется *производительностью вентилятора* или его *расходом воздуха*. С изменением сопротивления сети производительность вентилятора, работающего с постоянным числом оборотов, будет меняться.

Графики зависимости статического давления $P_{\text{ст}}$, потребности мощности $N_{\text{в}}$ на привод вентилятора и его коэффициента полезного действия η от количества подаваемого воздуха $L_{\text{в}}$ представляют собой размерную характеристику вентилятора.

В отличие от размерной характеристики, выражающей зависимость размерных величин от расхода воздуха, безразмерная характеристика является зависимостью безразмерных коэффициентов или величин от коэффициента режима работы, который служит характеристикой сопротивления сети.

$$K = \sqrt{\frac{\rho_{\partial}}{\rho}}, \tag{1}$$

Размерные характеристики получают в результате лабораторных испытаний вентилятора, а безразмерные — на основании расчетов по предыдущим характеристикам.

Имея размерные характеристики ряда вентиляторов, можно подобрать вентилятор, удовлетворяющий поставленным условиям в отношении величин: P, $P_{\rm ct}$, $P_{\rm d}$, $N_{\rm b}$, η , $L_{\rm b}$.

Безразмерная характеристика действительна для определенной группы вентиляторов, геометрически подобранных испытывавшемуся. Располагая безразмерной характеристикой и аэродинамической схемой вентилятора-модели, можно определить расчетами по подобию основные размеры и число оборотов лопастного колеса нового вентилятора, который будет иметь заданные производительность и давление.

Описание лабораторного стенда для испытания вентилятора

Снятие характеристик вентилятора выполняют с помощью приборов для измерения давления воздушного потока (пневмометрической трубки и дифференциального манометра ДМЦ-01М). Частоту вращения вала вентилятора замеряют тахометром часовым ТЧ 10-Р. В качестве измерительного инструмента используются штангенциркуль, линейка.

На лабораторной установке испытывается осевой вентилятор серии ВОК – 1,5. Данные технического паспорта вентилятора:

- потребляемая электродвигателем мощность составляет $N_{\rm B} = 5~{\rm Bt};$
- производительность $L_{\rm\scriptscriptstyle B}$ (подача воздуха) вентилятора составляет при $P_{\rm\scriptscriptstyle CT}=0~{\rm \Pi a}-170~{\rm m}^3/{\rm y};$
- скорость вращения рабочего колеса, n_{max} составляет 1500 об/мин.

Основными элементами лабораторной установки являются: объект исследования — осевой вентилятор, дросселирующая заслонка, диффманометр, пневмометрическая трубка, воздушный канал, тахометр, симисторный регулятор скорости вращения двигателя СР 2А.

Порядок выполнения работы

1. Для приточных и вытяжных вентиляторов со свободным подсосом воздуха расход воздуха измеряют с помощью входной насадки с полностью закругленными краями на входе в него, который устанавливается перед вентилятором.

Скорость определяют различными контрольно-измерительными приборами – анемометрами и диффманометром.

При полностью открытом дросселирующем клапане можно считать:

$$P_{cT} = 0$$
, $P_{II} = \max_{A} \hat{L}_{B} = \max_{A} \hat{I}_{A} = 1$,

а при полностью закрытом:

$$P_{\rm M} = 0, L_{\rm B} = 0, K = 0.$$

Скорость воздуха w при этом определяют по формуле:

$$w = \sqrt{(2 \cdot \Delta P_{cm}/\rho)}, \qquad (2)$$

где: ΔP_{cm} - статическое падение давления, Па; ρ – плотность воздуха, $\kappa \Gamma/M^3$.

Производительность вентилятора рассчитывают по измеренным данным по формуле:

$$L_{\rm B} = \sqrt{\frac{2P_{\rm A}}{\rho}}\,,\tag{3}$$

Динамическое давление рассчитывают по формуле:

$$P_{\rm I} = P - P_{\rm cr} = 0.5 \ \rho \ w^2 \tag{4}$$

2. Экспериментальная часть.

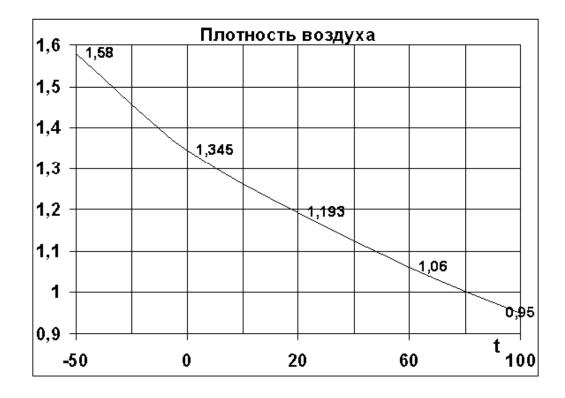
На лабораторной установке определить значение показателей F, $P_{\rm cr}$, $P_{\rm д}$, P, n. Здесь n - частота вращения вентилятора, об/мин; F – площадь сечения выходного патрубка вентилятора, M^2 .

Для этого необходимо:

- проверить наличие заземления лабораторной установки, надежность крепления всех узлов, наличие защитных ограждений;
- подключить питающий кабель к сетевой розетке, т.е. подать напряжение на регулятор скорости;
- пуск вентилятора осуществляется кнопками (по указанию преподавателя);
- после установившегося режима работы вентилятора произвести необходимые измерения;
- отключение лабораторной установки выполняют в обратной последовательности.

Изменение режима работы вентилятора достигается созданием сопротивления выходу воздуха из трубопровода за счет установки заслонок с различным проходным сечением, а также изменением скорости регулятором СР 2A.

Показания микроманометра, частоты вращения записать в таблицу 1.


Расчет характеристик вентилятора

Размерные параметры			пыта	
		2	3	4
Средняя частота вращения, п, об/мин				
Среднее полное давление Р, Па				
Среднее динамическое давление P_{μ} , Па				
Среднее статистическое давление P_{ct} , Па				
Средняя скорость воздушного потока w, м/с				
Объемный расход воздуха, L м ³ /с				
L = F w				
Мощность потока, $N_{\text{пот}}$ к B т				
$N_{\text{пот}} = L P$				
Потребляемая мощность вентилятора $N_{\scriptscriptstyle B}$, Вт				
КПД вентилятора $\eta_{\scriptscriptstyle B} = N_{\scriptscriptstyle \Pi O T} / N_{\scriptscriptstyle B}$				
Угловая частота вращения, ω, c ⁻¹				
$\omega = 3{,}14 \text{ n} / 30$				
Безразмерные параметры				
Приведенный расход воздуха, ${ m M}^3/{ m c}$ ${ m L}' = { m L}/{ m n}$				
Приведенное полное давление, Па $P' = 10^6 \ P \ / \ n^2$				
Приведенное динамическое давление, Па $P_{_{\rm J}}$ ' = $10^6P_{_{\rm J}}$ / n^2				
Приведенное статистическое давление, Па $P_{cr}' = 10^6 P_{cr} / n^2$				
Приведенная потребляемая мощность, Вт $N_{\text{пот}}' = 10^9 \ N_{\text{пот}} / \ n^3$				
Коэффициент режима работы вентилятора				
$K = \sqrt{\frac{P_{\mu}}{\rho}}$				

Контрольные вопросы

- 1. Как определить качественные характеристики вентилятора?
- 2. Как определить количественные характеристики вентилятора?
- 3. Как изменяются характеристики вентилятора при полностью открытом и полностью закрытом выходном канале?
- 4. Какие давления можно измерить при помощи микроманометра и пневмометрической трубки и как?
- 5. Какие основные параметры характеризуют работу вентилятора в сети?
 - 6. В каких системах вентиляции используются осевые вентиляторы?

Приложение 1 График зависимости плотности воздуха ρ от температуры t

Вернуться в оглавление

Лабораторная работа № 6

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ЦЕНТРОБЕЖНОГО ВЕНТИЛЯТОРА

Цель работы: Изучить устройство и принцип работы центробежного вентилятора и определить характеристики вентилятора. Найти оптимальный режим работы вентилятора.

Общие сведения

Вентиляторы — это воздуходувные машины, создающие определенное давление и служащие для перемещения воздуха при потерях давления в вентиляционной сети не более 15кПа.

