UDC 624.012.3:519.816

QUANTIFICATION ASSESSMENT OF THE EXISTING REINFORCED CONCRETE STRUCTURES BASED ON FUZZY LOGIC

V. V. Tur¹, Y. S. Dardziuk²

¹ Doctor of Technical Sciences, Professor, Head the Department of Concrete Technology and Building Materials, Brest State Technical University, Brest, Belarus, e-mail: profturvic@gmail.com ² Ph.D in Engineering, Head the Department of Economics and Construction Organization, Brest State Technical University, Brest, Belarus, e-mail: jul4onka@mail.ru

Abstract

Fuzzy logic is the useful tool when assessing the existing reinforced concrete structures. The introduction of the method for quantitative assessment of the technical condition of the existing structures built on the fuzzy logic represents a transition to a new and higher-quality level for survey of constructions sites. As a result, it is seen that the assessment of the existing building with usage of the proposed expert system is in compliance with the estimation of the qualified experts.

Keywords: quantification assessment, fuzzy logic, existing structures, technical condition.

КОЛИЧЕСТВЕННАЯ ОЦЕНКА СУЩЕСТВУЮЩИХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ НА ОСНОВЕ НЕЧЕТКОЙ ЛОГИКИ

В. В. Тур, Ю. С. Дордюк

Реферат

Нечеткая логика является полезным инструментом при оценке существующих железобетонных конструкций. Внедрение методики количественной оценки технического состояния существующих конструкций, построенной на инструментах нечеткой логики, представляет собой переход на новый и более качественный уровень обследования зданий и сооружений. В результате видно, что оценка существующего здания со сборными железобетонными элементами с использованием предложенной нечеткой системы имеет достаточно хорошее совпадение с результатами профессиональных экспертов.

Ключевые слова: количественная оценка, нечеткая логика, существующие конструкции, техническое состояние.

1 Introduction

Assessment of existing reinforced concrete structures is becoming a most important but complicated engineering task. General principles of sustainable development regularly lead to the need for an extension of a life of a structure, in most practical cases with severe economic constraints.

As it was shown in [1] visual inspection becomes the dominant practice in the management of maintenance, even when the importance of the structural elements are significant. Subjectivity heavily affects the process of assessment of degradation degree based on the results of visual inspection. Most of assessment approaches and methods are similar in principle, but vary in the details.

In order to use the visual inspection as a robust and reliable instrument to evaluate the safety level of an existing structural element, we decided to take advantage of the ability of Fuzzy Logic to treat uncertainty as expressed by linguistic judgements [2, 3].

In order to develop the multilevel expert system for existing structures assessment a Fuzzy Logic-based algorithm is proposed, which used the Fuzzy Logic Toolbox package of MatLab Software [1].

As it pointed in [1], «a Fuzzy Logic is a versatile tool, particularly suitable for the management of decisional trees involving the processing of data endowed with «vague» nature (both numerical and qualitative one), and is naturally able to provide a linguistic, qualitative assessment of the health conditions of the building».

In this context, the Fuzzy Logic appears the most qualified tool for the processing of numerical data and uncertain information in order to obtain a linguistic description of structural damage.

2 Rule-based Fuzzy model/Expert system development

The stages of development of the Fuzzy Logic System are presented in details in [4, 5]. For the development of the fuzzy production model for assessing of the existing structures performance it is necessary to formulate set, consisting the basic variables (see Table 1) which are characterized performance of element and set, characterizing (present) damage level (see Table 2).

