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I ELEMENTS OF ALGEBRA  

1.1 The Algebra of Matrices 

Definition A matrix is a rectangular array of numbers. Each number in the matrix 

is called an element of the matrix.  

Definition A matrix of m rows and n columns is said to be of order m n  or 

dimension m n .  

We will use the notation ija
 
to refer to the element of a matrix in the i -th row and

j -th column. The elements 11 22 33, , , , mma a a a  form the main diagonal of a matrix. A 

matrix is denoted by either a capital letter or by surrounding the corresponding lower-

case letter with brackets. For example, a matrix could be denoted as A  or ija   . 

Caution Remember that ija   is a matrix and ija  is the element in the i -th row and

j -th column of the matrix. 

Definition The m n  zero matrix, denoted 0  is the matrix whose elements are all 

zeros.  

Definition The matrix of order 1 n  is called the row matrix. For example,

 1 7 3 0A    is a row matrix of order 1 4 . 

Definition The matrix of order 1n  is called the column matrix.  

Definition The square matrix that has a 1 for each element on the main diagonal and 

zeros elsewhere is called the identity matrix.  

The identity matrix has properties similar to the real number 1. If matrix A is a 

square matrix of order n n  and nI  is the identity matrix of order by n , then

n nAI I A A  . 

Definition (Equality of Two Matrices) Two matrices ijA a     and ijB b     are 

equal if and only if ij ija b  for every i  and j . 

Remark The definition of equality implies that the two matrices have the same order. 

Operations on matrices 

Definition (Matrix Addition) If A and B  are matrices of order m n  then the sum 

of the matrices is the m n  matrix given by ij ijA B a b     . 

Definition (Additive Inverse of a Matrix) Given the matrix ijA a     the additive 

inverse of A is ijA a     .  

Definition (Subtraction on Matrices) Given two matrices A  and B  of order m n  
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the subtraction of the two matrices A B  is  A B A B    .  

Definition (Product of a Real Number and a Matrix) Given the m n  matrix

ijA a     and a real number c, then ijcA ca    . 

Remark The product of a real number and a matrix is referred to as scalar 

multiplication. 

Definition (Product of Two Matrices) Let ijA a     be a matrix of order m n  

and ijB b     be a matrix of order n p . Then the product AB  is the matrix of order 

m p  given by ijAB c     where each element ijc  is  

1

2

1 2 3 1 1 2 2 3 33

b j

b j

c a a a a a b a b a b a bbij in in nji i i i j i j i jj

bnj

         

 
 
 
   
 
 
 
 

 



. 

Remark This definition may appear complicated, but basically, to multiply two 

matrices one must multiply each row vector of the first matrix by each column vector of 

the second matrix. 

For the product of two matrices to be possible, the number of columns of the first 

matrix must be equal to the number of rows of the second matrix m n n p m pA B C    . The 

product matrix has as many rows as the first matrix and as many columns as the second 

matrix.  

Example 1 Find the following product

1 0
2 3 0

4 2
1 4 1

3 5

 
           

 . 

Solution 

If A has order 2 3  and B  has order 3 2 , then AB  has order 2 2 . 

2 3

3 2

1 0
2 3 0

4 2
1 4 1

3 5

AB




 
             

      
     

2 2

2 1 3 4 0 3 2 0 3 2 0 5 10 6

1 1 4 4 1 3 1 0 4 2 1 5 14 13
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A system of equations can be expressed as the product of matrices. Consider the 

matrix equation  

3 3 3 1 3 1

2 3 4 9

3 0 1 4

1 2 5 2

x

y

z
  

     
     
     
            

. 

Multiplying the two matrices on the left side of the equation, we have 

3 1 3 1

2 3 4 9

3 4

2 5 2

x y z

x z

x y z
 

    
    
   
        

. 

Now using the definition of matrix equality, we have that the given matrix equation 

is equivalent to the following system of equations: 

2 3 4 9

3 4

2 5 2

x y z

x z

x y z

  


 
   

. 

Exercise Set 1 

In Exercises 1 to 6 find 

 a) A B ; b) A B ; c) 2B ; d) 2 3A B  

1. 
2 1

,
3 3

A
 

  
 

1 3

2 1
B

 
  

 
 2. 

0 2
,

2 3
A

 
  

 

5 1

3 0
B

 
  

 
 

3. 
0 1 3

,
1 0 2

A
 

   

3 1 2

2 5 3
B

 
   

 4. 
2 2 4

,
0 3 4

A
 

    

1 5 6

4 2 3
B

 
    

 

5. 

3 4

2 3 ,

1 0

A

 
  
 
  

4 1

1 2

3 4

B

 
  
 
  

 6. 

2 2

3 4 ,

1 0

A

 
 
 
  

1 8

2 2

4 3

B

 
  
 
  

 

In Exercises 7 to 12 find AB  and BA . 

7. 
2 3

,
1 4

A
 

  
 

2 4

2 3
B

 
   

 8. 
3 2

,
4 1

A
 

  
 

1 1

0 4
B
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9. 
3 1

,
2 3

A
 

  
 

4 1

2 3
B

 
   

 10. 
3 2

,
2 2

A
 

   

0 2

2 4
B

 
   

 

11. 

2 1 3

0 2 1 ,

0 0 2

A

 
  
 
  

2 0 0

1 1 0

2 1 2

B

 
  
 
   

 12. 

1 2 0

2 1 1 ,

2 2 1

A

 
  
 
   

2 1 0

1 5 1

0 1 3

B

 
  
 
  

 

In Exercises 13 to 18 find AB , if possible. 

13.  1 2 3 ,A  

1 0

2 1

1 2

B

 
  
 
  

 14. 

2 3

1 2 ,

0 2

A

 
  
 
  

3

2
B

 
   

 

15. 
2 1

,
3 3

A
 

  
 

1 2

3 1

0 2

B

 
 
 
  

 16. 
2 0 1

,
3 4 3

A
 

   

3 1 0

2 4 5
B

 
  

 
 

17. 
2 3

,
4 6

A
 

    

3 6

2 4
B

 
    

 18. 
2 1 3

,
1 2 1

A
 

   

1 3 2

2 1 0

3 1 2

B

 
  
 
  

 

 

In Exercises 19 to 22 given the matrices

1 3

2 1

3 1

A

 
  
 
  

 and

0 2

1 3 ,

4 3

B

 
 
 
  

 find the 

3 2  matrix X  that is a solution of the equation. 

19.  3X A B  . 

20.  2X A X B   . 

21.  2 3 5A X B  . 

22.  3 2 2X B X A   . 

In Exercises 23 to 26, use the matrices
2 3

1 1
A

 
   

 and

3 1 0

2 2 1 ,

1 0 2

B

 
   
 
  

 find  

23.  
2A  24.  

2B  25.  
3A  26.  

3B  

In Exercises 27 to 30 find the system of equations that is equivalent to the given 

matrix equation. 
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27. 
3 8 11

.
4 3 1

x

y

     
     

     
 28. 

2 7 1
.

3 4 16

x

y

     
          

 

29. 

1 3 2 6

3 1 0 2 .

2 4 5 1

x

y

z

      
     
     
          

 30. 

2 0 5 9

3 5 1 7 .

4 7 6 14

x

y

z

     
      
     
          

 

Individual Tasks 1 

1. Find  3 2
TTA B A  . 

2. Find AB  and BA . 

3. Find AB , if possible. 

4. Find the system of equations that is equivalent to the given matrix equation. 

I.    

1. 

2 3 1

0 1 2 ,

4 3 3

A

  
  
 
  

1 2 0

2 3 1

3 1 2

B

 
  
 
  

 

2.

2 1

0 3 ,

1 2

A

 
 
 
  

1 2 3

2 0 1
B

 
  

 
 

3. 
1 2 2 3

,
0 2 1 3

A
 

    

2 0

4 2
B

 
   

 

 

4. 

1

2

3

4

2 1 0 2 5

4 1 2 3 6
.

6 0 1 2 10

5 2 1 4 8

x

x

x

x

     
         
    
    

     

 

II.   

1.

 

0 2 0

1 3 3 ,

5 4 2

A

 
  
 
  

1 2 4

3 3 2

4 4 3

B

 
  
 
    

2. 

1 3

2 1 ,

3 2

A

 
 
 
   

0 1 2

1 2 4
B

 
   

 

3.

 

2 2 4

1 0 1 ,

2 1 3

A

 
  
 
  

2 1 3 0

0 2 1 2

1 1 0 2

B

 
   
 
    

4.  

1

2

3

4

5 1 2 3 2

4 0 2 0 2

2 2 5 4 1

3 1 3 4 2

x

x

x

x

      
    
    
      
    

      

III.   IV.  
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1. 

0 1

1 7 ,

3 3

A

 
  
 
  

2 1

2 1

1 2

B

 
   
 
  

 

2.

2 4

1 3 ,

1 2

A

 
  
 
  

1 1 3

2 0 2
B

 
  

 
 

3. 
1 2 3

,
0 2 3

A
 

    

2 0

4 2
B

 
   

 

4. 

1

2

3

4

1 1 0 2 5

4 3 2 3 5
.

6 0 4 2 12

2 2 1 4 3

x

x

x

x

     
         
    
    

      

 

1. 
1 4 1

,
0 2 1

A
 

  
 

1 2 0

2 3 1
B

 
    

 

2. 

0 7

3 4 ,

1 0

A

 
 
 
  

1 1 0

2 3 1
B

 
  

 
 

3. 
5 3 2

,
1 2 1

A
 

    

2 0

4 2
B

 
   

 

4. 

1

2

3

4

1 1 0 2 1

2 1 0 3 2
.

0 0 3 2 5

5 2 1 4 6

x

x

x

x

      
         
    
    

      

 

 

1.2 Determinants 

Associated with each square matrix A is a number called the determinant of A . We 

will denote the determinant of the matrix A  by det A or by A .  

Definition The determinant of the matrix ijA a     of order 2 is a number 

calculated by  

11 12

11 22 21 12

21 22

.
a a

A a a a a
a a

    

Caution Be careful not to confuse the notation for a matrix and that for a 

determinant. The symbol    (brackets) is used for a matrix; the symbol  (vertical bars) 

is used for the determinant of the matrix. 

An easy way to remember the formula for the determinant of a 2 2  matrix is to 

recognize that the determinant is the difference in the products of the diagonal elements. 

 

Definition The determinant of the matrix ijA a     of order 3 is a number calculated 

by  

Ре
по
зи
то
ри
й Б
рГ
ТУ



11 
 

11 12 13

21 22 23 11 22 33 21 32 13 12 23 31 13 22 31 12 21 33 23 32 11

31 32 33

a a a

A a a a a a a a a a a a a a a a a a a a a a

a a a

         

An easy way to remember the formula for the determinant of a 3 3  matrix is to 

recognize that the determinant contains three terms with a sign “plus” and three terms 

with a sign “minus” (see the picture): 

 

Definition The minor ijM  of the element ija  of a square matrix A  of order 3n   

is the determinant of the matrix of order 1n  obtained by deleting the i-th row and j-th 

column of A . 

Definition The cofactor ijC  of the element ija  of a square matrix A  is given by

 1 ,
i j

ij ijC M


  where ijM  is the minor of ija . 