В зависимости от развиваемого давления вентиляторы делят на следующие группы:

- низкого давления до 1кПа с окружной скоростью колеса 23–55 м/с;
- среднего давления -1-3кПа с окружной скоростью колеса 40-100 м/с;
- высокого давления 3-12к Π а с окружной скоростью колеса 100-150 м/с.

Вентиляторы низкого и среднего давления применяют в установках общеобменной и местной вентиляции, для сушилок и печей. Вентиляторы высокого давления используют в основном для технологических целей.

Наиболее распространенными являются центробежные и осевые вентиляторы.

Центробежный вентилятор (рис.1.1) состоит из рабочего колеса 1 с лопатками 2, закрепленного на валу 3 электродвигателя (на рисунке электродвигатель не показан), входного или всасывающего патрубка 4, нагнетательного патрубка 5 и кожуха вентилятора 6.

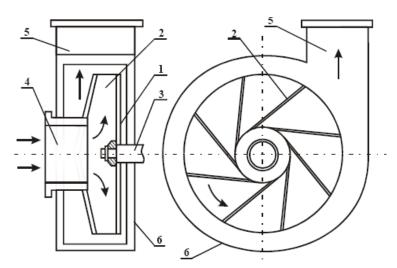


Рисунок 1.1 - Схема центробежного вентилятора

Принцип действия центробежного вентилятора заключается в следующем. При вращении рабочего колеса 1 частицы воздуха увлекаются лопатками 2 во вращательное движение, при этом на частицы воздуха действуют центробежные силы, которые направлены от центра к стенкам кожуха 6. Каждая частица воздуха совершает сложное движение: с одной

стороны, движется вдоль лопатки, а с другой — вращается вместе с рабочим колесом вокруг его оси. Так как частицы воздуха движутся от центра к стенке кожуха, то в центре вращения и во всасывающем патрубке 4 создается разрежение, т.е. давление воздуха меньше атмосферного давления. Под действием разности давлений во всасывающий патрубок поступают новые частицы воздуха из окружающей атмосферы. Таким образом, удаляется загрязненный воздух от любого источника в машиностроительных, металлургических и других цехах. Частицы воздуха, отброшенные от центра вращения к кожуху вентилятора, движутся вдоль кожуха и попадают в нагнетательный патрубок 5. При этом происходит сжатие воздуха, его давление увеличивается и становится больше атмосферного.

При постоянной частоте вращения работа центробежного вентилятора характеризуется следующими параметрами:

- 1) объемный расход перемещаемого газа производительность V (*или* L), м /c;
- 2) перепад давлений (μ апор), создаваемый вентилятором разность полных давлений на входе (во всасывающем патрубке) и на выходе (в нагнетательном патрубке) вентилятора ΔP , Π a,

$$\Delta \mathbf{P}_{\mathsf{B}} = \mathbf{P}_{\mathsf{\pi}}^{\mathsf{H}} - \mathbf{P}_{\mathsf{\pi}}^{\mathsf{B}}, \qquad (1.2)$$

где:

 $P_{_{\Pi}}^{^{H}}$ — полное давление на выходе (в нагнетательном патрубке) вентилятора, Πa ;

 $P_{_{\Pi}}^{^{B}}$ – полное давление на входе (во всасывающем патрубке) вентилятора, Па;

3) коэффициент полезного действия η — отношение мощности, требуемой для перемещения воздуха, к мощности, затрачиваемой в действительности вентилятором:

$$\eta = \frac{\mathbf{V} \cdot \Delta \mathbf{P_B}}{\mathbf{N_B}} \mathbf{100\%} \; ; \tag{1.3}$$

4) затраченная мощность вентилятора $N_{_{\rm B}},$ Вт.

У центробежных вентиляторов параметры V, $\Delta P_{_{\rm B}}$ и $N_{_{\rm B}}$ связаны между собой, и изменение одной из этих величин вызывает изменение остальных.

Графические зависимости $\Delta P_{_{\rm B}} = f_{_{1}}(V)$, $N_{_{\rm B}} = f_{_{2}}(V)$, $\eta = f_{_{3}}(V)$ называют характеристиками вентилятора. Они наглядно отражают особенности работы вентилятора и позволяют подобрать для данного воздуховода наиболее экономичный вентилятор. На основании теоретических расчётов эти характеристики с достаточной точностью получить нельзя. Поэтому на практике применяют характеристики вентиляторов, полученные опытным путём. На рисунке 1.2 показаны типичные характеристики центробежного вентилятора при постоянной частоте вращения рабочего колеса \mathbf{n} (об/мин).

Значение максимального КПД определяет решающее качество вентилятора — экономичность. Производительность вентилятора, соответствующая максимальному КПД, называется оптимальной, а соответствующий режим работы вентилятора — оптимальным.

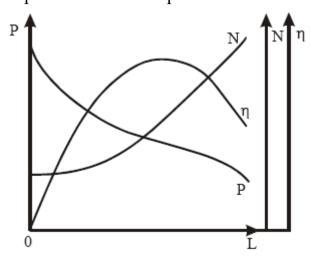


Рисунок 1.2 – Полная характеристика вентилятора

Наиболее важной является кривая зависимости между давлением и производительностью P–V (*или* P–L) — так называемая *характеристика* давления вентилятора (*напорная характеристика*). Для ее определения необходимо сделать замеры полного давления на входе и выходе вентилятора при различных значениях производительности.

Полное давление представляет собой алгебраическую сумму статического и динамического давлений:

$$\mathbf{P}_{\mathbf{\Pi}\mathbf{0}\mathbf{J}} = \mathbf{P}_{\mathbf{C}\mathbf{T}} + \mathbf{P}_{\mathbf{\Pi}\mathbf{H}\mathbf{H}}.\tag{1.4}$$

Статическое давление — это разность давлений газа внутри трубопровода и окружающего воздуха. На входе в вентилятор статическое давление меньше атмосферного, поэтому имеет отрицательную величину. На выходе вентилятора статическое давление больше атмосферного и имеет положительный знак.

Динамическое, или скоростное давление зависит только от скорости движения газа и всегда положительно. Определяется динамическое давление по формуле:

$$\mathbf{P}_{\mathbf{ДИН}} = \frac{\rho \omega^2}{2},\tag{1.5}$$

где: ρ – плотность газа, кг/м;

 ω – скорость газа, м/с.

На практике давление в трубопроводе можно измерить с помощью Uобразного манометра и пневмометрической трубки.

При измерении давления жидкостным U-образным манометром измеряемая среда с давлением P_a соединяется при помощи металлической или резиновой трубки с одним коленом манометра, а второе колено — с

атмосферой, имеющей барометрическое давление P_6 . Высота столба жидкости h измеряет избыточное давление (рис 1.3, a)

$$\mathbf{P}_{\mathbf{H}3\mathbf{\delta}} = \mathbf{h} \boldsymbol{\rho} \mathbf{g}, \tag{1.6}$$

где: ρ – плотность жидкости, кг/м;

 ${\bf g}$ – ускорение свободного падения, м/ ${\bf c}^{-}$.

В качестве рабочей жидкости чаще всего используют воду или спирт. Точность измерения U-образным манометром при правильном отсчете уровней жидкости в трубках достаточно высока. Отсчет показаний жидкостных манометров приведен на рис.1.3.

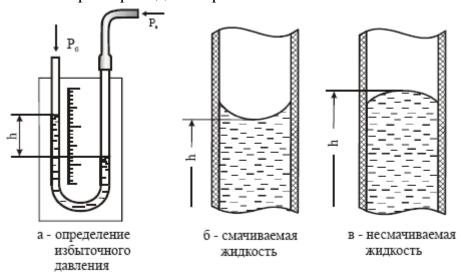


Рисунок 1.3 – Измерение давления жидкостным U-образным манометром

Полное давление в вентиляторе может быть измерено при помощи открытой пневмометрической трубки (трубка Пито), поставленной навстречу потоку (рис 1.4, a), а статическое давление — при помощи трубки или отверстия в трубопроводе, расположенных перпендикулярно к потоку (рис 1.4, δ).

Если обе трубки присоединить к противоположным концам манометра, то разность уровней рабочей жидкости в коленах манометра покажет разность между полным и статическим давлением в данной точке потока, то есть величину динамического давления (рис 1.4, θ).