Designation	Description of the	Term-set		
linguistic variables	linguistic variables	Tenn-Set		
Phase A: Visual Ins	spection (A-1)			
X 1	Crack propagation	T4 = {no «0»; single «S»;		
A 1	(bending/shear)	numerous «N»; massive «M»		
	Positions of the cracks	T4 = {no «0»; in the mid-		
X 2	(bending/shear)	span «1»; near support «2»; mid-span+ near support «3»		
	, , ,			
X 3	The longitudinal corrosion	T4 = {no «0»; local «L»;		
	cracks propagation	partial «P»; solid «S»}		
X 4	Corrosion damage (deteriorations)	T2 = {no «0»; yes «1»}		
	Surface degradation			
X 5	of concrete (deteriorations)	T2 = {no «0»; yes «1»}		
	Propagation of the longitudinal			
X 6	corrosion cracks in compression	T2 = {no «0»; yes «1»}		
70	zone of the section			
Phase A: Basic Te				
	Concrete cover			
X 7	С	T3 = {small «S»; mean «M»;		
AI.	to diameter ratio, $\frac{c}{\emptyset}$	large «L»}		
	Load-induced cracks width,	T4 = {small «S»; permissible		
X 8	w_k (bending/shear)	«P»; exceeded «Ex»; exces sive «E»}		
	, , ,			
X 9	Longitudinal corrosion	T3 = {small «S»; medium		
A3	cracks width, w	«M»; excessive «E»}		
X 10	Level of the reinforcement	T3 = {small «S»; mean «M»		
	corrosion	large «L»}		
X 11	δ	T4 = {small «S»; permissible		
	Deflection ratio, $\frac{\delta}{L}$	«P»; exceeded «Ex»; exces sive «E»}		
Phase A: Damage		Sive «⊏»}		
		T3 = {critical «1»; significant		
X ₁₂	Visual Inspection (A-1)	«2»; minor «3»}		
		T3 = {critical «1»; significant		
X ₁₃	Basic Testing (A-2)	«2»; minor «3»}		
X ₁₄	Documentation	T2 = {no «0»; yes «1»}		

Table 2 – Output ling	uistic basic variables	
Designation	Description of the	Tarma ant
linguistic variables	linguistic variables	Term-set
y 1	Damage level	T3 = {critical «1»; significant «2»; minor «3»}
У2	Damage level	T3 = {critical «1»; significant «2»; minor «3»}
уз	Damage class	T3 = {small «1»; moderate «2»; severe «3»}

As it was shown above, in the damage assessment of an existing buildings (structures), several input data are required (crack width and propagation, residual strength of materials, amount and condition of the steel reinforcement, deflection, corrosion level et al.) that will all be treated, according to previous remarks, as fuzzy sets. The common structure Vestnik of Brest State Technical University. 2022. № 3(129) deficiencies associated with the deterioration of the structural element are corrosion of steel reinforcement and the cracking, scaling and spalling concrete, deflections. The ranges for basic variables and correlation function were adopted based on the own numerical and experimental studies [4-6].

3 Realization of the Fuzzy production model for assessment of existing structures in MatLab Software

Step 1: Fuzzification – Input Fuzzy. At this stage, we adopted the membership function for term-sets of input and output linguistic variables, as shown in Table 3. The most commonly used membership functions are the trapezoidal and triangular ones. These membership functions will be indeed the functions adopted in the proposed algorithm.