The definition of minors and cofactors are used to define the determinant of a matrix 

of order 3 or greater. 

Statement If the square matrix A  has order 3 or greater, then the determinant of A  

is the sum of the products of the elements of any row or column and their cofactors. For 

instance, for the r-th row of A  is  

1 1 2 2 3 3 ... .r r r r r r rn rnA a C a C a C a C      

For the k-th column of A , the determinant of A  is 

1 1 2 2 3 3 ... .k k k k k k nk nkA a C a C a C a C      

Remark Whatever row or column is used, the expanding by cofactors gives the same 

value for the determinant. When you are evaluating determinants, choose the most 

convenient row or column, which is usually a row or column containing the most zeros. 

Definition A matrix which determinant is zero is called a singular matrix. In some 

cases it is possible to recognize when the determinant of a matrix is zero. 

If A  is a square matrix, then 0A  , when any one of the following is true: 

1. A row (column) consists entirely of zeros. 
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2. Two rows (columns) are identical. 

3. One row (column) is a constant multiple of the second row (column). 

The easiest determinants to evaluate have many zeros in a row or column. It is 

possible to transform a determinant into the one that has many zeros by using elementary 

row operations. 

If A  is a square matrix of order n , then the following elementary row operations 

produce the indicated change in the determinant of A : 

a. Interchanging any two rows of A  changes the sign of A . 

b. Multiplying a row of A  by a constant k  multiplies the determinant of A  by k . 

c. Adding a multiple of a row of A  to another row does not change the value of the 

determinant of A . 

Remark The properties of determinants just stated remain true if the word “row” is 

replaced by “column”. In that case, we would have elementary column operations. 

These elementary row operations are used to rewrite a matrix in a diagonal form. A 

matrix is in a diagonal form if all elements below (or above) the main diagonal are zero.  

Statement Let A  be a square matrix of order n  in diagonal form. The determinant 

of A  is the product of the elements on the main diagonal. 

Example 1 Evaluate the determinant by rewriting in diagonal form  

2 1 1 3

2 2 0 1

4 5 4 3

2 2 7 3







. 

Solution Rewrite the matrix in diagonal form by using elementary row operations. 

1 2

2 31 3

3 41 4

1
12 3,
11 3

2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3

2 2 0 1 0 1 1 2 0 1 1 2 0 1 1 2
3 3

4 5 4 3 0 3 6 9 0 1 2 3 0 0 1 1

2 2 7 3 0 1 8 6 0 1 8 6 0 0 7 4

R R
R RR R Factor
R RR R from row

 
  
  

   

  
   

   

   

 

       
3 47

2 1 1 3

0 1 1 2
3 3 2 1 1 3 18.

0 0 1 1

0 0 0 3

R R 




      


 

Remark The last example used only elementary row operations to reduce the matrix 

to diagonal form. Elementary column operations could also have been used, or a 
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combination of row and column operations could have been used. 

Exercise Set 2 

In Exercises 1 to 10 evaluate the determinants. 

1. 
2 1

3 5


 2. 

2 9

6 2
 3. 

5 0

2 3
 4. 

0 8

3 4


 

5. 
4 6

2 3
 6. 

3 6

4 8




 7. 

0 9

0 2
 8. 

3 9

0 0


 

9. 
2

1a b c

a a ab ac

 

 
 10. 

2 2

2 2

cos sin 2cos sin

2cos sin cos sin

   

   



 
 

 

In Exercises 11 to 14 evaluate the indicated minor and a cofactor for the determinant

5 2 3

2 4 1 .

4 5 6

 





 

11.  11 11,M C . 12.  21 21,M C . 13.  32 32,M C . 14.  33 33,M C . 

In Exercises 15 to 19 evaluate the determinant by expanding by cofactors. 

15.  

2 3 1

2 0 2

3 2 4





 

16.  

3 1 2

2 5 4

3 2 1



  

17.  

2 3 2

1 2 3

4 2 1





 

 

18.  

3 2 0

2 3 2

8 2 5







 

19.  

2 3 10

0 2 3

0 0 5



  

In Exercises 20 to 33, without expanding, give a reason for each equality. 

20. 

2 1 3

0 0 0 0

3 4 1



  

 

21. 

2 1 3

3 0 1 0

4 2 6





 

 22. 

2 3 0

1 2 0 0

4 1 0

   

23. 

2 4 5

0 3 4 12

0 0 2



 



 24. 

1 4 1 1 4 1

2 4 12 2 1 2 6

3 1 4 3 1 4

 

  

 

25. 

3 0 0

2 1 0 15

3 4 5
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26. 

1 3 4 1 1 4

4 6 1 3 4 2 1

0 9 3 0 3 3



  



 

 

27. 

1 1 3 1 1 3

2 2 5 2 2 5

1 2 4 0 3 7

 



 

 

 

28. 

1 5 2 1 5 2

2 1 4 0 11 8

3 0 2 3 0 2

 

  

 

 

 
29. 
6 0 2 0 6 2

2 1 3 1 2 3

1 5 7 5 1 7

 

     

 

 

 

30. 
3 5 2 9 2 3

2 1 0 2 1 0

9 2 3 3 5 2

  

 

  

 

 

31. 

3 2 2 2

2 2 2 3 3 3

1 1 1 a a a

a a a a a a a

a a a a a a

  

 
32. 

4 3 2 2 3 2

6 2 1 2 3 2 1

2 2 4 1 2 4

 



 

 
33. 

1 1 1

2 2 2 0

3 3 3

  

 

 

In Exercises 34 to 42 evaluate the determinant by rewriting the determinant in diagonal 

form by using elementary row or column operations. 

34. 

2 4 1

1 2 1

1 2 2

  35. 

3 2 1

1 2 4

2 2 3

 



 36. 

1 2 1

2 3 1

3 4 3



 

37. 

1 2 5

1 1 2

3 1 10

   38. 

0 1 1

1 0 2

2 2 0



  39. 

2 1 3

1 1 1

3 4 5





 

40. 

1 2 5 9

1 1 7 4

1 3 3 4

1 2 3 4




 41. 

1 2 3 4

0 2 5 9

0 0 3 7

2 4 6 0  

 42. 

1 2 1 2

1 2 0 3

3 0 1 5

2 4 1 6





 

 

In Exercises 43 to 46 evaluate the determinants by using elementary row or column 

operations. 

43. 

2 6 4

1 2 1

3 8 6

 44. 

3 0 10

3 2 7

2 1 5





 45. 

4 9 11

2 6 3

3 7 8







 46. 

1 1 2 1

2 1 6 3

3 1 8 7

3 0 9 9
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47. Solve the inequality. 

(a)

   

3 2 1

1 2 1

1 2 1

x



 

 

; (b)

   

2 2 1

1 1 2 0

5 3

x

x

 

 



 

48. Solve the equality. 

(a)

   

2 4 1
0

2 2

x

x x

 


 
; (b)

   

2 1 2

3 5 3 0

1 6 5x







 

In Exercises 49 to 54 evaluate the determinants  

49. 

12 314 16 536 20 537

6157 8268 10 268

513 689 126

 50. 

15325 15323 37527

23735 23735 17417

23737 23737 17418

 51.  

2 4 1 2

1 2 3 1

2 5 1 4

1 2 0 3




 

52. 

7 8 5 5 3

10 11 6 7 5

5 3 6 2 4

6 7 5 4 2

7 10 7 5 0

 53. 

7 3 2 6

8 9 4 9

7 2 7 3

5 3 3 4







 54. 

2 1 5 1

3 2 1 2

1 2 3 4

1 1 5 1


 

Individual Tasks 2 

1. Evaluate the determinant by expanding by cofactors. 

2. Evaluate the determinants by using elementary row or column operations. 

3. Solve inequality 

I.    

1.   

0 2 4

1 0 7

5 6 0







       2.  

 

1 1 1 2

0 2 4 6

1 1 4 12

1 1 0 8

 



 

3.

 

  

2 6 4

1 1

3 8 6

1 0x    

II.   

1.  

 

5 8 0

2 0 7

0 2 1





 

         2.    

1 2 3 1

6 5 9 8

2 4 12 1

1 2 6 1





  

3.    

1 2 5

1 1 2 0

3 1

x

x

    

III.   IV.   
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1.  

4 3 3

2 1 4

6 2 1





 

         2.

 

  

1 1 2 0

3 6 2 5

1 0 6 4

2 3 5 1







 

3.

 

  

1 2 4

1 1

3 4 6

2 0x    

1. 

2 3 9

4 2 6

0 8 24



 

         

2.

 

   

2 0 1 3

6 3 9 0

0 2 1 3

4 2 0 6






 

3.  

1 5

1 1 2 0

3 0 2

x

x     

1.3 The Inverse of a Matrix 

Definition (Multiplicative Inverse of a Matrix) If A is a square matrix of order n , 

then the inverse of matrix A , denoted by 1A , has the property that  
1 1

nA A A A I     , 

where nI  is the identity matrix of order n . 

Definition The square matrix A is called nonsingular matrix if det 0A . If

det 0A  , then matrix A is called singular matrix. 

Theorem (Existence of the Inverse of a Square Matrix) If A is a square matrix of 

order n , then A has a multiplicative inverse if and only if 0A  . 

Statement Inverse matrix 1A  is found by formula 

11 21 1

12 22 21

1 2

1

det

n

n

n n nn

С С С

С С С
A

A

С С С



 
 
 
 
 
 





   



, 

where ijС  is the cofactor of ija . 

You should verify that this matrix satisfies the condition of an inverse matrix. That 

is, show that 1 1
3A A A A I     . 

Properties of the Inverse Matrix 

1. 1 1
det

det
A

A
  . 2.  

11A A
   3.  

1 1 1AB B A
    

Exercise Set 3 

In Exercises 1 to 12 find the inverse of the given matrix. 
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1. 
1 3

2 5

 
  

 2. 
1 2

2 3

 
   

 3. 

1 2 1

2 5 1

3 6 2

 
 
 
  

 

4. 

1 3 2

1 5 6

2 6 3

 
  
 
  

 5. 
1 4

2 10

 
 
 

 6. 
2 3

6 8

 
   

 

7. 

1 2 1

2 6 1

3 6 4

 
 
 
  

 8. 

2 1 1

6 4 1

4 2 3

 
 
 
  

 9. 

2 4 4

1 3 4

2 4 3

 
 
 
  

 

10. 

1 2 2

2 3 1

3 6 6

 
 
 
  

 11. 

1 1 2 1

2 1 5 1

3 3 7 5

2 3 4 1

 
 
 
 
 
   

 12. 

1 1 1 2

3 2 1 5

2 2 1 5

4 4 4 7

 
 
 
 
 

 

 

In Exercises 13 to 18 find the inverse, if it exists, of the given matrix. 

13. 
2 2

3 2

 
  

 14. 
3 4

2 3

 
 
 

 15. 

1 3 2

3 8 7

2 3 6

 
 
 
  

 

16. 

1 2 1

2 6 4

3 8 6

 
 
 
  

 17. 

1 2 2 1

3 7 3 1

2 7 4 3

1 4 2 4

 
 
 
 
 
 

 18. 