Перепад полного давления определяется с помощью двух загнутых трубок, помещенных навстречу потоку воздуха в двух сечениях канала (рис.1.4, ε). Перепад статического давления определятся с помощью двух трубок, расположенных в канале перпендикулярно направлению движения воздуха (рис.1.4, δ).

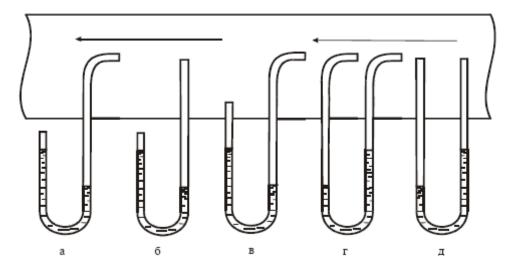


Рисунок 1.4 – Определение давления и перепадов давления с помощью U-образного манометра

Для определения производительности вентилятора используют пневмометрические трубки или дроссельные приборы — сужающие устройства. Сужающие устройства могут быть использованы для измерения расхода любых однофазных сред, они могут быть установлены в трубопроводах любого диаметра; температура и давление измеряемой среды могут иметь практически любое значение. Очень существенно, что градуировочная характеристика стандартных сужающих устройств может быть определена расчётным путём.

В данной работе для определения расхода воздуха применяется дроссельный прибор (расходомерная шайба). Принцип использования дроссельных приборов для замера расхода газа можно уяснить по графику распределения давления при установке в трубе диафрагмы (рис.1.5)

Поместим в трубопровод диаметром D диафрагму, представляющую собой шайбу с отверстием d, и измерим давление в трубопроводе до диафрагмы и за ней. При сужении трубопровода скорость воздуха увеличивается от ω_1 до ω_2 , вследствие чего по закону Бернулли происходит падение давления от P_1 до P_2 . За диафрагмой скорость воздуха уменьшается, а давление растет до P_3 , но P_3 < P_1 , то есть наблюдается перепад давления на шайбе $\Delta P_m = P_1 - P_3$, который пропорционален квадрату скорости воздуха. Зная диаметр d отверстия шайбы, можно определить расход газа в кубических метрах за секунду:

$$V = c \sqrt{\Delta P_{mi}}$$
, (1.7)

где с — расходный коэффициент диафрагмы. Для расходомера, используемого в данной установке, $c=0.64\cdot10^{-2}$.

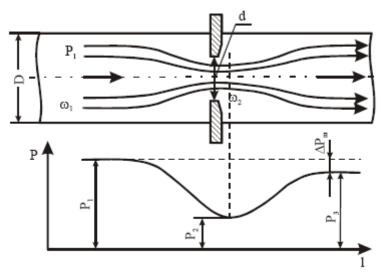


Рисунок 1.5 — Дросселирование газа диафрагмой и характер изменения давления при дросселировании

Производительность вентилятора может регулироваться различными способами. Один из наиболее экономичных способов — изменение числа оборотов рабочего колеса — не получил до настоящего времени широкого распространения из-за затруднений, связанных с изменением числа оборотов электродвигателя. Наиболее широко используют способ дросселирования заслонкой, имеющий низкую экономичность. В данной работе регулирование производительности будет выполняться с помощью заслонки, установленной на входном патрубке.

Описание установки

Лабораторная установка (рис.1.6) состоит из центробежного вентилятора 1, асинхронного двигателя 2, всасывающего патрубка 3, заслонки 4, нагнетательного патрубка 5, трубопровода 6 и расходомерной шайбы 7. Для измерения перепада полного давления на входе и выходе вентилятора используют изогнутые под прямым углом пневмометрические трубки 8 и 9, закрепленные во входном и нагнетательном патрубках и присоединенные к U-образному манометру. Перепад статического давления на расходомерной шайбе измеряют с помощью прямых пневмометрических трубок 10 и 11, закрепленных перпендикулярно трубопроводу до и после шайбы 7 и подключенных к манометру 12.

Ход работы

- 1. Включить установку в сеть.
- 2. После набора электродвигателем оборотов установить заслонку в исходное положение (заслонка закрыта).

Рисунок 1.6 - Схема лабораторной установки

- 3. Измерить мощность, потребляемую электродвигателем, $N_{\text{дв}}$ и перепады давлений: полного на вентиляторе (разность давлений во входном $P_{_{\rm II}}^{^{\rm B}}$ и нагнетательном $P_{_{\rm II}}^{^{\rm H}}$ патрубках) и статического на расходомерной шайбе (разность давлений перед шайбой $P_{_{\rm I}}$ и за шайбой $P_{_{\rm I}}$).
 - 4. Повторить опыт 3 при различных положениях заслонки.
 - 5. Результаты измерений записать в таблицу 1.1.

Таблица 1.1 – Результаты измерений

Измеряемая величина	Единицы	Номер опыта				
	измерения	1	2	3	4	5
Мощность электродвигателя $N_{дв}$	кВт					
Мощность вентилятора $N_{\scriptscriptstyle B}$	Вт					
Перепад давления на шайбе $\Delta \mathbf{P}_{\mathbf{m}}$	Па					
Производительность вентилятора $V(L)$	M^3/c					
Перепад давления на вентиляторе	Па					
$\Delta \mathbf{P}_{_{\mathbf{B}}}$						
КПД вентилятора $\eta_{\scriptscriptstyle B}$	%					

Порядок расчета

1. Определить производительность вентилятора [V]= 3 /с:

$$V = 0.64 \cdot 10^{-2} \sqrt{\Delta P_{III}}$$

где: $\Delta \mathbf{P}_{_{\mathbf{III}}}$ – перепад статического давления на шайбе, Па.

2. Вычислить мощность, потребляемую вентилятором $[N_{_{\rm B}}]$ =Вт:

$$N_{\scriptscriptstyle B}\!\!=\!\!N_{\scriptscriptstyle {\rm JB}}\!\cdot\eta_{\scriptscriptstyle {\rm JB}}\!\cdot10^3,$$

где: $\eta_{_{\Pi B}} - K\Pi Д$ электродвигателя, принять равным **0,85**.

3. Рассчитать КПД вентилятора:

$$\eta_{\rm B} = \frac{\mathbf{V} \cdot \Delta \mathbf{P}_{\rm B}}{N_{\rm B}} \cdot 100\% \,.$$

- 4. Результаты расчетов записать в таблицу 1.1.
- расчетов результатам 5. По построить характеристики вентилятора — графики зависимостей $\eta_{_B}$, $\Delta P_{_B}$ и $N_{_B}$ от производительности: $\eta_{_B} = f_{_1}(V); \ \Delta P_{_B} = f_{_2}(V); \ N_{_B} = f_{_3}(V).$

$$\eta_{B} = f_{1}(V); \Delta P_{B} = f_{2}(V); N_{B} = f_{3}(V).$$

6. Проанализировать характеристики вентилятора и определить оптимальный режим работы. Сформулировать вывод – найти оптимальную производительность вентилятора.

Контрольные вопросы

- 1. Какие машины относятся к вентиляторам?
- 2. Как определить степень повышения давления в вентиляторе?
- 3. На какие группы по полному давлению делят вентиляторы? Где они применяются?
 - 4. Опишите принцип действия центробежного вентилятора.
 - 5. Охарактеризуйте основные параметры вентилятора.
 - 6. Назовите основные характеристики центробежного вентилятора.
 - 7. Какой режим работы вентилятора считается оптимальным?
- 8. Способы определения полного, динамического и статического давлений.
 - 9. Способ определения объемного расхода воздуха.
 - 10. Принцип использования дроссельных приборов.

Вернуться в оглавление

Лабораторная работа № 7

ИССЛЕДОВАНИЕ СОВМЕСТНОЙ РАБОТЫ ЦЕНТРОБЕЖНЫХ НАСОСОВ ПРИ ИХ ПАРАЛЛЕЛЬНОМ И ПОСЛЕДОВАТЕЛЬНОМ ВКЛЮЧЕНИИ

Цель работы: на основании стендовых испытаний двух центробежных насосов типа КМ (фирмы WILO) построить индивидуальную и суммарные расходно-напорные характеристики Q-H при их параллельном и последовательном включении.