Table 3 - Memi	pership f	unctions	mathem	natical	descriptions

Designation of the linguistic variables	Membership function type	Mathematical description (upper index designate the corresponding term)
X 1	Trapezoidal	μΔ ⁰ (x; -1; -1; 0; 0), μΔ ^S (x; 0.5; 0.5; 5; 15), μΔ ^N (x; 5; 15; 35; 45), μΔ ^M (x; 35; 45; 90; 100)
X 2	Triangular	$\mu_{\Delta^{0}}$ (x; -0.5; 0; 0.5), $\mu_{\Delta^{1}}$ (x; 0.5; 1; 1.5), $\mu_{\Delta^{2}}$ (x; 1.5; 2; 2.5), $\mu_{\Delta^{3}}$ (x; 2.5; 3; 3.5)
X 3	Trapezoidal	μΔ ⁰ (x; -1; -1; 0; 0), μΔ ^L (x; 0.5; 0.5; 5; 15), μΔ ^P (x; 5; 15; 35; 45), μΔ ^D (x; 35; 45; 90; 100)
X 4	Triangular	μ₄ ⁰ (x; -0.5; 0; 0.5), μ₄ ¹ (x; 0.5; 1; 1.5)
X 5	Triangular	μΔ ⁰ (x; -0.5; 0; 0.5), μΔ ¹ (x; 0.5; 1; 1.5)
X 6	Triangular	μ _Δ ⁰ (x; -0.5; 0; 0.5), μ _Δ ¹ (x; 0.5; 1; 1.5)
X 7	Trapezoidal	μ _Δ ^M (x; -1; 0; 0.5; 1.5), μ _Δ ^C (x; 0.5; 1.5; 2.5; 3.5), μ _Δ ⁵ (x; 2.5; 3.5; 8; 10)
X 8	Trapezoidal	μΔ ^M (x; -0.1; 0; 0; 0.1), μΔ ^S (x; 0; 0.1; 0.35; 0.45), μΔ ^P (x; 0.35; 0.45; 0.95; 1.05), μΔ ^D (x; 0.95; 1.05; 1.2; 2)
X 9	Trapezoidal	μ _Δ ^s (x; -0.1; 0; 0; 0.1), μ _Δ ^M (x; 0; 0.1; 0.95; 1.05), μ _Δ ^E (x; 0.95; 1.05; 2; 3)
X 10	Trapezoidal	μΔ ^S (x; -1.5; 0; 0.5; 1.5), μΔ ^M (x; 0.5; 1.5; 2.5; 3.5), μΔ ^L (x; 2.5; 3.5; 5; 8)
X 11	Trapezoidal	μ_{Δ}^{S} (x; -0.001; 0; 0,0005; 0.0015), μ_{Δ}^{P} (x; 0.0005; 0.0015; 0.0035; 0.0045), μ_{Δ}^{Ex} (x; 0.0035; 0.0045; 0.0195; 0.0205), μ_{Δ}^{E} (x; 0.0195; 0.0205; 0.025; 0.03)
X 12	Triangular	$\mu_{\mathbb{A}^1}$ (x; 0.5; 1; 1.5), $\mu_{\mathbb{A}^2}$ (x; 1.5; 2; 2.5), $\mu_{\mathbb{A}^3}$ (x; 2.5; 3; 3.5)
X 13	Triangular	μ_{Δ^1} (x; 0.5; 1; 1.5), μ_{Δ^2} (x; 1.5; 2; 2.5), μ_{Δ^3} (x; 2.5; 3; 3.5).
X 14	Triangular	μ _Δ ⁰ (x; -0.5; 0; 0.5), μ _Δ ¹ (x; 0.5; 1; 1.5)
y 1	Triangular	μ_{Δ^1} (x; 0.5; 1; 1.5), μ_{Δ^2} (x; 1.5; 2; 2.5), μ_{Δ^3} (x; 2.5; 3; 3.5)
y 2	Triangular	μ _Δ ¹ (x; 0.5; 1; 1.5), μ _Δ ² (x; 1.5; 2; 2.5), μ _Δ ³ (x; 2.5; 3; 3.5)
у з	Triangular	$\mu_{\mathbb{A}^1}$ (x; 0.5; 1; 1.5), $\mu_{\mathbb{A}^2}$ (x; 1.5; 2; 2.5), $\mu_{\mathbb{A}^3}$ (x; 2.5; 3; 3.5)

Step 2: Setting Fuzzy Rules in accordance with Table 4. The base of the Rules of the Fuzzy production model is defined as a structure with an appropriate member of inputs x_i and one output y_i.

Table 4 – Example of the fuzzy	rules of the	production model
--------------------------------	--------------	------------------