1 1 2 3

2 1 6 5

3 1 9 6

2 2 4 7

 
 
 
 
 
 

 

In Exercises 19 to 20 solve the matrix equation: 

19. 
1 2 3 4

3 4 1 5
X

   
       

 

20. 2XA B I  , if

1 0 0 1 3 2

2 9 0 , 1 2 0

3 4 1 3 1 4

A B

   
     
   
        

 

Individual Tasks 3 

1. Find the inverse of the given matrix.  

2. For which value r R  the given matrix is nonsingular? Find 1A
 for every such value
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r . 

3. Solve the matrix equation. 

4. Whether two matrices are inverse matrix? 

I.    

1.   
5 4

3 2

 
 
 

               2.  

 

3 2 7

2 1

3 0 10

r

 
 
 
  

 

3.

 

 
5 1 13

3 2 5
X

   
    

   
 

4. 

1

1 0 1 0 1 1
1

0 1 1 , 1 0 1
3

1 1 1 1 1 1

A A

   
     
   
        

 

II.   

1. 

 

2 3

2 4

 
 
                   

2.    

9 11

3 7 8

2 6 3

r  
 
 
    

3.

 

 
4 3 5 4

1 1 2 0
X

   
       

 

4. 1

0 2 1 1 1 1

4 5 2 , 6 5 4

5 3 1 13 10 8

A A

   
      
   
      

 

III.   

1.   
1 4

7 3

  
 
 

       2.  

 

3 1 5

1 2

3 2 1

r

 
 
 
  

 

3.

 

 
2 1 2 2

4 3 6 4
X

   
        

 

4. 

1

1 3 1 6 4 13
1

3 2 5 , 4 0 2
8

2 2 2 2 4 7

A A

    
     
   
      

 

IV.   

1.   
7 4

5 2

 
  

    2.  

 

3 5 2

1 3 2

7 3r

 
 
 
  

 

3.

 

 
1 0 2 3

1 1 0 2
X

   
        

 

4.  

1

2 5 7 1 1 1
1

6 3 4 , 38 41 34
4

5 2 3 27 29 24

A A

   
     
   
        

 

1.4 System of Linear Equations 

Recall that an equation of the form Ax By C   is a linear equation in two variables. 

A solution of a linear equation in two variables is an ordered pair  ;x y , which makes 

the equation a true statement. The graph of a linear equation, a straight line, is the set of 

points whose ordered pairs satisfy the equation. 

A system of equations is two or more equations considered together. The solution of 
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a system of equations is an ordered pair that is the solution of each equation. 

Definition The system of equations is called a consistent system of equations when 

the system has at least one solution. 

The system of equations is called a dependent system of equations when the system 

has an infinite set of solutions. 

Definition The system of equations is called an inconsistent system of equations 

when the system has no solution. 

1.4.1 Gauss-Jordan Elimination Method 

A matrix can be created from a system of linear equations. There are three matrixes, 

which can describe a system of linear equations. 

The matrix formed by the coefficients and constants of this system is called the 

augmented matrix of system of equations. The matrix formed by the coefficients of the 

system is the coefficient matrix. The matrix formed from the constants is the constant 

matrix for the system.  

Remark When a term is a missing one of the equations of a system (as in the second 

equation), the coefficient of that term is 0 and 0 is entered in the matrix. 

An augmented matrix is in the echelon form if all the following conditions are 

satisfied 

1. The first nonzero number in any row is 1. 

2. Rows are arranged so that the column containing the first nonzero number is to 

the left of the column containing the first nonzero number of the next row. 

3. All rows consisting entirely of zeros appear at the bottom of the matrix. 

We can write an augmented matrix in the echelon form by using the so-called 

elementary row operations. These operations are a rewording, using matrix terminology 

of the operations that produce equivalent equations. 

Given the augmented matrix for a system of linear equations, each of the following 

elementary row operations produces a matrix of an equivalent system of equations. ERO 

are: 

1. Interchanging two rows (Interchange the i -th and j -th rows: i jR R ). 

2. Multiplying all the elements in a row by the same nonzero number (Multiply the

i -th row by k , a nonzero constant: ikR ). 

3. Replacing a row by the sum of that row and a nonzero multiple of any other row 

(Replace the j -th row by the sum of that row a nonzero multiple of the i -th row: i jkR R

). 

The Gauss-Jordan elimination method is an algorithm that uses elementary row 

operations to solve a system of linear equations. The goal of this method is to rewrite an 

augmented matrix in the echelon form. 
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To conserve space, we will occasionally perform more than one elementary row 

operation in one step. For example, the notation
1 2

1 3

3
2

R R
R R


   means that two elementary 

row operations were performed. First, multiply row 1 by 3 and add to row 2. Replace row 

2. Now multiply row 1 by –2 and add to row 3. Replace row 3. 

Example 1 Solve the system of equations using the Gauss-Jordan method  

3 5

3 7 2 12

2 4 3

x y z

x y z

x y z

  


  
   

. 

Solution Write the augmented matrix and then use elementary row operations to 

write the matrix in the echelon form. 

1 3 1 5

/ 3 7 212

2 4 1 3

A B

  
 

  
  

1 2

1 3

3
2

R R
R R


 

1 3 1 5

0 2 1 3

0 2 1 7

  
 

  
   

2(1 2)R

1 3 1 5

0 1 1/ 2 3 / 2

0 2 1 7

  
 

  
   

2 32R R 

1 3 1 5

0 1 1/ 2 3 / 2

0 0 0 4

  
 

  
  

. 

The equivalent system is

3 5

1 3

2 2

0 4

x y z

y z

z

  



  


 

. 

Because the equation 0z = -4 has no solution, the system also has no solution. 

Example 2 Solve a system of equations using the Gauss-Jordan method 

1 2 3 4

1 2 3 4

1 2 3 4

2 3 2 1

2 3 4 2 3

7 7

x x x x

x x x x

x x x x

   


   
     

. 

Solution Write the augmented matrix and use elementary row operations to reduce 

the matrix to the echelon form. 

1 2 3 2 1

/ 2 3 4 2 3

1 1 1 7 7

A B

    
 

    
   

1 2

1 3

2
1

R R
R R

 
 

1 2 3 2 1

0 1 2 2 1

0 3 4 5 8

    
 
 
   

2 3
1

3
2

R R 
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2 3
1

3
2

R R 



1 2 3 2 1

0 1 2 2 1

0 0 1 11/ 2 11/ 2

    
 
 
    

. 

The equivalent system is

1 2 3 4

2 3 4

3 4

2 3 2 1

2 2 1

11 11

2 2

x x x x

x x x

x x


    


  

  


. 

We now express each of the variables in terms of 4x . Solve the third equation for

3x . 

3 4

11 11

2 2
x x    

Substitute this value into the second equation and solve for 2x . 

2 4 4

11 11
2 2 1

2 2
x x x

 
     

 
 

Simplifying, we have
2 49 10.x x   Substitute the values for 2x  and 3x  into the first 

equation and solve for 1x : 

 1 4 4 4

11 11
2 9 10 3 2 1

2 2
x x x x

 
       

 
. 

Simplifying, we have 1 4

7 5
.

2 2
x x   If 4x  is any real number c , the solution is of the 

form
7 5 11 11

,9 10, ,
2 2 2 2

c c c c
 

    
 

. 

1.4.2 Method of Inverse Matrix 

Systems of linear equations can be solved by finding the inverse of the coefficient 

matrix. Consider the system of linear equations 

11 12 13 1

21 22 23 2

31 32 33 3

a x a y a z b

a x a y a z b

a x a y a z b

  


  
   

 (1) 

Using matrix multiplication and the concept of equality of matrices, this system can 

be written as a matrix equation. 
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11 12 13 1

21 22 23 2

31 32 33 3

a a a x b

a a a y b

a a a z b

    
     
    
        

 (2) 

 

where  

11 12 13 1

21 22 23 2

31 32 33 3

, ,

a a a x b

A a a a X y B b

a a a z b

    
      
    
        

 

Then the equation (1) can be written as following 

AX B  (3) 

The inverse of the coefficient matrix A is 1A . To solve the system of equations, 

multiply each side of the equation (3) by the inverse 1A . 

1

1 1 1
A A I

A AX A B X A B
 

      (4) 

Thus, we can find the solution of the system (1) using the formula (4). 

Example 3 Find the solution of the system of equations  

1 3

1 2 3

1 2 3

7 20

2 3

7 3 2

x x

x x x

x x x

 


  
   

 

by using the inverse of the coefficient matrix. 

Solution Write the system as a matrix equation  

1

2

3

1 0 7 20

2 1 1 3

7 3 1 2

x

x

x

    
      
    
        

. 

The inverse of the coefficient matrix is 1

4 7
73 3

3 16 5

1 1 1

3 3

A

 
 

 
  

 
 

 

. 

Multiplying each side of the matrix equation by the inverse, we have 
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1

2

3

4 7 4 7
7 1 0 7 7 203 3 3 3

3 16 5 2 1 1 3 16 5 3

1 1 1 7 3 1 1 1 1 2

3 3 3 3

x

x

x

   
         

                  
               
   

1

2

3

1

2

3

x

x

x

   
    
   
     

. 

Thus 1 1x   , 2 2x   and 3 3x  . The answer is  1;2;3 . 

1.4.3 Cramer’s Rule 

Let 11 1 12 2 1

21 1 22 2 2

a x a x b

a x a x b

 


 
 be the system of equations for which the determinant of the 

coefficient matrix is not zero. The solution of the system of equations is the ordered pair 

which coordinates are 

1 12

2 221
1

11 12

21 22

b a

b a
x

a a

a a


 


  and

11 1

21 22
2

11 12

21 22

a b

a b
x

a a

a a


 


. 

Note that the denominator   - is the determinant of the coefficient matrix of the 

variables. The denominator 1  is formed by replacing column 1 of the coefficient 

determinant with the constants 1b  and 2b . The determinant 2  is formed by replacing 

column 2 of the coefficient determinant by the constants 1b  and 2b . 

Example 4 Solve the following system of equations using Cramers Rule: 

1 2

1 2

5 3 6

2 4 7

x x

x x

 


  
. 

Solution 

1

6 3

7 4 3
,

5 3 26

2 4

x




 


 2

5 6

2 7 47

5 3 26

2 4

x


  


. 

 The answer is
3 47

,
26 26

 
 

 
. 

Cramers Rule can be extended to a system of n  linear equations in n  variables. 

Let  
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11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

...

...

...

...

n n

n n

n n

n n n nn n n

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

    
     


    



    



 

be a system of n  equations in n variables. The solution of the system is given by

 1 2 3, , ,..., nx x x x  where 

1 2 3
1 2 3, , , , n

nx x x x
   

   
   

  

where   is the determinant of the coefficient matrix and 0  . i  is the determinant 

formed by replacing the i-th column of the coefficient matrix with the column of constants

1 2 3, , ,..., nb b b b . 

Because the determinant of the coefficient matrix must be nonzero to use Cramers 

Rule, this method is not appropriate for the systems of linear equations with no solution 

or infinitely many solutions. In fact, the only time a system of linear equations will have 

a unique solution is when the coefficient determinant is not zero, the fact summarized in 

the following theorem. 