Общие сведения

На насосных станциях в подавляющем большинстве случаев в одном машинном зале устанавливают несколько насосных агрегатов. Включение насосов на общий трубопровод может быть параллельным (чаще) и последовательным (реже).

Условием параллельной работы насосов на общий трубопровод будет равенство их напоров.

Чтобы найти режимную точку параллельно работающих насосов, необходимо построить ИХ суммарную напорную характеристику, пересечения которой с характеристикой трубопровода и определит положение режимной точки. Суммарную напорную характеристику получают путем сложения абсцисс, определяющих подачи насосов при одинаковых напорах. Следует отметить, что общая подача насосов при параллельной работе уменьшается по сравнению с суммарной подачей этих насосов, работающих на тот же трубопровод раздельно. Напор при параллельной работе насосов больше каждого из напоров работающих индивидуально.

Параллельное включение насосов применяется для увеличения расхода жидкой среды в сети трубопроводов.

Последовательное включение насосов в практике водоснабжения осуществляется крайне редко. Суммарная напорная характеристика в этом случае получается путем сложения ординат напоров насосов при одинаковых значениях их подач. Последовательное включение насосов приводит не только к увеличению напора, но и подачи.

Однако такое включение применяется для увеличения напора в сети трубопроводов.

Схема и описание лабораторного стенда

Лабораторный стенд для исследований совместной работы насосов состоит из двух центробежных насосов типа КМ (фирмы WILO) с обвязкой трубопроводами, позволяющей проводить параллельное и последовательное включение (Рисунок 1).

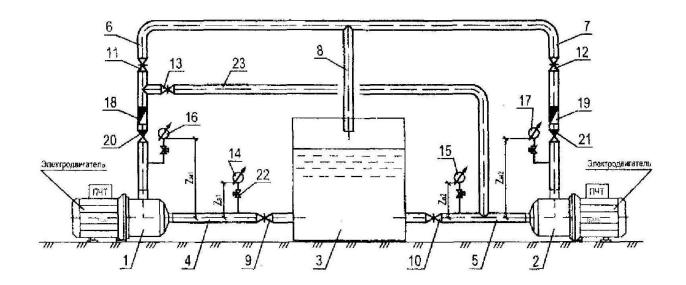


Рисунок 1. Схема лабораторного стенда

- 1, 2 центробежные насосы; 3 резервуар; 4, 5 всасывающие трубопроводы; 6, 7 нагнетательные трубопроводы;
- 8 общий нагнетательный водовод; 9, 10 шаровые краны на всасывающем трубопроводе; 11, 12 шаровые краны на нагнетательном трубопроводе;
- 13 шаровой кран для обеспечения последовательного включения насосов; 14, 15 – вакуумметры; 16, 17 – манометры; 18, 19 – водомеры;
 - 20, 21 обратные клапаны; 22 трехходовой кран, 23 трубопровод для обеспечения последовательного включения насосов

Вода из резервуара 3 по всасывающим трубопроводам 4 и 5 забирается испытуемыми насосами 1 и 2 и по нагнетательным трубопроводам 6 и 7, объединенным в общий водовод 8, подается обратно в резервуар 3. Трубопроводы оборудованы шаровыми кранами 9, 10, 11, 12, 13. Измерение давления на входе в насосы осуществляется с помощью вакуумметров 14, 15, а на выходе из насосов — с помощью манометров 16, 17. Объем воды, подаваемый насосами, определяется водомерами 18,19.

Порядок проведения работы

- 1. Параллельная работа насосов
- Открыв краны 9 и 10, залить испытуемые насосы водой.
- Закрыть краны 11, 12 и 13 и запустить в работу насос 1.
- С помощью крана 11 установить режим его работы.
- Провести замеры Рв₁, Рм₁, отсчет по водомеру 16, время работы водомера t и занести их в протокол испытаний.
- При работающем на установленном режиме насосе 1 включить в работу насос 2.
 - С помощью крана 12 установить давление $P_{M_2} = P_{M_1}$.
 - Провести замер объема и времени t при совместной работе насосов.
 - Закрыть кран 12 (насос 2 не отключать).

- C помощью крана 11 установить следующий режим работы насоса 1 и повторить измерения (6...8 режимов).
 - Закрыть краны 11, 12 и остановить насосы.
 - 2. Последовательная работа насосов
- При открытом кране 9 (остальные краны закрыты) запустить в работу оба насоса.
 - Открыть кран 13.
 - С помощью крана 12 установить режим совместной работы насосов.
- Записать показания приборов Рв₁ и Рм₂, а также провести замер объема подаваемой воды по водомеру 18 и время t.
- C помощью крана 12 установить следующий режим работы насосов и повторить измерения (6...8 режимов).
 - Закрыть краны 12, 13 и остановить насосы.

Расчетные формулы

Объемная подача насоса или совместно работающих насосов определяется по формуле:

$$Q = W/t, \, M^3/c; \tag{1}$$

где: W-объем воды по водомеру, м³; (t - время наполнения объема W, c).

Манометрический напор насоса определяется по формуле:

$$H = \frac{P_{M1} + P_{B1}}{\rho \cdot g} + Z_{M} - Z_{B} + \frac{V_{H}^{2} - V_{B}^{2}}{2g}, M;$$
 (2)

где: Рм и Рв - манометрическое и вакуумметрическое давление в нагнетательном и всасывающем патрубках насоса, Па;

Zм - высота подключения манометра, Zм = 1,12 м;

 Z_{B} - высота подключения вакуумметра, Z_{B} = 0,35 м;

Vн и Vв - скорости движения воды в нагнетательном и всасывающем патрубках насоса, м/с:

$$V_{H,B} = \frac{4Q}{\pi \cdot d_{H,B}^2}, M/c;$$
 (3)

где: $d_{\mbox{\tiny H},\mbox{\tiny B}}$ - диаметр нагнетательного или всасывающего трубопроводов, $d_{\mbox{\tiny H}}=0{,}08$ м; $d_{\mbox{\tiny B}}=0{,}1$ м.

При <u>последовательном</u> включении насосов совместный напор определяется по формуле:

$$H = \frac{P_{M2} + P_{B1}}{\rho \cdot g} + Z_{M2} - Z_{B1} + \frac{V_{H}^{2} - V_{B}^{2}}{2g}, M;$$
 (4)

Протоколы испытаний и расчетов

Таблица 1. При параллельном включении насосов

			1 1											
				Подача					Напор насосов, включенных параллельн					
No	Оді	ин на	icoc	Два насоса, включенных параллельно				Dv	Dn	VH,	V _B ,	Н,		
режима	W, M ³	t,	Q, _M ³ /c	W_1, W_2, M^3	$\begin{array}{c cccc} W_1, & t1, & Q_1, \\ W_2, & t2, & Q_2, & Q_{1+2}, \\ \end{array}$			Рм ₁ , Па	Рв _I , Па	M/C	M/C	M M		
				17/1		WI / C								

Таблица 2. При последовательном включении насосов

	Пола	ча двух н	IACOCOR						
	Пода	ча двух г	тасосов,	I	Напор насо	сов, вклю	ченных		
$N_{\underline{0}}$	В	ключенн	ΙЫΧ	_	•	•			
	ПОС	следоват	ельно	ПОСЛС	последовательно				
режима	W,	t,	Q,	Рм ₂ ,	P _{Bl} ,	V _H ,	V _B ,	H,	
	\mathbf{M}^3	c	\mathbf{M}^3/\mathbf{c}	Па	Па	M/c	м/с	M	

Контрольные вопросы

- 1. Как определяется подача насоса?
- 2. Как определяется напор насосов при параллельном включении?
- 3. Как определяется напор насосов при последовательном включении?
- 4. Как включаются насосы для увеличения расхода жидкости в водопроводной сети?
- 5. Как включаются насосы для увеличения напора в водопроводной сети?
- 6. Отличаются ли подачи насосов при последовательном их включении?
 - 7. Отличаются ли подачи насосов при параллельном их включении?
- 8. Когда применяется последовательное и когда применяется параллельное включение насосов?