Rule number	Antecedent	Consequent
Base of the rules R	1	
R1.1	$ \begin{pmatrix} x_1 = 0 \land x_2 = 0 \land x_3 = 0 \land x_4 = 0 \land x_5 = 1 \land x_6 = 0 \end{pmatrix} \lor \begin{pmatrix} x_1 = 0 \land x_2 = 0 \land x_3 = 0 \land x_4 = 1 \land x_5 = 1 \land x_6 = 0 \end{pmatrix} \lor \begin{pmatrix} x_1 = S \land x_2 = 1 \land x_3 = 0 \land x_4 = 0 \land x_5 = 0 \land x_6 = 0 \end{pmatrix} \lor \begin{pmatrix} x_1 = S \land x_2 = 2 \land x_3 = 0 \land x_4 = 0 \land x_5 = 0 \land x_6 = 0 \end{pmatrix} \lor \begin{pmatrix} x_1 = S \land x_2 = 1 \land x_3 = 0 \land x_4 = 0 \land x_5 = 1 \land x_6 = 0 \end{pmatrix} \lor \begin{pmatrix} x_1 = S \land x_2 = 2 \land x_3 = 0 \land x_4 = 0 \land x_5 = 1 \land x_6 = 0 \end{pmatrix} \lor \begin{pmatrix} x_1 = S \land x_2 = 3 \land x_3 = 0 \land x_4 = 0 \land x_5 = 0 \land x_6 = 0 \end{pmatrix} \lor \begin{pmatrix} x_1 = S \land x_2 = 3 \land x_3 = 0 \land x_4 = 0 \land x_5 = 0 \land x_6 = 0 \end{pmatrix} \lor \\ \begin{pmatrix} x_1 = S \land x_2 = 3 \land x_3 = 0 \land x_4 = 0 \land x_5 = 1 \land x_6 = 0 \end{pmatrix} \lor $	<i>y</i> ₁ = 3
<>		
R3.3	$ \begin{aligned} & (x_{12} = 2 \land x_{13} = 1 \land x_{14} = 0) \lor \\ & (x_{12} = 1 \land x_{13} = 2 \land x_{14} = 0) \lor \\ & (x_{12} = 1 \land x_{13} = 1 \land x_{14} = 1) \lor \\ & (x_{12} = 1 \land x_{13} = 1 \land x_{14} = 0) \end{aligned} $	<i>y</i> ₃ = 3

Step 3: Aggregation is the process by which the fuzzy set that represent the outputs of each rule are combined into a single fuzzy set. A rule premise in general is a compound fuzzy proposition. Aggregation only occurs once for each output variable, which is before the final defuzzification step. According to the original proposal of Zadeh for aggregation of the confidence level of assumption min-conjuction is used:

$$\alpha_{i} = \min \left\{ \mu_{A_{i1}}(x_{1}), \mu_{A_{i2}}(x_{2}), \mu_{A_{i3}}(x_{3}), \mu_{A_{i4}}(x_{4}) \right\}, i = 1, 2, ..., n$$
(1)

Vestnik of Brest State Technical University. 2022. № 3(129)

Step 4: Activation. A fuzzy «IF-THEN» rule is a connection of two (compound) fuzzy propositions. Hence, this connective has to be interpreted within the framework of set theoretic or logical operators. The simplest interpretation is that of the conjuction of premise and conclusion, such that the appropriate operation is the minimum:

$$\mu_{B'_i}(y) = \min \{ \alpha_i, \mu_{B_i}(y) \}, i = 1, 2, ..., n$$
(2)

Step 5: Accumulation. Usually, a rule base is interpreted as a disjunction of rules, i.e. rules are seen as independent «experts». Accumulation has the task to combine the individual «expert statements», which actually are fuzzy sets of recommended output values. Consequently, an appropriate accumulation operation is the maximum:

$$\mu_{B'}(y) = \max \left\{ \mu_{B'_1}(y), \mu_{B'_2}(y), ..., \mu_{B'_n}(y) \right\}$$
(3)

Step 6: Defuzzification - from a fuzzy decision to real decision. As inference results in a fuzzy set, the task of defuzzification is to find the numerical value which «best» comprehends the information contained in this fuzzy set. A frequently used method is the so-called Center-of-Gravity defuzzification (CoG, also called Center-of-Area defuzzification CoA):

$$y' = \frac{\int\limits_{Y_{min}}^{Y_{max}} y\mu_{B'}(y)dy}{\int\limits_{Y_{min}}^{Y_{max}} \mu_{B'}(y)dy}$$
(4)

which chooses the y' – coordinate of the center of gravity of the area below the graph $\mu(y)$. This defuzzification can be interpreted as a weighted mean, i.e. each value y weighted with $\mu(y)$ and integral in the denominator serves for normalization.