Theorem (Systems of Linear Equations with Unique Solutions) A system of n  

linear equations in n  variables has a unique solution if and only if the determinant of the 

coefficient matrix is not zero. 

Cramers Rule is also useful when we want to determine only the value of a single 

variable in a system of equations. 

Example 5 Find 3x  for the system of equations

1 43

1 2 43

1 2 43

1 2 4

4 23 2

3 2 4

6 22 0

2 2 1

x xx

x x xx

x x xx

x x x

  
    


   
   

. 

Solution Find  and 3 :

4 0 3 2

3 1 2 1
39

1 6 2 2

2 2 0 1




  

 



, 3

4 0 2 2

3 1 4 1
96

1 6 0 2

2 2 1 1




  



 

. 

Thus, 3

96 32

39 13
x   . 

Exercise Set 4 

In Exercises 1 to 4 write the augmented matrix, the coefficient matrix, and the constant 
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matrix. 

1. 

2 3 1

3 2 3 0

5 4

x y z

x y z

x z

  


  
  

 2. 

3 2 3

2 1

3 2 3 4

y z

x y

x y z

  


  
   

 

3. 

2 3 4 2

2 2

2 4

3 3 2 1

x y z

y z

x y z

x y z

   
  


  
   

 4. 

2 3 2

2 2 1

3 2 3

3 3

x y z

x z

x

x y z







    
   


 
   

 

In Exercises 5 to 10 use elementary row operations to write the matrix in the echelon 

form. 

5. 

2 1 3 2

1 1 2 2

3 2 1 3

  
 
 
  

 6. 

1 2 4 1

2 2 7 3

3 6 8 1

 
 
 
  

 7. 

4 5 1 2

3 4 1 2

1 2 1 3

  
  
 
   

 

8. 

2 1 1 3

2 2 4 6

3 1 1 2

  
 
 
  

 
9. 

1 2 3 4

3 6 10 14

5 8 19 21

2 4 7 10

  
  
 
  
 

  

 10. 

2 1 3 2

1 2 1 3

3 5 2 2

4 3 1 8

 
 
 
 
 
 

 

In Exercises 11 to 31 solve the system of equations by the Gauss-Jordan method. 

11. 

2 2 2

5 9 4 3

3 4 5 3

x y z

x y z

x y z

   


   
    

 12. 

3 8

2 5 3 2

4 1

x y z

x y z

x y z

  


  
   

 13. 

3 7 7 4

2 3 0

5 6 8

x y z

x y z

x y z

   


  
    

 

14. 

2 3 2 13

3 4 3 1

3 2

x y z

x y z

x y z

  


  
   

 15. 

2 2 3

5 8 6 14

3 4 2 8

x y z

x y z

x y z

  


  
   

 16. 

3 5 2 4

3 2 4

5 11 6 12

x y z

x y z

x y z

  


  
   

 

17. 

3 2 1

2 3 1

2 3

x y z

x y z

x y z

  


  
   

 18. 

2 5 2 1

2 3 5

5 12 10

x y z

x y z

x y z

   


  
   

 19. 

3 2 0

2 5 2 0

4 11 2 0

x y z

x y z

x y z

  


  
   

 

20. 

2 0

3 4 0

5 6 5 0

x y z

x y z

x y z

  


  
   

 21. 
2 3 4

3 2 2

x y z

x y z

  


  
 22. 

3 6 2 2

2 5 3 2

x y z

x y z
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23. 

4 3 4

3 10 3 4

5 18 9 10

2 2 3 11

x y z

x y z

x y z

x y z

  
   


  
    

 24. 

2 3 7

3 5 8 5 8

2 3 7 3 11

4 8 10 7 10

t a w

t u w

t a w

t a w









    
     


    
     

25. 

4 2 3 11

2 10 3 5 17

4 16 7 9 34

4 4

t u v w

t u v w

t u v w

t u v w

   
    


   
    

 

26. 

2 3 2 2

2 2

3 2 3 13

2 2 2 6

t u v w

t u v w

t v w

t u w

   
    


  
   

 27. 

4 7 10 3 29

3 5 7 2 20

2 3 9

2 2 4 15

t u v w

t u v w

t u v w

t u v w

    
     


    
    

 28. 

3 10 7 6 7

2 8 6 5 5

4 2 3 2

4 14 9 8 8

t u v w

t u v w

t u v w

t u v w

   
     


   
    

 

29. 
3 4 2

2 3 1

t u v

t u v w

  


   
 30. 

3 2 4 13

3 8 4 13 35

2 7 8 5 28

4 11 6 17 56

t u v w

t u v w

t u v w

t u v w

   
    


   
    

 31. 
2 3 4 2

2 4 3

t v w

t u v w

  


    
 

In Exercises 32 to 37 solve the system of equations by using inverse matrix methods. 

32.  
4 6

2 7 11

x y

x y

 


 
 33.  

2 3 5

2 4

x y

x y

 


 
 34.  

2 8

3 2 1

x y

x y

 


  
 

35. 

2 5

2 3 8

3 6 2 14

x y z

x y z

x y z

  


  
   

 36.  

2 4

2 3 3 5

3 3 7 14

x y z

x y z

x y z

  


  
   

 37. 

2 6

2 5 2 10

2 4 4 8

3 6 16

w x z

w x y z

w x y z

w x z

  
    


   
   

 

In Exercises 38 to 52 solve each system of equations by using Cramers Rule. 

38.  1 2

1 2

3 4 8

4 5 1

x x

x x

 


 
 39.  1 2

1 2

3 9

2 4 3

x x

x x

 


  
 40. 

1 2

1 2

5 4 1

3 6 5

x x

x x

  


 
 

41. 
1 2

1 2

2 5 9

5 7 8

x x

x x

 


 
 42. 

1 2

1 2

7 2 0

2 3

x x

x x

 


  
 43. 

1 2

1 2

3 8 1

4 5 2

x x

x x

 


  
 

44. 
1 2

1 2

3 7 0

2 4 0

x x

x x

 


 
 45. 

1 2

1 2

5 4 3

2 4 0

x x

x x

  


 
 46. 

1 2

1 2

1,2 0,3 2,1

0,8 1,4 1,6

x x

x x

 


  
 

47. 
1 2

1 2

3,2 4,2 1,1

0,7 3,2 3,4

x x

x x

 


  
 48. 

1 2 3

1 2 3

1 2 3

3 4 2 1

2 2

2 2 3 3

x x x

x x x

x x x

  


  
   

 
49. 

1 2 3

1 2 3

1 2 3

5 2 3 2

3 2 3

2 3 1

x x x

x x x

x x x

  


  
   

 

 

50. 

1 2 3

1 2 3

1 2 3

4 2 0

3 2 3 4

2 3 1

x x x

x x x

x x x

  


  
   

 51. 

1 2 3

1 2 3

1 2 3

4 2 6

3 1

2 3 2 5

x x x

x x x

x x x

  


  
   

 52. 

2 3

1 2 3

1 3

2 3 1

3 5 0

4 2 3

x x

x x x

x x
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In Exercises 53 to 56 solve for the indicated variable. 

53. 

31 2 4

1 2 4

1 2 4

31 2 4

42 3 1

2 2 1

3 2 2

23 3

xx x x

x x x

x x x

xx x x

   
   


  
    

 

Solve for 2x . 

54. 

21 4

21

21 4

31 4

3 3 4

32 2

2 3

32 2 4

xx x

xx

xx x

xx x

  
  


  
   

 

Solve for 4x . 

55. 

31 2 4

31 2 4

31 2 4

31 2 4

23 4 0

63 5 2 2

92 8 0

8 3

xx x x

xx x x

xx x x

xx x x

   
    


   
    

 

Solve for 1x . 

56. 

31 2 4

31 2 4

31 4

31 2

52 5 3 3

87 4

4 3

3 2 0

xx x x

xx x x

xx x

xx x

   
    


  
   

 

Solve for 3x . 

Individual Tasks 4 

1. Use elementary row operations to write the matrix in the echelon form, find the 

rang of the matrix. 

2. Solve the system of equations by the Gauss-Jordan method. 

3. Solve the system of equations by using inverse matrix methods and by using 

Cramers Rule. 

 

I.  

1.   

1 3 4 2 1

2 3 5 2 1

1 2 3 1 3

 
   
 
   

 

2. 

 

2 2 4 4

2 3 5 4

4 5 9 8

x y z

x y z

x y z

  


  
   

; 

3.

 

  

2 2 5

2 5 2 8

2 4 7 19

x y z

x y z

x y z

  

   

     

 

II.   

1.  

 

2 1 3 2 2

1 2 2 1 1

3 5 1 2 3

 
  
 
      

2. 

3 10 2 34

4 13

5 2 7 31

x y z

x y z

x y z

  


  
   

; 

3.

 

 

3 5

3 10 16

2 2 5 9

x y z

x y z

x y z
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III.   

1.   

1 2 3 5

3 1 4 2

5 3 10 8

 
  
 
  

 

2. 

3 5 10

2 3 4 7

3 2 2 6

t u v w

t u v w

t u v w

   


   
    

 

3.

 

  

2 0

2 2 15

2 4 21

x y z

x y z

x y z

  

   

   

 

IV.   

1.  

 

1 2 3 4

1 3 0 1

2 4 1 8

0 10 1 10

1 7 6 9

 
 
 
 
 
 
  

 

2.  

2 3 9

4 11 10 46

3 8 6 27

t u v w

t v w

t u v w

   


  
    

 

3.

 

   

2

3 6

2 5 12

x y z

x y z

x y z

  


  
     

1.5 Eigenvalues and eigenvectors of a matrix 

Consider a square matrix nnA and a vector-column 1 0nX  


. 

Definition The vector 1nX   is called its eigenvectors of the matrix n nA  , if there is 

such a real number 0  , which satisfies the equality  

AX X  (1) 

Number   is called the eigenvalues of a matrix. For finding the eigenvalues of the 

matrix the following characteristic equation must be solved 

0A E   (2) 

The substituting values found in equation (1) are eigenvectors of the matrix n nA  . 

Example 1 Find the eigenvalues and eigenvectors of the matrix 

8 5 3

0 2 6

0 1 1

A

 
   
  

 

Solution 

1. Form a square matrix A E : 
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8 5 3 1 0 0 8 5 3

0 2 6 0 1 0 0 2 6 .

0 1 1 0 0 1 0 1 1

A E



  



     
                
            

 

2. Compose the characteristic equation 

          2

8 5 3

0 2 6 8 2 1 6 8 3 4 0

0 1 1



      





              

 

. 

The solutions of getting equation are the eigenvalues of the matrix .In this example 

the eigenvalues of the matrix are 1 8,  2 31, 4    . 

3. For each of the eigenvalues we will find the eigenvectors of a matrix A . 

a) If 8  , then

8 8 5 3 0 5 3

0 2 8 6 0 6 6

0 1 1 8 0 1 7

A E

   
            
         

 

and a matrix equation is 
1

2

3

0 5 3 0

0 6 6 0

0 1 7 0

x

x

x

    
          

         

. 