Вернуться в оглавление

Лабораторная работа № 8

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ИЗМЕНЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ РАБОЧЕГО КОЛЕСА НАСОСА НА ЕГО ХАРАКТЕРИСТИКИ

Цель работы: по результатам испытаний центробежного насоса построить его опытные расходно-напорные характеристики для различных частот вращения рабочего колеса. Определить значения расчетных расходно-напорных характеристик для соответствующих частот вращения рабочего колеса. Выполнить сравнение опытных и расчетных расходно-напорных характеристик насоса.

Общие сведения

Одним из методов регулирования подачи насосов является метод изменения частоты вращения рабочего колеса. Применение этого метода открывает значительные возможности экономии электроэнергии.

Заданные характеристики насоса, полученные при частоте вращения п, можно пересчитать и построить ряд других характеристик для различных частот вращения. Пересчет напорных характеристик насоса ведется по нижеследующим формулам:

$$\frac{\mathbf{Q}_1}{\mathbf{Q}_2} = \frac{\mathbf{n}_1}{\mathbf{n}_2},\tag{1}$$

$$\frac{\mathbf{H}_1}{\mathbf{H}_2} = \left(\frac{\mathbf{n}_1}{\mathbf{n}_2}\right)^2. \tag{2}$$

где: Q и H, - соответственно подача и напор насоса при частоте вращения $\mathbf{n_1}$,

 $Q_2,\,H_2$ - соответственно подача и напор при частоте вращения $n_2.$

Опыты проводятся на лабораторном стенде с использованием насоса, имеющего преобразователь частоты тока. При изменении частоты тока изменяется частота вращения рабочего колеса насоса.

Порядок проведения работы

- открытием крана на всасывающем трубопроводе насоса произвести его заливку;
- при закрытом кранее на нагнетательном трубопроводе запустить в работу насос;
- открытием крана на нагнетательном трубопроводе выставить режим работы насоса (опыт);
 - измерить объём воды W, поданный насосом за время t;
- произвести замеры показаний измерительных приборов вакуумметра Рв и манометра Рм;
- с помощью крана на нагнетательном трубопроводе выставить следующий режим насоса и повторить измерения (6...8 режимов);

- установить другую частоту вращения рабочего колеса насоса и опыты повторить. Для изменения частоты вращения рабочего колеса необходимо крутить красную кнопку на блоке ПЧТ, смотреть на жидкокристаллическом индикаторе значение частоты вращения и для принятия частоты вращения нажать на эту красную кнопку;
- по окончании всех опытов сначала остановить (выключить) насос затем закрыть краны на всасывающем и нагнетательном трубопроводах насоса.

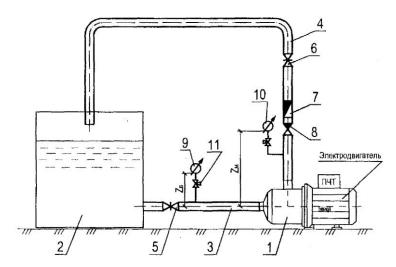


Рисунок 1. Схема лабораторного стенда

1 - центробежный насос; 2 - резервуар; 3, - всасывающий трубопровод; 4 - нагнетательный трубопровод; 5 - задвижка на всасывающем трубопроводе; 6 — шаровой кран задвижка на нагнетательном трубопроводе; 7- водомер; 8- обратный клапан; 9 - вакуумметр; 10 - манометр; 11 - трехходовой кран

Расчетные формулы

Объёмная подача насоса определяется по формуле:

$$Q = W/t, \, M^3/c; \tag{3}$$

где: W-объем воды по водомеру, ${\rm M}^3$; (t - время наполнения объема W, c).

Манометрический напор насоса определяется по формуле:

$$H = \frac{P_{M} + P_{B}}{\rho \cdot g} + Z_{M} - Z_{B} + \frac{V_{H}^{2} - V_{B}^{2}}{2g}, m;$$
 (4)

где: Рм и Рв - манометрическое и вакуумметрическое давление в нагнетательном и всасывающем патрубках насоса, Па;

Zм - высота подключения манометра, Zм = 1,17 м;

Zв - высота подключения вакуумметра, Zв = 0,33 м;

Vн и Vв - скорости движения воды в нагнетательном и всасывающем патрубках насоса, м/с:

$$V_{H,B} = \frac{4Q}{\pi \cdot d_{H,B}^2}, M/c;$$
 (5)

где: $d_{H,B}$ - диаметр нагнетательного или всасывающего трубопроводов.

Расчетная подача (Q_p) и расчетный напор (H_p) насоса при частоте вращения n_2 определяется из формул 3 и 4.

Протокол испытаний и расчета технических параметров насоса

Таблица 1. Опытные данные, снятые в результате эксперимента и

расчетные данные, определенные по теоретическим формулам

										Расче	тные
$N_{\underline{0}}$	n,	W,	t,	Q,	Рм,	Pв,	V _H ,	V _B ,	Н,	парам	•
опыта	об/мин	\mathbf{M}^3	c	M^3/c	Па	Па	_M /c	_M /c	3.7	нас	oca
Опыта	ОО/МИН	IVI	C	M /C	11a	11a	MI/C	M/C	M	Qp,	Нр,
										\mathbf{m}^3/\mathbf{c}	M

Таблица 2. Сравнение значений опытного и расчетного напоров

№ π/π	n, об/мин	Q*, m ³ /c	Н*, м	Н _р ,	$\Delta H = \frac{H - H_{_{\mathcal{I}}}^*}{H} \cdot 100\%$

По результатам протокола строятся опытные расходно-напорные характеристики насоса при частотах вращения n_1 и n_2 , а также определенная по теоретическим формулам расчетная расходно-напорная характеристика насоса при частоте n_2 . Далее проводится сравнение построенных опытной и расчетной характеристик насоса и анализ полученных результатов. Сравнение опытного и расчетного напоров производится при одинаковой величине подачи для одной и той же частоты вращения рабочего колеса насоса.

Контрольные вопросы

- 1. Как определяется опытная подача насоса?
- 2. Как определяется опытный напор насоса?
- 3. Как определяется расчетная подача насоса при частоте n₁?
- 4. Как определяется расчетный напор насоса при частоте n_2 ?
- 5. Какими способами можно изменить подачу насоса?

- 6. Как технически осуществляется изменение частоты вращения рабочего колеса насоса?
- 7. Какие характеристики насоса изменяются в результате изменения частоты вращения рабочего колеса?
- 8. Для чего применяются преобразователи частоты электрического тока?

Вернуться в оглавление

3. РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ

3.1 Вопросы к экзамену

- 1. Нагнетатели. Основные определения и понятия (гидравлическая машина, вентилятор, компрессор, насос).
- 2. Применение нагнетателей в теплогазоснабжении.
- 3. Классификация нагнетателей по принципу действия.
- 4. Классификация насосов по назначению, по виду перемещаемой среды, по развиваемому давлению и производительности.
- 5. Классификация объемных нагнетателей. Общие свойства объемных нагнетателей.
- 6. Основные требования к нагнетателям инженерных систем.
- 7. Параметры работы нагнетателей (технические, энергетические, санитарно-гигиенические, эксплуатационные показатели и спец.условия). Понятие «нормальных условий» для газодувных машин.
- 8. Определение основных потребительских и технических параметров нагнетателей.
- 9. Производительность, подача нагнетателей: определение, связь между подачей и производительностью. Схема формирования производительности вентилятора.
- 10. Мощность и КПД нагнетателей: определение, единицы измерения. Схема энергетического баланса на примере установки с вентилятором.
- 11. Схема, принцип действия, достоинства и недостатки центробежных насосов.
- 12. Схема, принцип действия, достоинства и недостатки радиального вентилятора со спиральным кожухом.
- 13. Схема, принцип действия, достоинства и недостатки нагнетателей осевых.
- 14. Схема, принцип действия, достоинства и недостатки прямоточного радиального вентилятора.
- 15. Схема, принцип действия, достоинства и недостатки смерчевого вентилятора.
- 16. Схема, принцип действия, достоинства и недостатки вихревого насоса.
- 17. Схема, принцип действия, достоинства и недостатки диаметрального вентилятора.
- 18. Схема, принцип действия, достоинства и недостатки поршневого нагнетателя.
- 19. Схема, принцип действия, достоинства и недостатки зубчатого (шестеренного) насоса.
- 20. Схема, принцип действия, достоинства и недостатки пластинчатого нагнетателя.
- 21. Схема, принцип действия, достоинства и недостатки струйного нагнетателя.