4 Implementation of the Assessment Algorithm of the Proposed Expert System

According to [1] the whole phase is managed by a nested fuzzy algorithm: starting from the assessment of the single structural elements, and progressively proceeding through the structural hierarchy (element/storey/building), input data are processed and collated in order to obtain the new Phase - assessment of the whole building. It is worth remarking that part of the results provided by the preliminary investigation could be used also at this stage.

The starting point, as it has pointed out in numerious publications [7-10], is the availability of an inventory of data and information derived from the investigation on the analyzed building, the collecting and organization of which is performed by using the survey diagnostic forms, as it shown in [5].

As an example of the implementation of the proposed expert system results of the assessment of the existing building with precast concrete elements is presented.

Structure description. Precast ribbed slabs with size in plane 1.5x6 m, with height of the rib 300 mm. Longitudinal tensile reinforcement is Ø16 B400, concrete cover 32 mm (ratio c/Ø=2).

Results of the Visual Inspection and Basic Testing are presented in Diagnostic Protocol Example (Table 5).

Process ribbod slabs					
				th	
				massive	
-				>40	
0	0.	5-10	10-40	<u>40</u>	
Deremeter: no	aitian in anan			45%	
		not ouro		ut mid open t peer august	
	nnu-span			rt mid-span+near support	
0	1	G.1	2	З	
Deremeter: pre	pagation longth [9/	Lonon longth		*	
			nartial	solid	
				>40	
0	0.	5-10	10-40	40	
Parameter: da	made appearance			4378	
· · · · · · · · · · · · · · · · · · ·			ro		
				yes1	
	0	0.5		×	
Parameter: da	made appearance			^	
		not su	re	yes	
				1	
	0	0.3		×	
Parameter: da	made			^	
		not sure		yes	
				yes	
	-	0.5		I	
) - u - u - t - u -				
IF	arameters	6000			
	Parameters		6000		
L	ength, / [mm]		6000		
L F		nml	6000 300 32		
	Size in plane 1 Parameter: pro no 0 Parameter: po: no 0 Parameter: po: no 0 Parameter: pro 0 Parameter: da Parameter: da Parameter: da Parameter: da	Parameter: propagation length of f no si 0 0. Parameter: position in span no mid-span 0 1 Parameter: propagation length, [% no length, [% Parameter: propagation length, [% no length, [% Parameter: damage appearance no 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Size in plane 1.5x6 m, with height of the rib 300 mm Parameter: propagation length of the damaged linea o single o 0 0.5-10 0 0 0 0 Parameter: position in span not sure 0 1 1.5 0 1 1.5 0 0 0 Parameter: propagation length, [%] span length not sure 0 0.5-10 0 Parameter: propagation length, [%] span length no local 0 0.5-10 0 Parameter: damage appearance no not su 0 0.5 0 0 0 0 Parameter: damage appearance no not su 0 0.5 0	Size in plane 1.5x6 m, with height of the rib 300 mm Parameter: propagation length of the damaged linear size, [%] span length no single numerous 0 0.5-10 10-40 Parameter: position in span not sure near suppo 0 1 1.5 2 Parameter: position in span not sure near suppo 0 1 1.5 2 Parameter: propagation length, [%] span length partial 0 0 0.5-10 10-40 Parameter: propagation length, [%] span length no local partial 0 0.5-10 10-40 Parameter: damage appearance No not sure 0 0.5 I Parameter: damage appearance I I 0 0.5 I Parameter: damage appearance I I 0 0.5 I Parameter: damage appearance I I 0 0.5 I 0 0.5 I	