This equation corresponds to a homogeneous system of linear equations 

2 3

2 3

2 3

5 3 0

6 6 0

7 0

x x

x x

x x

 

  

  

 

From the second equation 2 3x x  , then 

3 3 3

3 2 1

3 3 3

5 3 0; 2 0;
0, 0, , , 0

7 0; 6 0;

x x x
x x x m m R m

x x x

     
       

    
 

and vector 1 0 , , 0

0

m

X m R m

 
    
 
 

 is the eigenvector of a matrix A . 

b) If 1   , then a homogeneous system of linear equations is 

1 2 3

1 2 3 1 3
2 3

2 3
2 32 3

3 2 1

9 5 3 0; 13
9 5 3 0; ;

3 6 0; 9
2 0;

2 ;2 0;

9 , 18 , 13 , , 0.

x x x
x x x x x

x x
x x

x xx x

x k x k x k k R k
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and vector 2

13

18 , , 0

9

k

X k k R k

k

 
    
 
 

 is the eigenvector of a matrix A . 

c) If 4  , then a homogeneous system of linear equations is 

1 2 3

1 2 3 1 3

2 3

2 3 2 3

2 3

3 2 1

4 5 3 0;
4 5 3 0; 3 ;

2 6 0;
3 0; 3 ;

3 0;

, 3 , 3 , , 0.

x x x
x x x x x

x x
x x x x

x x

x t x t x t t R t

  
    

      
        

      

 

and vector 3

3

3 , , 0

t

X t t R t

t

 
     
 
 

 is the eigenvector of a matrix A . 

Exercise Set 5 

In exercises 1 to 8 find the eigenvalues and eigenvectors of a matrix.  

1. 
5 2

2 8
A

 
  
 

 2. 
3 4

7 1
A

 
  
 

 3. 
13 5

5 13
A

 
  
 

 

4. 
0 3

3 8
A

 
  
 

 5. 
2 3

3 2
A

 
  
 

 6. 
1 2

2 5
A

 
   

 

7. 

11 6 2

6 10 4

2 4 6

A

 
    
  

 8. 

1 2 2

1 0 3

1 3 0

A

 
   
 
 

 

Individual Tasks 5 

1-2. Find the eigenvalues and eigenvectors of a matrix.  
3. Find the eigenvectors of A matrix among the vectors 1 2 3, ,X X X . 

I.    

1.  

 

1 2

2 5
A

 
   

 

2.

 

  

1 4 3

0 2 1

0 0 3

A

 
   
 
 

 

II.  

1.  
2 3

3 2
A

 
  
 

 

2.  

1 1 0

0 1 0

5 3 2

A
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3. 

3 2 1

2 4 2

1 2 3

A

 
   
 
 

,  

1

1

0

2

X

 
   
 
 

, 2

2

2

0

X

 
   
 
 

, 3

1

0

1

X

 
   
  

. 

3.  

1 1 0

0 1 0

5 3 2

A

 
   
 
 

,  

1

1

0

5

X

 
   
  

, 2

2

2

0

X

 
   
 
 

, 3

1

0

1

X

 
   
  

. 

III.   

1.  

 

5 1

1 8
A

 
  
 

 

2.  

3 1 0

4 1 0

4 8 2

A

 
    
     

3.  

1 1 0

0 1 0

5 3 2

A

 
   
 
 

,  

1

0

0

1

X

 
   
 
 

, 2

1

1

0

X

 
   
 
 

, 3

1

2

1

X

 
   
  

. 

IV.   

1.  
3 6

6 3
A

 
  
 

 

2.  

5 6 3

1 0 1

1 2 1

A

 
   
    

3.  

1 1 0

0 1 0

5 3 2

A

 
   
 
 

,  

1

0

2

1

X

 
   
 
 

, 2

1

1

0

X

 
   
 
 

, 3

2

0

10

X

 
   
 
 

. 

II ANALYTIC GEOMETRY 

2.1 Algebraic Operations on Vectors 

2.1.1 The Algebra of Vectors 

The term vector is used by scientists to indicate a quantity (such as displacement or 

velocity or force) that has both magnitude and direction. A vector is often represented by 

an arrow or a directed line segment. The length of the arrow represents the magnitude of 

the vector and the arrow points in the direction of the vector.  

Definition A vector is a directed line segment AB


 from A to B . A  is the “tail” and

B  is the “head” of the vector. 

It is useful to introduce a zero vector. It has length 0 and no direction. In print letters

, , ,a b u v
   

  or , ,AB CD
 

are used to denote vectors. The length of a


 is denoted by a


 

and also is called the magnitude of a


.  Any vector of length 1 is called a unit vector. 
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If the vector a


 has the same length and the same direction as b


 even though it is in 

a different position, then we say that a


 and b


 are equivalent (or equal) and we write a b
 

 

. 

If the origin of a rectangular coordinate system is at the tail of a


, then the head of a


 

has coordinates  1 2;a a  or  1 2 3; ;a a a , depending on whether coordinate system is two- or 

three-dimensional. The numbers 1 2 3, ,a a a  are called the scalar components of a


 relative 

to the coordinate system.  

If  1 1 1; ;A x y z  and  2 2 2; ;B x y z are the points of three dimension space, then the 

vector AB


 has the following scalar components:  

 2 1 2 1 2 1; ;AB x x y y z z   


 

The magnitude of  ; ;a x y z


 can be calculated by the formula 2 2 2a x y z  


.  

Adding and Subtracting Vectors 

1. Addition of vectors. The sum of two vectors u


 and v


 is defined as follows. Place

v


 in such a way that its tail is at the head of u


. Then the vector c u v 
  

 goes from the 

tail of u


 to the head of v


. Observe, that u v v u  
   

, since both sums lie on the diagonal 

of the parallelogram, as shown in Fig. 1.1. 

If  ; ;a a aa x y z


 and  ; ;b b bb x y z


 are the vectors of three dimension space, then 

the scalar components of c


 can be calculated by the formula

 ; ;a b a b a bc a b x x y y z z     
  

. 

 

  
Figure 1.1 Figure 1.2 

2. Subtraction of vectors. Let u


 and v


 be vectors. The vector c


 such that c v u 
  

 

is called the difference of u


 and v


 is denoted by c u v 
  

. Thus, if  ; ;a a aa x y z


 and

 ; ;b b bb x y z


 then the scalar components of c


 can be calculated by the formula 

 ; ;a b a b a bc a b x x y y z z     
  

 (see Fig 1.2). 
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3. Scalar multiplication The negative of the vector a


 is defined as the vector having 

the same magnitude as a


 but the opposite direction. It is denoted by a


. If a AB
 

, then

a BA 
 

. Observe that   0a a  
  

, just as with scalars. 

Definition If c  is a scalar and a


 is a vector, the product ca


 is the vector which length 

is c  times the length of a


 and which direction is the same as that of a


 if c  is positive and 

opposite to that of a


 if c  is negative. 

Observe that 0a


 has length 0 and thus is the zero vector 0


 to which no direction is 

assigned. The vector ca


 is called a scalar multiple of the vector a


. If  ; ;a x y z


, then 

the scalar components of a


 can be calculated by the formula  ; ;ca cx cy cz


. 

Three-dimensional coordinate systems 

To locate a point in a plane, two numbers are necessary. We know that any point in 

the plane can be represented as an ordered pair  ;a b  of real numbers, where number a  

is the x  coordinate and b  is the y  coordinate. For this reason, a plane is called two-

dimensional. To locate a point in space, three numbers are required. We represent any 

point in space by an ordered triple  ; ;a b c  of real numbers. 

In order to represent points in space, we first choose a fixed point O  (the origin) and 

three directed lines through O  that are perpendicular to each other, called the coordinate 

axes and labeled the x  axis, y  axis, and z axis.  

The three coordinate axes determine the three coordinate planes. These three 

coordinate planes divide space into eight parts, called octants. The first octant, in the 

foreground, is determined by the positive axes. 

 

 

  
Figure 1.3 Figure 1.4 

If P  is any point in space, let a  be the (directed) distance from the yz -plane to P  

let b  be the distance from the xz -plane to P and let c  be the distance from the xy -plane 
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to P . The point P  can be represented by the ordered triple  ; ;a b c of real numbers and 

we call a , b , and c  the coordinates of P . Thus, to locate the point  ; ;a b c , we can start 

at the origin O  and move a  units along the x  axis, then b  units parallel to the y  axis, 

and then c  units parallel to the z  axis as in Figure 1.3. 

The point  ; ;P a b c determines a rectangular box as in Figure 1.4.  

Basis 

A set of vectors in space is called a basis, or a set of basis vectors, if the vectors are 

linearly independent and every vector in the vector space is a linear combination of this 

set. In more general terms, a basis is linearly independent. 

Given a basis of a vector space V , every element of V  can be expressed uniquely 

as a linear combination of basis vectors, whose coefficients are referred to as vector 

coordinates or components. A vector space can have several distinct sets of basis vectors; 

however each such set has the same number of elements, with this number being the 

dimension of the vector space. The same vector can be represented in two different bases. 

Definition A basis B  of a vector space V  is a linearly independent subset of V  that 

spans V . 

In more detail, suppose that  1 2, ,..., nB v v v  is a finite subset of a vector space V . 

Then B  is a basis if it satisfies the following conditions: 

1. the linear independence property, for all 1, , n R   , if 1 1 0,n nv v     then 

necessarily 1 0n    ; 

2. the spanning  property, for every x  in V  it is possible to choose 1, , n R    such 

that 1 1 n nx v v    . 

The numbers i  are called the coordinates of the vector x  with respect to the basis

B , and by the first property they are uniquely determined. 

A vector space that has a finite basis is called finite-dimensional.  

Definition The orthonormal basis for space V  with a finite dimension is a basis 

which vectors are orthonormal, that is, they are all unit vectors and orthogonal to each 

other.  

The set of vectors       1;0;0 , 0;1;0 , 0;0;1i j k  
  

 (the standard basis) forms an 

orthonormal basis of 3R . All vectors  ; ;x y z  in 3R  can be expressed as a sum of the 

basis vectors scaled  ; ;x y z xi y j zk  
  

. 
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Example 1 Let the vectors  2; 1;8a  


,  1 1;2;3e 


,  2 1; 1; 2e   


,  3 1; 6;0e  


 

be given  in basis  , ,i j k
  

. Prove, that 1 2 3, ,e e e
  

 form the basis of 3R  and express vector a


 

via the new basis. 

Solution The set of vectors 1 2 3, ,e e e
  

 forms the basis of the three-dimensional 

coordinate system, if 1 1 2 2 3 3 0e e e    
  

, then necessarily 1 2 3 0     . This 

means, that corresponding scalar components are disproportionate or, accordingly 

properties of a determinant, the determinant of the 3 3  matrix, having the three vectors 

as its rows do not equal 0. 

1 2 3

1 2 3

1 1 2 18 4 3 12 31 0

1 6 0

e e e           




, it means that vectors 1 2 3, ,e e e

  
 are 

linearly independent, hence form the basis of 3R . 

Now let us express vector a


 via the new basis. We can write down the following 

representation 1 2 3a xe ye ze  
   

 where numbers  ; ;x y z  are the coordinates of the 

vector a


 with respect to the basis 1 2 3, ,e e e
  

. We have: 

     
     

2 3 2 6

2 6 3 2 2 8

a x i j k y i j k z i j

i x y z j x y z k x y i j k

        

          

        

       

Using this representation we have following system of linear equations: 
2 2

2 6 1 1

3 2 8 1

x y z x

x y z y

x y z

    
 

       
       

1 2 32a e ye ze   
   

. 