- 22. Схема, принцип действия, достоинства и недостатки пневматического нагнетателя (газлифт).
- 23. Движение жидкости в рабочем колесе нагнетателя. Геометрические параметры рабочего колеса.
- 24. Треугольники и параллелограммы скоростей.
- 25. Уравнение Эйлера для работы лопастного колеса
- 26. Основное уравнение работы центробежного нагнетателя.
- 27. Влияние угла выхода лопаток на напор нагнетателя.
- 28. Общие сведения о характеристиках нагнетателей. Графические характеристики нагнетателей (гидродинамические, аэродинамические).
- 29. Полные характеристики радиальных и осевых нагнетателей. Определение рабочей зоны нагнетателя.
- 30. Универсальные и безразмерные характеристики нагнетателей.
- 31. Законы подобия центробежных нагнетателей.
- 32. Коэффициент быстроходности.
- 33. Допустимая высота всасывания насоса (минимальный избыточный напор всасывания). Кавитация. Отрицательное воздействие кавитации. Мероприятия по предотвращению кавитации.
- 34. Характеристика сети. Совместная работа нагнетателя и сети (Способ наложения характеристики нагнетателя и сети для получения параметров совместной работы).
- 35. Необходимость совместной работы нагнетателей. Параллельное и последовательное включение нагнетателей.
- 36. Построение суммарной характеристики при совместной работе одинаковых и различных нагнетателей (параллельное включение).
- 37. Необходимость совместной работы нагнетателей. Последовательное включение нагнетателей.
- 38. Особенности работы нагнетателей в составе систем.
- 39. Причины отклонения рабочих параметров от заданных (кратко перечислить).
- 40. Устойчивость работы нагнетателей в сетях.
- 41. Явление помпажа, предотвращение возникновения помпажа.
- 42. Принципы применения, подбора и эксплуатации серийно выпускаемых нагнетателей.
- 43. Общие методические указания к выбору вентиляторов.
- 44. Требования, обязательные для исполнения при выборе вентиляторов.
- 45. Общие методические указания к выбору насосов.
- 46. Общие методические указания к выбору компрессоров.
- 47. Испытание и наладка насосов и вентиляторов.
- 48. Регулирование работы нагнетателей (качественное и количественное).
- 49. Способы управления работой нагнетателей.
- 50. Вибрация и шум нагнетателей.
- 51. Акустические характеристики вентиляторов. Звуковая мощность и звуковое давление.

4. ВСПОМОГАТЕЛЬНЫЙ РАЗДЕЛ

4.1 Учебная программа дисциплины «Насосы, вентиляторы и компрессоры»

Учреждение образования «Брестский государственный технический университет»

УТВЕРЖДАЮ
Первый проректор БрГТУ
_____ М.В.Нерода
«28» июня 2021 г.
Регистрационный № УД-21-1-090 /уч.

Насосы, вентиляторы и компрессоры

Учебная программа для специальности:

1-70 04 02 Теплогазоснабжение, вентиляция и охрана воздушного бассейна

Учебная программа составлена на основе	
ОСРБ 1- 70 04 02-2013, утв. Постановление	<u> </u>
Республики Беларусь № 88 от 30.08.2013, т	
«Насосы, вентиляторы и компрессоры», ут	
образования Республики Беларусь 05.12.20	18, рег. № ТД–Ј.156/тип.
СОСТАВИТЕЛЬ:	
Клюева Е.В., старший преподаватель кафе	дры теплогазоснаюжения и
вентиляции	
РЕЦЕНЗЕНТЫ:	
Новик Ю.Н., главный эксперт отдела экспе	1
Обеспечения управления экспертизы прое	
ДРУП «Госстройэкспертиза по Брестской	
Шостак Д.Ю., главный специалист теплос	набжения и вентиляции
ОАО «Брестпроект»	
DEICOMEILHODAHA IC V/TDEDNICHEHH	IO.
РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЯ	
Кафедрой теплогазоснабжения и вентиляц	
Заведующий кафедрой	В.Г.Новосельцев
(протокол № 10 от 25.05.2021);	
Методической комиссией факультета инж	ецерицу систем и экологии
Председатель методической комиссии _	О.П.Мешик
протокол № 4 от 25.06.2021);	О.11.101СШИК
(протокол № 4 от 25.00.2021),	
Научно-методическим советом БрГТУ (пр	отокол № 5 от 28.06.2021)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дисциплина «Насосы, вентиляторы и компрессоры» является основой профессиональной подготовки специалистов по специальности 1-70 04 02 «Теплогазоснабжение, вентиляция воздушного И охрана бассейна». Основной задачей изучения дисциплины является подготовка инженера, способного успешно реализовать свои знания при разработке и эксплуатации систем ТГВ, усвоение студентами теоретических основ функционирования, особенностей, принципов применения, принципов конструктивных способов работой применяемых управления нагнетателей, теплогазоснабжении вентиляции квалификационной согласно характеристики.

В результате изучения дисциплины студент должен: знать:

- общие сведения и классификацию нагнетателей (насосов, вентиляторов и компрессоров);
- устройство нагнетателей, устанавливаемых в инженерных системах;
- основные требования к нагнетателям инженерных систем;
- требования к эксплуатации нагнетателей, надежности и устойчивости их работы в сетях;
- принципы применения, подбора и эксплуатации серийно выпускаемых нагнетателей;
- различие энергетических процессов в машинах, служащих для перемещения жидкостей и газов (насосах, вентиляторах);
- определение различных параметров нагнетательной установки;
- снятие характеристик изучаемых машин. уметь:
- осуществлять выбор нагнетателей в соответствии с характеристиками перемещаемой жидкости и особенностями применения;
- конструировать подводящие и отводящие каналы нагнетательных установок и формировать требования к месту установки нагнетателей;
- анализировать в условиях эксплуатации рабочие параметры нагнетателей и соответствие их предъявляемым требованиям;
- совершенствовать свои знания и навыки в процессе профессиональной деятельности на основе самостоятельного изучения научно-технических достижений в расчётной практике технологических сетей и сооружений.

владеть:

- методами управления нагнетателями в условиях эксплуатации;
- методами измерения рабочих параметров нагнетателей;
- методикой испытания нагнетателей.

Освоение данной учебной дисциплины обеспечивает формирование следующих компетенций:

- AK-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
- АК-4. Уметь работать самостоятельно.

- ПК-13. Рассчитывать и анализировать режимы работы систем теплоснабжения, газоснабжения, отопления, вентиляции, кондиционирования воздуха, охраны воздушного бассейна и намечать пути их оптимизации.
- ПК-19. Организовывать эксплуатацию оборудования систем теплогазоснабжения, отопления, вентиляции, кондиционирования воздуха коммунальных, промышленных и сельскохозяйственных предприятий; подготовку обслуживающего персонала.
- ПК-23. Осуществлять современными методами диагностирования и мониторинга контроль состояния оборудования систем теплогазоснабжения, отопления, вентиляции, кондиционирования воздуха.
- ПК-37. Работать с научной, технической и патентной литературой, выявлять патентную чистоту технических решений.

Перечень дисциплин, необходимых для изучения курса «Насосы, вентиляторы и компрессоры»: высшая математика, физика, химия, электротехника, механика жидкости и газа, теоретическая механика, техническая термодинамика и теплопередача, вентиляция, отопление, экономика, охрана труда и техника безопасности.

Для закрепления теоретического материала, овладения методикой проектирования и расчета предусмотрено проведение лабораторных занятий по всем ключевым темам.