Table 5 - The diagnostic protocol example

Concrete							
Ratio $\frac{c}{\emptyset}$ (concrete cover/diame	eter), Parameter: $\frac{c}{\emptyset}$						
~	smal		mean		large		
X7	<1		1-3		>3		
Inspection results			2				
	Parameter: crack v	width, w _k					
Flexural (bending) cracks, x8	small		permissible		exceeded excessive		
	no more 0.05 mm	1 from	m 0.05 to 0.4 mm	from	n 0.4 to 1 mm	more 1 mm	
Inspection results					0.8		
	Parameter: corrosi	ion crack widt	h, w/				
Longitudinal corrosion crack, x9		small		medium		ge	
	no more 0.0	no more 0.05 mm		m	more 1 mm		
Inspection results					1.2		
Reinforcement (steel)							
	Parameter: loss of	Parameter: loss of the mass					
Level of the corrosion damage,			mean		laı	ge	
	no more	1 %	from 1 to 3 %		mor	e 3%	
Inspection results			2.5%				
Deflections, deformations							
	Parameter: relative deflect	ction					
Deflections, x11	small	small			exceeded	excessive	
	no more 1/900	fro	m 1/900 to 1/250	fror	n 1/250 to 1/50	more 1/50	
Inspection results		1/85					
Damage Level	1 (critical)						
Phase A: Damage Class							
	no	no		partially		yes	
Documentation	0	0		from 0 to 1		1	
· · · · · · · · · · · · · · · · · · ·	×						
Damage Class	3 (severe damage	e)					

General view of the structural element are presented in Figure 1. Results of the assessment with usage of the proposed algorithm are listed in Table 6 and are in compliance with the estimation of the qualified experts.

Table 6 – Results of the assessment

The structural element	Results of the assessment with usage of the proposed algorithm	Results of the estimation of the qualified experts		
Precast ribbed slabs	Severe damage	Severe damage		

Figure 1 – General view of the evaluated ribed slabs

5 Conclusions

 An effective structural assessment expert system for evaluation of the existing reinforced concrete structural systems using Fuzzy Logic MatLab Toolbox was developed and verified on the real objects in this study. Although the presented expert system based on close visual inspections and simple measurements, it may provide substantial assistance to more complicated work (for example, evaluation of existing structures based on detailed investigations).

References

- Mezzina, M. Decisional trees and fuzzy logic in the structural safety assessment of damaged R.C. buildings / M. Mezzina, G. Uva, R. Greco // 13th World Conference on Earthquake Engineering, Vancouver, 1–6 August 2004. – Vancouver, 2004. – P. 149–159.
- Carbone, V. I. Structural safety evaluation by means of fuzzyprobabilistic approach / V. I. Carbone, G. Mancini, F. Tondolo // Proceedings of the 29th Conference on Our World in Concrete & Structures. – Singapore. 2004. – P. 29–37.
- 3. Zadeh, L. A. Fuzzy sets / L. A. Zadeh // Information and Control. 1965. – Vol. 8. – No. 3. – P. 338–353.
- Tur, V. V. Assessment of existing reinforced concrete structures with usage of the fuzzy logic – based expert system / V. V. Tur, Y. S. Yalavaya // Building and reconstruction. – 2019. – № 5 (85). – P. 74–84.
- Tur, V. V. Expert system for assessment of existing concrete structures / V. V. Tur, Y. S. Yalavaya // Modern Engineering. – 2019. – Vol. 2. – P. 61–70.
- Tur, V. V. Influence of the reinforcing bar corrosion level on the flexural crack's width in the existing structure / V. V. Tur, Y. S. Yalavaya // Modern Engineering. – 2019. – Vol. 1. – P. 1–9.
- Weng, T.-L. A risk assessment model for buildings of reinforced concrete containing high concentrations of chloride ions / T.-L. Weng // Journal of Marine Science and Technology. – 2016. – 23(5). – P. 1016–1025.
- Lundgren, K. Analytical model for the bond slip behavior of corroded ribbed reinforcement / K. Lundgren, P. Kettil, K. Z. Hanjari, H. Schlune, A. S. San Roman // Structure and Infrastructure Engineering. – 2012. – Vol. 8, № 2. – P. 157–169.
- Vol. 8, № 2. P. 157–169.
 9. ISO 13822:2010 Bases for Design of Structures Assessment of Existing Structures. Published on August 1, 2010. Warszawa : ISO/TC 98/SC 2 Reliability of structures, 2021. 44 p.
- ISO 2394:2015. General principles on reliability of structures. International Standard. – Published on March 1, 2015. – Warszawa : ISO/TC 98/SC 2 Reliability of structures, 2020. – 111 p.

Accepted 18.11.2022