Exercise Set 6 

1. Draw the vector  2;3 , placing its tail at:  

a)  0;0  b)  1;2  c)  1;1  

2. Find a


 if a


 is: 

a)  4;0a 


 b)  5;12a  


 c)  2;1; 5a  


 d)  1;3; 2a  


 

3. Find the magnitude of AB


 if:  

a)    2;1 , 1;4A B   b)    1; 3; 2 , 2;4;5A B      
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4. Find a b
 

 if: 

a)  
7 13

10 ; , 2;0
2 2

a b
 

  
 

 
 b)    2;2; 3 , 1; 1;4a b   

 
 

5. Find 3 2a b
 

 if: 

a)    4;3 , 2;0a b 
 

 b)    3;4 , 5;1a b 
 

 c)    2;3;4 , 1;5;0a b 
 

 

6. Find the distance between the points: 

a)  1;4;2  and  2;1;5  b)  3;2;1  and  4;0; 2  

7. Find 3 2a b
 

 if: 

a)    1;2;0 , 2;3;5a b 
 

 b)    3; 2;1 , 4;3;2a b   
 

 

In Exercises 8 to 11 find the scalar components of the vector a


 in the basis 1 2 3, ,e e e
  

. 

8.         1 2 35;4;1 , 3;5;2 , 2;1; 3 , 7;23;4e e e a     
   

 

9.         1 2 31; 3;1 , 2; 4;3 , 0; 2;3 , 8; 10;13e e e a         
   

 

10.         1 2 33;1; 2 , 2;4;1 , 4; 5; 1 , 5;11;1e e e a        
   

 

11.         1 2 33;1;2 , 4;3; 1 , 2;3;4 , 14;14;20e e e a     
   

 

Individual Tasks 6 

1. Find the magnitude of AB


.  

2. Find 2 5a b


. 

3. Find the distance between the given points. 

4. Find the scalar components of the vector a


 in the basis 1 2 3, ,e e e
  

. 

I.    

1.    0; 2; 2 , 5;1; 5A B      

2.    2;1;3 , 0; 3;2a b   
 

 

3.    1;2; 5 , 1;0;1A B  

II.   

1.

 

   1;0;8 , 4;4;0A B  

 
2.    2; 1; 4 , 3; 5; 1a b     
 

 

3.

 

   1; 3; 3 ; 2;0; 4P Q  
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4. 
   

   
1 2

3

5;7; 2 , 3;1;3 ,

1; 4;6 , 14;9; 1

e e

e a

   

   

 

   4. 
   

   
1 2

3

1;4;3 , 3;2; 4 ,

2; 7;1 , 6;20; 3

e e

e a

   

    

 

   

III.   

1.    0; 3; 3 , 6;1; 6A B      

2.    1;2;3 , 2; 3;0a b   
 

 

3.    1;0; 3 , 2;0;2A B  

4. 
   

   
1 2

3

3; 1;2 , 2;3;1 ,

4; 5; 3 , 3;2; 3

e e

e a

   

     

 

   

IV.   

1.

 

   8;0;1 , 1;4;1A B  

 
2.    4; 1; 2 , 1; 5; 3a b     
 

 

3.

 

   1; 4; 4 ; 3;0; 2P Q  

 

4. 
   

   
1 2

3

5;3;1 , 1;2; 3 ,

3; 4;2 , 9;34; 20

e e

e a

   

    

 

   

2.1.2 The Dot Product of Two Vectors 

Definition Let a


 and b


 be two nonparallel and nonzero vectors. They determine a 

triangle and an angle  , shown in Figure 1.5. The angle between a


 and b


 is  . Note 

that 0    . 

   

Figure 1.5 Figure 1.6 Figure 1.7 

If a


 and b


 are parallel, the angle between them is 0 (if they have the same direction) 

or   (if they have opposite directions). The angle between 0


 and any other vector is not 

defined. 

Definition Let a


 and b


 be two nonzero vectors. Their dot product is the number 

cosa b a b   
   

 (1) 

where   is the angle between a


 and b


. If a


 and b


 is 0


, their dot product is 0. The dot 

product is a scalar and is also called the scalar product of a


 and b


. 

Properties of the dot product 
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1. For any two vectors a


 and b


: a b b a  
   

. 

2. For any vector a


: 
2

a a a 
  

 

3. If a


 is perpendicular to b


, then 0a b 
 

. Consequently, the vanishing of the dot 

product is a test for perpendicularity. 

4. Formula for the dot product in scalar components. To find the dot product just 

add the products of corresponding components: if 1 1 1a x i y j z k  
   

and

2 2 2b x i y j z k  
   

, then 

1 2 1 2 1 2a b x x y y z z   
 

 (2) 

Application of dot product 

1.  The angle between two vectors a


 and b


 can be determined by the formula: 

cos
a

a b

b







 

   (3) 

2.  Figure 1.8 shows the representations PQ


 and PR


 of two vectors a


 and b


 with 

the same initial point P  . If S  is the foot of the perpendicular from R  to the line 

containing PQ


, then the vector with representation PS


 is called the vector projection of

b


 onto a


 and denoted by
a

proj b


.  

 

  

Figure 1.8 Figure 1.9 

The scalar projection of b


 onto a


 (also called the component of b


 along a


 ) is 

defined to be the signed magnitude of the vector projection, which is the number cosb 


 

, where 
 
is the angle between a


 and b


 (see Figure 1.9). This is denoted by
a

comp b


. 

Let a


 be a vector and let u


 be a unit vector. Then a


 can be expressed as the sum of 

two vectors, 1 2a a a 
  

, where 1a u
 
 , 2a u
 

, as shown in Figure 1.10. 
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The dot product provides the tool for finding 1 2,a a
 

: 

   1 2a a a a u u a a u u       
 

         
 (4) 

The number a u
 

 is called the scalar component of a


 along u


. It is positive if

0
2


  , negative if

2


   , and 0 if

2


  . 

  

Figure 1.10 Figure 1.11 

The vector  a u u 
  

 is called the vector component, or projection of a


 along u


. 

The vector  a a u u 
   

 is the vector component of a


 perpendicular to u


. 

Example 1 Express 2 6a i j 
  

 as a sum of the vector parallel to 
2 2

2 2
u i j 
  

 

and the vector perpendicular to u


. 

Solution By property 6    1 2a a a a u u a a u u       
 

         
. 

The scalar component is 

  2 2 2 2
2 6 2 6 2 2

2 2 2 2
a u i j i j

   
              

   

     
 

The vector component of  a


 along u


 is                

 1

2 2
2 2 2 2

2 2
a a u u i j i j

 
         

 

       
 

and      2 2 6 2 2 4 4a a a u u i j i j i j         
          

. 

So    2 2 4 4a i j i j    
    

. These vectors are shown in Figure 1.11. 

3.  Direction angles and direction cosines. The direction angles of a nonzero 

vector a


 are the angles ,   and  in the interval  0; , whose a


 makes with the positive

x -, y -, and z -axes (see Figure 1.8). 
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The cosines of these direction angles cos , cos  and cos , are called the direction 

cosines of the vector  ; ;a a aa x y z


. Using the property of the dot product, we obtain 

cos aa i x

a i a



 

 

   ,      cos ay

a
   ,       cos az

a
    (5) 

Theorem 1 If  ,   and   are the direction angles of the vector a


, then  

2 2 2cos cos cos 1     . 

Example 2 Prove, that the set of vectors       1;0;0 , 0;1;0 , 0;0;1i j k  
  

 (the 

standard basis) forms an orthonormal basis of 3R . 

Solution A straightforward computation shows that the dot products of these vectors 

equal zero 0i j j k i k     
     

 and that each of their magnitudes equals one

1i j k  
  

. This means that  , ,i j k
  

 is an orthonormal set. 

4.  Suppose that the constant force is a vector F PR
 

 pointing in some other 

direction, as in Figure 1.7. If the force moves the object from P  to Q  , then the 

displacement vector is D PQ
 

. The work done by this force is defined as a product of 

the component of the force along the distance D


 :  cosA F D 
 

. Thus the work done 

by a constant force F


 is the dot product F D
 

 , where D


 is the displacement vector. 

A F D 
 

 (6) 

Exercise Set 7 

In Exercises 1 to 6 compute ba 
 

 , if: 

1. Vector a


 has length 3, b


 has length 4, the angle between a


 and b


 is / 4 . 

2. Vector a


 has length 2, b


 has length 2, the angle between a


 and b


 is 3 / 4 . 

3. Vector a


 has length 5, b


 has length 1/2, the angle between a


 and b


 is / 2 . 

4. Vector a


 is the zero vector, b


 has length 5. 

5. 2 3 5a i j k  
   

 and b i j k  
   

. 

6. a PQ
 

 and b PR
 

, where      1;0;2 , 1;1; 1 , 2;3;5P Q R . 
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7. Find: a b
 

, 
2

a


, 
2

b


,  
2

a b
 

,  
2

a b
 

,    4 3 2a b a b   
   

 if  3;1; 4a  


 and 

 2; 1;1b  


. 

8. Find  
2

a b
 

, 
2

a b
 

,    2 4 3a b a b  
   

 if  3, 5, ;
4

a b a b





   
   

. 

9. a) Draw the vectors 7 12ji 
 

 and 9 5i j
 

. 

 b) Do they seem to be perpendicular? 

 c) Determine whether they are perpendicular by examining their dot product. 

10. a) Draw the vectors 2 j 3i k 
  

 and ji k 
  

. 

 b) Do they seem to be perpendicular? 

 c) Determine whether they are perpendicular by examining their dot product. 

11. a) Estimate the angle between 3 4a i j 
  

 and 5 12jb i 
 

 by drawing them. 

 b) Find the angle between a


 and b


. 

12. Find the cosine of the angle between 2 4j 6i k 
  

 and 2 j 3i k 
  

. 

In Exercises 13 to 16 find the scalar and vector projections of b


 onto a


. 

13.    3; 4 ; 5;0a b  
 

 14.    3;6; 2 ; 1;2;3a b  
 

 

15.    1;2 ; 4;1a b  
 

 16.    2;3; 6 ; 5; 1;4a b    
 

 

17. Find the cosine of the angle between AB


 and CD


 if      1;3 , 7;4 , 2;8A B C  and

 1; 5D  . 

18.  Find the cosine of the angle between AB


 and CD


 if

     1;2; 5 , 1;0;1 , 0; 1;3A B C   and  2;1;4D . 

In Exercises 19 to 22 find the vector components of a


 parallel and perpendicular to b


. 

19. 2 3 4a i j k  
   

 and b i j k  
   

. 

20. a j k 
  

 and b i j 
  

. 

21. 2 3a i j k  
   

 and b 2 3j k 
  

. 

22. a j
 

 and b 2 3i j k  
   

. 

23. Find the vector d


 such that 5; 11; 20d a d b d c       
     

, if  2; 1;3a  


, 

 1; 3;2b  


,  3;2; 4c  


. 
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24. Find c


 which is perpendicular to the axes OZ, perpendicular to the vector

 8; 15;3a  


, forms the acute angle with Ox and 51c 


. 