В соответствии с учебными планами на изучение учебной дисциплины «Насосы, вентиляторы и компрессоры» отводится:

План учебной дисциплины

Код специальности (направления специальности)	Наименование специальности (направления специальности)	Kypc	Семестр	Всего учебных часов	Количество зачетных единиц		ответ	Лабораторные мон занятия С има кин	с учеб	ным	Академических часов на курсовой проект (работу)	Форма текущей аттестации
	для дневной форм	лы і	юлу	чені	ия в	ысп	іего	обра	a30B	ания	Я	
1-70 04 02	Теплогазоснабжение,	3	6	115	2	48	32	16	-	_	-	Экзамен
	вентиляция и охрана											
	воздушного бассейна											
	для заочной форм	1Ы І	юлу	чені	ия в	ысп	іего	обра	азов:	ания	A	
1-70 04 02	Теплогазоснабжение,	4	7	115	2	14	8	6	-	-	-	Экзамен
	вентиляция и охрана											
	воздушного бассейна											
для заочно	й формы получен	ия і	высі	шего	обр	a30 1	вани	ия , и	нтег	рир	ован	ного со
	средним	спеі	циал	ІЬНЫ	м о	браз	ова	нием	1			
1-70 04 02	Теплогазоснабжение,	2	4	115	2	8	4	4	-	_	_	Экзамен
	вентиляция и охрана											
	воздушного бассейна											

1. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1.1. ЛЕКЦИОННЫЕ ЗАНЯТИЯ, ИХ СОДЕРЖАНИЕ

Введение. Классификация и принцип действия нагнетателей. Применение насосов и вентиляторов в теплогазоснабжении и вентиляции. Понятие о гидравлических системах. Параметры их работы. Принципы измерения производительности; давления, частоты вращения рабочего колеса. Классификация нагнетателей по принципу действия, по назначению, по виду перемещаемой среды, по развиваемому давлению и производительности.

Устройство нагнетателей, устанавливаемых в инженерных системах. Основные требования к нагнетателям инженерных систем. Требования к эксплуатации нагнетателей, надежности и устойчивости их работы в сетях. Принципы применения, подбора и эксплуатации серийно выпускаемых нагнетателей.

Характеристики Обшие нагнетателей. сведения об вентиляторов аэродинамических характеристиках гидравлических И характеристиках насосов. Графические характеристики нагнетателей. Характеристики центробежных нагнетателей. Характеристики нагнетателей. Пересчет характеристик нагнетателей при изменении размеров рабочего колеса, при изменении числа оборотов рабочего Акустические характеристики вентиляторов. Звуковая мощность и звуковое давление.

Работа нагнетателей в сети. Устойчивость работы. Характеристика сети. Сложение характеристик сетей нагнетателей. Способ наложения характеристики насоса и сети для получения параметров совместной работы. Необходимость совместной работы нагнетателей. Параллельное и последовательное включение одинаковых и различных насосов и вентиляторов. Построение суммарной характеристики при совместной работе насосов и вентиляторов. Анализ совместной работы нагнетателей на сеть.

Монтаж, наладка и испытание насосов и вентиляторов. Испытание и наладка насосов и вентиляторов, работающих в сети. Испытание и наладка вентиляторов, работающих без сети. Регулирование работы вентиляторов.

1.2. ЛАБОРАТОРНЫЕ ЗАНЯТИЯ, ИХ СОДЕРЖАНИЕ

- Контрольно-измерительные приборы для проведения санитарногигиенических испытаний и обследований вентиляционных систем.
- Изучение устройства центробежных циркуляционных насосов WILO TOP S 50/7 и GRUNDFOS UPS 25-60.
- Ознакомление с компоновкой оборудования и конструкцией вентиляторов: радиального, тангенциального, осевого фланцевого ВО-Ф-1,5, канального ВК 30-15, канального ВКК 100, осевого крышного ВКО-3,15В, радиального крышного ВКР-190.

- Изучение работы электронно-коммутируемого вентилятора Ebm-papst со встроенной электроникой.
- Определение аэродинамических характеристик работы осевого вентилятора путем технических испытаний.
- Определение характеристик центробежного вентилятора
- Исследование совместной работы центробежных насосов при их параллельном и последовательном включении
- Исследование влияния изменения частоты вращения рабочего колеса насоса на его характеристики

2.1. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ для дневной формы получения высшего образования

IBI		Коли	чество	-	рных	Количество	
ē			час	сов	1	часов	
Номер раздела, темы	Название раздела, темы	Лекции	Лабораторные занятия	Практические занятия	Семинарские занятия	самост. работы	Форма контроля знаний
	6-й семестр						
1	Введение. Классификация и принцип действия нагнетателей.	4	4			12	Экзамен
2	Устройство нагнетателей, устанавливаемых в инженерных системах.	6	4			14	Экзамен
3	Характеристики нагнетателей.	8	4			15	Экзамен
4	Работа нагнетателей в сети. Устойчивость работы.	8	2			14	Экзамен
5	Монтаж, наладка и испытание насосов и вентиляторов.	6	2			12	Экзамен
		32	16			67	

2.2. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ для заочной формы получения высшего образования

емы		Коли	чество час		рных		
Номер раздела, темы	Название раздела, темы	Лекции	Лабораторные занятия	Практические занятия	Семинарские занятия	Количество часов самост. работы	Форма контроля знаний
	7-й семестр						
	Классификация и принцип действия нагнетателей. Устройство нагнетателей.	2	2			25	Экзамен
2	Характеристики нагнетателей.	2	-			30	Экзамен
3	Работа нагнетателей в сети. Устойчивость работы.	2	2			25	Экзамен
	Монтаж, наладка и испытание насосов и вентиляторов.	2	2			21	Экзамен
		8	6			101	

2.3. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ для заочной формы получения высшего образования, интегрированного со средним специальным образованием

темы		Коли	чество час	-	рных		
Номер раздела, т	Название раздела, темы	Лекции	Лабораторные занятия	Практические занятия	Семинарские занятия	Количество часов самост. работы	Форма контроля знаний
	4-й семестр						
1	Классификация и принцип действия нагнетателей. Устройство нагнетателей. Характеристики нагнетателей.	2	2			50	Экзамен
2	Работа нагнетателей в сети. Устойчивость работы. Монтаж, наладка и испытание насосов и вентиляторов.	2	2			57	Экзамен
		4	4			107	

3. ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

3.1. Перечень литературы.

Основная литература:

- 1. Дячек П.И. Насосы, компрессоры и вентиляторы: Учебное пособие. М.: Издательство ABC, 2015. 432с.
- 2. Толстых, А.В. Насосы, вентиляторы и компрессоры: Учебное пособие / А.В. Толстых, Ю.Н. Дорошенко, В.В. Пенявский. Томск : Изд-во Том. гос. архит.-строит. ун-та, 2018. 160 с.
- 3. Галдин В.Д. Вентиляторы и компрессоры: Учебное пособие. Омск: Изд-во СибАДИ, 2007. 105 с.
- 4. Росляков Е.М., Сударь Ю.М., Тупицин Ю.Е. Насосы. Вентиляторы. Кондиционеры. Справочник. М.: Политехника, 2006. 822с.
- 5. Караджи В.Г., Московко Ю.Г. Вентиляционное оборудование. Технические рекомендации для проектировщиков и монтажников. М.: ABOK–ПРЕСС, 2010. 432 с.

Дополнительная литература:

- 1. Вентиляторы (радиальные, пылевые, осевые, крышные (общего назначения, коррозионностойкие, взрывозащищенные и др.). Блоки вентиляторные (ВБКП). КО-06.01.12-03. Каталог оборудования. М.: 2006.
- 2. Васильев, В. Д. Монтаж компрессоров, насосов и вентиляторов / В.Д. Васильев, Е.А. Ивашнев, В.В. Малюшенко. М.: Высшая школа, 2016. 216 с.
- 3. Радиальный вентилятор с круглым корпусом. Основные особенности и преимущества / С.В. Караджи, В.Г. Караджи // АВОК. 2017. N_{2} 3.
- 4. Технический регламент EAЭC 048/2019: требования к энергоэффективности вентиляторов / Т.С. Соломахова, В.К. Мамаев // ABOK . -2021. №1
- 5. Насосное оборудование: современный подход к повышению эффективности / А.В. Костюк, С.А. Соколов // Сантехника. Водоснабжение. 2019. №4
- 6. Wilo Насосная азбука: Справочное пособие по технологии повышения давления. 112 с.
- 7. Зайцев С.А., Грибанов Д.Д. и др. Контрольно-измерительные приборы и инструменты: учебник для нач. проф. образования. М.: Издательский центр «Академия», 2006. 464с.
- 3.2. Перечень средств диагностики результатов учебной деятельности Для диагностики результатов учебной деятельности используются:
- 1. Письменные отчеты по лабораторным работам с их устной защитой.
- 2. Внутрисеместровая аттестация, проводимая в форме письменного экзамена.
- 3. Письменный экзамен.