25. Prove that vectors  7;6; 6a  


 and  6;2;9b 


 can be regarded as the edges of 

the cube and find the third edge. 

In Exercises 26 to 29 find the direction cosines and direction angles of the vector. 

Give the direction angles correct to the nearest degree. 

26.  3;4;5a 


 27.  1; 2; 1a   


 

28. 2 3 6a i j k  
   

 29. 2 2a i j k  
   

 

30. If a vector has direction angles / 4, / 3     , find the third direction angle

 . 

In Exercises 31 to 36 determine whether the given vectors are orthogonal, parallel, 

or neither: 

31.    5;3;7 ; 6; 8;2a b   
 

 32.    4;6 ; 3;2  
 
a b  

33. 2 5 ; 3 4      
       
a i j k b i j k  34. 2 6 4 ; 3 9 6      

       
a i j k b i j k  

35.    3;9;6 ; 4; 12; 8a b    
 

 36. 2 ; 2     
       
a i j k b i j k  

37. Use vectors to decide whether the triangle with vertices    1; 3; 3 ; 2;0; 4P Q    

and  6; 2; 5R    is right-angled. 

38. A wagon is pulled a distance of 100m along a horizontal path by a constant force 

of 70N. The handle of the wagon is held at an angle of 35 above the horizontal. Find the 

work done by the force. 

39. A force is given by a vector (3;4;5)F 


and moves a particle from the point

(2;1;0)P  to the point (4;6;2)Q . Find the work done. 

40. A boat sails south with the help of a wind blowing in the direction 36S E  with 

magnitude 400 lb. Find the work done by the wind as the boat moves 120 ft. 

41. A sled is pulled along a level path through snow by a rope. A 30-lb force acting 

at an angle of 40  above the horizontal moves the sled 80 ft. Find the work done by the 

force. 

42. A tow truck drags a stalled car along a road. The chain makes an angle of 30 with 

the road and the tension in the chain is 1500 N. How much work is done by the truck 

pulling the car 1 km? 
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Individual Tasks 7 

1. Find: a b
 

, 
2

a


, 
2

b


,  
2

a b
 

,  
2

a b
 

,    3 2 2a b a b  
   

. 

2. Find  
2

a b
 

,  
2

a b
 

,    2 3 2a b a b   
   

. 

3. Find the third direction angle  of the vector. 

4. Find the scalar and the vector projection 

I.    

1. a 3 5i j k   
   

, b i j k   
   

 

2. 3a 


, 4b 


, ; 2 / 3a b 
 

  
 

 
 

3. 
/ 4, / 6       

4.    5;3;7 , 6; 8;2a b   
 

 

5. Find the angle between the diagonal of 
the cube and one of its edges. 

II.   

1.

 

a 2 4i j k   
   

, 2 5b i j k   
   

 

2.

 

6a 


, 8b 


, ; / 6a b 
 

  
 

 
 

3. / 2, / 3       

4.    3;9;6 , 4; 12; 8a b    
 

 

5. Find the angle between the diagonal of 
the cube and a diagonal of one of its faces. 

III.   

1.    2;1;3 , 0; 3;2a b   
 

 

2. 2a 


, 8b 


, ; / 3a b 
 

  
 

 
 

3. / 4, / 6       

4.    5;3;4 , 2; 2;2a b   
 

 

5. Find the acute angle between two 
diagonals of the cube.  

IV.   

1.    2; 1; 4 , 3; 5; 1a b     
 

 

2.

 

3a 


, 4b 


, ; 5 / 6a b 
 

  
 

 
 

3. / 2, / 3       

4.    1;3;2 , 2; 6; 4a b    
 

 

5. Find the angle between the diagonal of 
the cube and one of its bases. 

2.1.3 The Cross Product of Two Vectors 

It is frequently necessary in applications of vectors in space to construct a nonzero 

vector perpendicular to two given vectors a


 and b


. 

If a


 and b


 are not parallel and drawn with their tails at a single point, they determine 

a plane. Any vector c


 perpendicular to this plane is perpendicular to both a


 and b


. There 

are many such vectors, all parallel to each other and having various lengths.  
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Definition Cross product (vector product) Let a a aa x i y j z k  
   

 and

b b bb x i y j z k  
   

. The vector  

     

a a a a a a

a a a

b b b b b b

b b b

a b a b a b a b a b a b

i j k
y z x z x y

x y z i j k
y z x z x y

x y z

y z z y i x z z x j x y y x k

   

     

  

  

  

 

is called the cross product (or vector product) of a


 and b


. It is denoted a b
 

.  

Properties of the cross product 

1. a b
 

 is a vector perpendicular to both a


 and b


. 

2. The order of the factors in the vector product is critical a b b a   
   

. This 

property corresponds to the fact that when two rows of a matrix are interchanged, its 

determinant changes a sign. 

3. If a


 and b


 are parallel, then 0a b 
  

. This corresponds to the fact that if two 

rows of a matrix are identical, then its determinant is 0.  

4. For any vectors a


, b


 and c


:  a b c a b a c     
      

. This distributive law 

can be established by a straightforward computation. 

5. A scalar can be factored out of a cross product:      a b a b a b      
     

. 

6. The magnitude of a b
 

 is equal to the area of the parallelogram spanned by a


 

and b


: sina b a b  
   

, where ;a b
 

  
 

 
is the angle between a


 and b


. 

Example 1 Find a vector perpendicular to the plane determined by the three points

     1;3;2 , 4; 1;1 , 3;0;2A B C . 

Solution The vectors AB


 and AC


 lie in a plane. The vector c AB AC 
  

, being 

perpendicular to both AB


 and AC


, is perpendicular to the plane. Now, 3 4AB i j k  
   

 

and 2 3 0AC i j k  
   

. Thus  3 4 1 3 2 3; 2; 1 .

2 3 0

i j k

c i j k          



  

   

 

Application of the cross product 

The idea of a cross product often occurs in physics. In particular, we consider a force
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F


 , acting on a rigid body at a point given by a position vector r


. (For instance, if we 

tighten a bolt applying a force to a wrench as in Figure 1.10, we produce a turning effect). 

The torque (relative to the origin) is defined as a cross product of the position and force 

vectors 

r F  
 

 (1) 

and measures the tendency of the body to rotate about the origin. The direction of the 

torque vector indicates the axis of rotation. The magnitude of the torque vector is 

 

(2) 

where   is the angle between the position and force vectors. Observe that the only 

component of F


 that can cause a rotation is the one perpendicular to r


 , that is, 

| | sinF 


 . The magnitude of the torque is equal to the area of the parallelogram 

determined by r


 and F


. 

  

Figure 1.10 Figure 1.11 

Exercise Set 8 

In Exercises 1 to 4 compute a b
 

: 

1. ;a k b j 
   

. 2. ;a i j b i j   
     

 

3. ;a i j k b i j    
      

 4. ;a k b i j  
    

 

In Exercises 5 and 6 compute a b
 

 and check that it is perpendicular to both a


 and 

to b


: 

5. 2 3 ; 2a i j k b i j k     
       

 

6. ; 4a i j b j k   
     

 

7. Calculate    a b a b  
  

 and    3 2a b a b  
  

 , if 3a 


and 4b 


. 

| | | | sinr F r F     
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In Exercises 8 to 11 determine the scalar components of vectors    2 3 4a b a b  
  

  

and    3a b a b  
  

, if  

8. 2 3 , 4a i j k b j k    
    

 9. 3 4 , 2 7a i j k b i j k     
     

 

10. 2 4 2 , 7 3 2a i j k b i j k     
     

 11. 7 2 , 2 6 4a i j k b i j k      
     

 

12. Find the area of a parallelogram three of its vertices are 

a)      0;0;0 , 1;5;4 , 2; 1;3A B C 
 

b)      1;2; 1 , 2;1;4 , 3;5;2A B C  

13. Find a vector perpendicular to the plane determined by the three points

     1;2;1 , 2;1; 3 , 0;1;5A B C . 

14. Find a vector perpendicular to the line through  1;2;1A  and  4;1;0B  also to 

the line passing through points  3;5;2C  and  2;6; 3D  . 

15. Find the area of the triangle which vertices are: 

a)      0;0 , 3;5 , 2; 1A B C   

b)      1;4 , 3;0 , 1;2A B C   

c)      1;1;1 , 2;0;1 , 3; 1;4A B C   

In Exercises 16 to 19 find: 

a) a nonzero vector orthogonal to the plane through the point , ,P Q R ; 

b) the area of PQR . 

16. (1;0;0)P , (0;2;0)Q , (0;0;3)R . 17. (2;1;5)P , ( 1;3;4)Q  , (3;0;6)R . 

18. (0; 2;0)P  , (4;1; 2)Q  , (5;3;1)R . 19. ( 1;3;1), (0;5;2), (4;3; 1)P Q R  . 

20. Find a b
 

, if | | 10a 


, | | 2b 


, 12a b 


. 

21. Find a b


, if ,| | 26b 


, 72a b 


. 

22. Prove that points (3; 1;2), (1;2; 1), ( 1;1; 3), (3; 5;3)A B C D      are the vertices of 

trapezoid. 

23. A bicycle pedal is pushed by a foot with a 60-N force as shown in Figure 1.11. The 

shaft of the pedal is 18 cm long. Find the magnitude of the torque about P . 

24. A wrench 30 cm long lies along the positive y -axis and grips a bolt at the origin. 

A force is applied in the direction (0;3; 4)a 


 at the end of the wrench. Find the 

magnitude of the force needed to supply 100 N m  of torque to the bolt.  

| | 3a 
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Individual Tasks 8 

1. Determine the scalar components of vectors    2 3 4a b a b  
  

  and calculate

   3 2a b a b   
  

. 

2. Find the area of the triangle which vertices are given. 

3. Solve the given problem. 

I.    
 

1. a 3 5i j k   
   

, b i j k   
   

 

2.      1; 1 ;1 , 2;3;1 , 0; 1;2A B C    

3. Find a b
 

, if | | 10a 


, | | 2b 


, 

12a b 


. 

II.   

1.

 

a 2 4i j k   
   

, 2 5b i j k   
   

 

2.      1;0; 2 , 3;0; 1 , 0; 1;5A B C    

3. Find a b


, if | | 3a 


,| | 26b 


,  

72a b 


. 

III.   

1.    2;1;3 , 0; 3;2a b   
 

 

2.    2; 5 ; 1 , 6; 7;9 ,A B       

 4; 5;1C   

3. Find a b
 

, if | | 5a 


, | | 2b 


, 

8a b 


. 

IV.   

1.    3; 3;0 , 2; 1;4a b   
 

 

2.      1;3;2 , 5;2; 1 , 2;2;4A B C  

 

3. Find a b


, if | | 13a 


,| | 1b 


,  

5a b 


. 

2.1.4 Triple Products 

The triple product is a product of three 3-dimensional vectors, usually Euclidean 

vectors.  