Внутрисеместровая аттестация проводится в сроки определяемые графиком учебного процесса. Результаты внутрисеместровой аттестации студентов оцениваются отметками в баллах от 1 (один) до 10 (десять) в соответствии с «Критериями оценки результатов учебной деятельности учреждениях высшего образования по десятибалльной обучающихся в шкале». При оценивании результатов внутрисеместровой аттестации по учебной дисциплине учитываются посещаемость студентами учебных результаты проведенных также К моменту мероприятий по контролю знаний студентов (выполненные и защищенные лабораторные работы). Результаты внутрисеместровой аттестации студентов учитываются при проведении текущей аттестации (письменного экзамена по учебной дисциплине).

Расчет итоговой отметки (О_{итог}) производится согласно рекомендуемому расчету, приведенному в Положении «О внутрисеместровой аттестации студентов БрГТУ» № 11 от 30.01.2019:

$$O_{\text{HTOF}} = OBC_1 \times KBC_1 + OBC_2 \times KBC_2 + O_{\text{TEK}} \times K_{\text{TEK}}$$

где ОВС – отметка по внутрисеместровой аттестации (первой и второй),

 $O_{\text{тек}}$ – отметка, полученная на экзамене,

КВС и $K_{\text{тек}}$ – весовые коэффициенты соответствующих видов аттестации: $KBC_1 = 0.3$; $KBC_2 = 0.35$; $K_{\text{тек}} = 0.35$.

Перечень вопросов для внутрисеместровой и текущей аттестации студентов по учебной дисциплине «Насосы, вентиляторы и компрессоры»:

- 1. Нагнетатели. Основные определения и понятия (гидравлическая машина, вентилятор, компрессор, насос).
 - 2. Применение нагнетателей в теплогазоснабжении.
 - 3. Классификация нагнетателей по принципу действия.
- 4. Классификация насосов по назначению, по виду перемещаемой среды, по развиваемому давлению и производительности.
- 5. Классификация объемных нагнетателей. Общие свойства объемных нагнетателей.
 - 6. Основные требования к нагнетателям инженерных систем.
- 7. Параметры работы нагнетателей (технические, энергетические, санитарно-гигиенические, эксплуатационные показатели и спец.условия). Понятие «нормальных условий» для газодувных машин.
- 8. Определение основных потребительских и технических параметров нагнетателей.
- 9. Производительность, подача нагнетателей: определение, связь между подачей и производительностью. Схема формирования производительности вентилятора.
- 10. Мощность и КПД нагнетателей: определение, единицы измерения. Схема энергетического баланса на примере установки с вентилятором.
- 11. Схема, принцип действия, достоинства и недостатки центробежных насосов.
- 12. Схема, принцип действия, достоинства и недостатки радиального вентилятора со спиральным кожухом.

- 13. Схема, принцип действия, достоинства и недостатки нагнетателей осевых.
- 14. Схема, принцип действия, достоинства и недостатки прямоточного радиального вентилятора.
- 15. Схема, принцип действия, достоинства и недостатки смерчевого вентилятора.
- 16. Схема, принцип действия, достоинства и недостатки вихревого насоса.
- 17. Схема, принцип действия, достоинства и недостатки диаметрального вентилятора.
- 18. Схема, принцип действия, достоинства и недостатки поршневого нагнетателя.
- 19. Схема, принцип действия, достоинства и недостатки зубчатого (шестеренного) насоса.
- 20. Схема, принцип действия, достоинства и недостатки пластинчатого нагнетателя.
- 21. Схема, принцип действия, достоинства и недостатки струйного нагнетателя.
- 22. Схема, принцип действия, достоинства и недостатки пневматического нагнетателя (газлифт).
- 23. Движение жидкости в рабочем колесе нагнетателя. Геометрические параметры рабочего колеса.
 - 24. Треугольники и параллелограммы скоростей.
 - 25. Уравнение Эйлера для работы лопастного колеса
 - 26. Основное уравнение работы центробежного нагнетателя.
 - 27. Влияние угла выхода лопаток на напор нагнетателя.
- 28. Общие сведения о характеристиках нагнетателей. Графические характеристики нагнетателей (гидродинамические, аэродинамические).
- 29. Полные характеристики радиальных и осевых нагнетателей. Определение рабочей зоны нагнетателя.
 - 30. Универсальные и безразмерные характеристики нагнетателей.
 - 31. Законы подобия центробежных нагнетателей.
 - 32. Коэффициент быстроходности.
- 33. Допустимая высота всасывания насоса (минимальный избыточный напор всасывания). Кавитация. Отрицательное воздействие кавитации. Мероприятия по предотвращению кавитации.
 - 34. Характеристика сети. Виды характеристик.
- 35. Совместная работа нагнетателя и сети Параметры совместной работы. Рабочая точка.
- 36. Способ наложения характеристики нагнетателя и сети для получения параметров совместной работы.
- 37. Необходимость совместной работы нагнетателей. Схемы соединения нагнетателей на совместную работу.
- 38. Построение суммарной характеристики при совместной работе одинаковых и различных нагнетателей (параллельное включение).

- 39. Необходимость совместной работы нагнетателей. Последовательное включение нагнетателей.
- 40. Причины отклонения рабочих параметров от заданных (кратко перечислить).
 - 41. Устойчивость работы нагнетателей в сетях.
 - 42. Явление помпажа, предотвращение возникновения помпажа.
 - 43. Общие методические указания к выбору вентиляторов.
- 44. Требования, обязательные для исполнения при выборе вентиляторов.
 - 45. Общие методические указания к выбору насосов.
 - 46. Общие методические указания к выбору компрессоров.
 - 47. Испытание и наладка насосов и вентиляторов.
- 48. Регулирование работы нагнетателей (качественное и количественное).
 - 49. Способы управления работой нагнетателей.
 - 50. Вибрация и шум нагнетателей.
- 51. Акустические характеристики вентиляторов. Звуковая мощность и звуковое давление.
- 3.3. Методические рекомендации по организации и выполнению самостоятельной работы обучающихся по учебной дисциплине

для дневной формы получения высшего образования

No	Название раздела, темы	Номер литературы из
п/п	пазвание раздела, темы	списка
1	Введение. Классификация и принцип действия	Основная: 1, 2
1	нагнетателей.	Дополнительная: 6
/	Устройство нагнетателей, устанавливаемых в инженерных системах.	Основная: 1, 2, 3 Дополнительная: 1, 3, 7
3	Характеристики нагнетателей.	Основная: 1, 2, 4 Дополнительная: 1, 6,
4	ІРЯПОТЯ ЦЯГЦЕТЯТЕЛЕЙ В СЕТИ. УСТОЙЦИВОСТЬ МЯПОТЫ .	Основная: 1, 2, 3, 5 Дополнительная: 6
5	Монтаж, наладка и испытание насосов и вентиляторов.	Основная: 1, 3, 4, 5 Дополнительная: 2, 4, 5

для заочной формы получения высшего образования

$N_{\underline{0}}$	Название раздела, темы	Номер литературы из
Π/Π	тизвинне риздели, темы	списка
	Классификация и принцип действия нагнетателей.	Основная: 1, 2, 3
1	Устройство нагнетателей.	Дополнительная: 1, 3,
	устроиство нагнетателей.	6, 7
2	Характеристики нагнетателей.	Основная: 1, 2, 4
	жарактеристики нагнетателей.	Дополнительная: 1, 6,
3	Работа нагнетателей в сети. Устойчивость работы.	Основная: 1, 2, 3, 5
3	1 абота нагнетателей в сети. Устоичивоств работы.	Дополнительная: 6
	Монтом напочка и менитание насесов и	Основная: 1, 3, 4, 5
4	Монтаж, наладка и испытание насосов и	Дополнительная: 2, 4,
	вентиляторов.	5

для заочной формы получения высшего образования, интегрированного со средним специальным образованием

№ п/п	Название раздела, темы	Номер литературы из списка
1	Классификация и принцип действия нагнетателей. Устройство нагнетателей.	
2	Работа нагнетателей в сети. Устойчивость работы. Монтаж, наладка и испытание насосов и вентиляторов.	Основная: 1, 2, 3, 4, 5 Дополнительная: 2, 4, 5, 6