Definition The scalar triple product (also called the mixed product, box product) 

is defined as the dot product of one of the vectors with the cross product of the other two: 

 ab c a b c  
   

 (1) 

Geometric interpretation Geometrically, the scalar triple product is the (signed) 

volume of the parallelepiped defined by the three vectors given (see Figure 1.12). Here, 

the parentheses may be omitted without causing ambiguity, since the dot product cannot 

be evaluated first. If it were, it would leave the cross product of a scalar and a vector, 

which is not defined. 
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Figure 1.12 

The volume of the parallelepiped determined by the vectors a


, b


 and c


 is the 

magnitude of their scalar triple product:  

 V a b c abc   
    

 (2) 

Properties of triple products 

1. The scalar triple product is invariant under a circular shift of its three operands 

, ,a b c
 

: 

     a b c b a c c a b       
       

. 

2. Swapping the positions of the operators without re-ordering the operands leaves 

the triple product unchanged. This follows from the preceding property and the 

commutative property of the dot product: 

   a b c b c a    
    

 

3. Swapping any two of the three operands negates the triple product. This follows 

from the circular-shift property and the anticommutativity of the cross product:  

       a b c a c b b a c c b a             
         

 

4. The scalar triple product can also be understood as the determinant of the 3×3 

matrix (thus also its inverse) having the three vectors either as its rows or its columns (a 

matrix has the same determinant as its transpose):  

 
1 2 3

1 2 3

1 2 3

a a a

a b c b b b

c c c

  
 

 (3) 

5. If the scalar triple product is equal to zero, then the three vectors , ,a b c
 

are 

coplanar (lie in the same plane), since the parallelepiped defined by them would be flat 

and have no volume. 

6. If any two vectors in the triple scalar product are equal, then its value is zero: 
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        0a a b a b a a b b a a a           
         

. 

Exercise Set 9 

In Exercises 1 and 2 find the volume of the parallelepiped determined by the vectors

, ,a b c
 

. 

1.  ;  0;1;2b 


;  4; 2;5c  


. 

2.  a i j k  
   

; b i j k  
   

; c i j k   
   

. 

In Exercises 3 and 4 find the volume and height of the parallelepiped with adjacent 

to edges PQ , PR , and PS . 

3. (2;0; 1), (4;1;0), (3; 1;1), (2; 2;2)P Q R S   . 

4. (3;0;1), ( 1;2;5), (5;1; 1), (0;4;2)P Q R S  . 

In Exercises 5 to 8 show that the given vectors are coplanar (noncoplanar). 

5.        1 2 30;4;1 , 3;5; 2 , 2;0; 3e e e    
  

 

6.       1 2 31;4;1 , 0;0;3 , 0; 1;3e e e   
  

 

7.       1 2 33;1;0 , 2;0;1 , 0; 5; 1e e e     
  

 

8.       1 2 33; 1; 2 , 3;3; 1 , 2;3;0e e e     
  

 

 In Exercises 9 to 14 prove that , ,p q r
  

 form the basis of 3R  and express the vector 

a


 via the new basis. 

9.  (4; 5;1)p 


, (3; 4;1)q 


, (2; 3; 2)r 


,  6;3;4a 


 

10.  ( 1; 4; 3)p  


, (3; 2; 4)q  


, ( 2; 7; 1)r   


,  6;20; 3a  


 

11.  (5; 7; 2)p  


, ( 3;1; 3)q  


, (1; 4; 6)r  


,  14;9; 1a  


 

12.  (1; 3;1)p  


, ( 2; 4; 3)q   


, (9; 2; 3)r  


,  8; 10;13a   


 

13.  (4; 5; 2), (3; 0;1), ( 1; 4; 2)p q r   
  

 (5; 7; 8)a 


 

14. Prove  that       2a b b c c a abc   
       

. 

15. Find vector d


 such that 5, 11, 20d a d b d c       
     

, if  2; 1;3a  


, 

 1; 3;2b  


,  3;2; 4c  


. 

16. Find the vector c


, if it is perpendicular to the vector  8; 15;3a  


, 

perpendicular to the z axis , forms acute angle with x axis  and 51c 


. 

 6;3; 1a  
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17. Prove that the vectors  7;6; 6a  


 and  6;2;9b 


 can be regarded as cube 

edges, find the third edge. 

18. Vectors  8;4;1a 


,  2; 2;1b  


,  6;9;2c  


 are given. Find the unit vector

d


, such that d a
 

, d b
 

 and ordered triples of vectors , ,a b c
  

 and , ,a b d
  

 have the 

same orientation. 

19. Three vertexes of the trapeze  3; 2; 1A    ,  1;2;3B ,  9;6;4C are given. 

Find the fourth vertex. 

Individual Tasks 9 

1. Show that the given vectors are coplanar (noncoplanar). 

2. Find the volume and height of the parallelepiped with adjacent to edges PQ , 

PR , and PS . 

3. Prove that , ,p q r
  

 form the basis of 3R  and express vector a


 via the new basis. 

I.    
 

1.    1 25;7; 2 , 3;1;3 ,e e   
 

 

 3 1; 4;6e  


 

 
2. (1;0; 2) , (3; 1;0) ,P Q   

(2; 1;5), (0; 2;2)R S   

 

3.    5;4;1 , 3;5;2 ,p q  
 

 

   2;1; 3 , 7;23;4r a  
 

 

II.   
 

1.    1 21;4;3 , 3;2; 4 ,e e   
 

  3 2; 7;1e   


 

 
2.

 

(2;1;0) , ( 1;3;4) ,P Q 
 (0; 1;5), (2;0;0)R S  

 

3.    1; 3;1 , 2; 4;3 ,p q    
 

    0; 2;3 , 8; 10;13r a    
 

 

III.   
 

1.    1 22;3; 1 , 1; 1;3 ,e e   
 

 

 3 1;9; 11e  


 

 
2. (1;3;2), (5;2; 1),P Q   

(2;2;4), (5;5;6)R S  

 

3.    4;2;3 , 3;1; 8 ,p q   
 

 

   2; 4;5 , 12;14; 31r a    
 

 

IV.   
 

1.    1 22;1;3 , 3; 6;2 ,e e   
 

 

 3 5; 3; 1e    


 

 
2. (1;0; 2) , (3; 1;0) ,P Q   

(2; 1;5), (0; 2;2)R S   

 

3.    1;3;6 , 3;4; 5 ,p q   
 

 

   1; 7;2 , 8;47;65r a  
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2.2 Line, Parabola, Ellipse, Hyperbola 

2.2.1 Lines in the plane 

A line (i.e., a straight line) is a geometric object. When it is placed in a coordinate 

plane, the points (in the plane) through which the line passes, satisfy certain geometric 

conditions. For example, any two distinct points  and  2 2 2;M x y  on the line, 

determine it completely. 

Equations of a line 

1. General linear equation 

 Let  ;n Ai B j A B  
  

 be a nonzero vector and  0 0;x y  be a point in the OXY  

plane. There is a unique line passing through the point  0 0;x y  that is perpendicular to

 ;n A B


, as shown in Fig. 2.1. Vector  ;n A B


 is called a normal to the line. 

  

Figure 2.1 Figure 2.2 

Theorem 1 An equation of the line (in the OXY  plane) to the nonzero vector

 ;n A B


 is given by: 

0Ax By C    (1) 

where , ,A B C  are constants, with the condition that both A  and B  are not zero 

simultaneously  2 2 0A B  . 

2. Slope form of the equation of a line  

A line L  can be described by the following equation 

y kx b   (2) 

where k tg  is called the slope of the line;   - the angle of inclination (or simply 

inclination) of a line (the smallest positive angle between the line and the x axis); the 

line makes an intercept b  on the y axis (see Fig. 2.1). 

 1 1 1;M x y
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3. Point-slope form of the equation of a line  

A line L can be described by following equation 

 0 0y y k x x    (3) 

where the point  0 0 0;M x y  lies on the line. 

4. Two - point equation of a line 

A line L can be described by the following equation 

2 1

1 2 1 2

y y x x

y y x x

 


 
 (4) 

where points  1 1 1;M x y  and  2 2 2;M x y  are any two distinct fixed points on the line. 

5. Equation of a nonvertical line in the «intercept form» 

Let L  be any nonvertical line, which makes an intercept «a » on the x axis and an 

intercept «b » on the y axis ( 0, 0a b  ). Equation 

1
x y

a b
   (5) 

is called the «intercept form» of the equation of a line (see Fig 2.2). 

6. Equation of the line passing through the point  0 0 0;M x y  and perpendicular to

 ;n A B


 has the following form: 

   0 0 0A x x B y y     (6) 

7. Parametric equation of a line 

A line L can be described by the following equations 

0

0

,

.

x x mt

y y nt

 


 
 (7) 

These equations are called parametric equations of the line L through the point

 0 0 0;M x y  and parallel to the vector ( ; )s m n


. Each value of the parameter t R  gives 

a point on L . 

8. Symmetric equation of a line 

Another way of describing a line L is to eliminate the parameter t R  from 

Equations 7. If none of m  or n  is 0, we can solve each of these equations for t  , equate 

the results, and obtain 
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0 0x x y y

m n

 
  (8) 

These equations are called symmetric equations of L . Notice, that the numbers m  

and n  that appear in the denominators of Equations 8 are direction numbers of L , that 

is, components of a vector parallel to L .  

Relations between the lines 

Definition The angle from 1L  to 2L  is the angle   through which 1L  must be rotated 

counter clockwise about the point of intersection in order to coincide with 2L . 

The following results can be obtained, depending on whether the lines are given by 

the general linear equation or the slope form of the equation. 

 1 1 1 1: 0L A x B y C    

2 2 2 2: 0L A x B y C    
1 1 1:L y k x b   

2 2 2:L y k x b   

The angle from 1L  to 2L  
1 2 1 2

2 2 2 2
1 1 2 2

cos
A A B B

A B A B





 
 2 1

1 21

k k
tg

k k






 

Perpendicular lines ( 1 2L L ) 1 2 1 2 0A A B B   1 2 1

2

1
1k k or k

k
     

Parallel lines ( 1 2||L L ) 1 1 1

2 2 2

A B C

A B C
   

1 2k k  

Theorem 2 The distance from the point  1 1 1;P x y  to the line L  which equation is

0Ax By C    can be calculated by 

 (9) 

Exercise Set 10 

1. Find the equation of the line passing through  2;1  with the given slope, and sketch 

the line: 

a) 0k  ; b) 3k   ; c) 2 / 3k  . 

In Exercises 2 to 5 find the line through the given point and perpendicular to the 

given vector: 

  1 1

2 2
;

Ax By C
d P L

A B
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2.    2;3 , 4;5M n 


; 3.    1;0 , 2; 1M n  


; 

4. ; 5. . 

In Exercises 6 to 9 find a vector perpendicular to the given line: 

6. 2 3 8 0x y   ; 7. 2 7x y   ; 

8. 3 7y x  ; 9.    2 1 5 2 0x y    . 

10. Find the distance from the point  0;0M  to the line 3 4 10 0x y   . 

11. The line passes through the points  1;3A   and  4;5B . Find the parametric 

equation of a line. 

12. Find the equation of the line passing through the point  2;3A   and 

perpendicular to the line 2 3 8 0x y   . 

13. Find the equation of the line passing through the point  4; 3A   and forming 

the triangle with coordinate axes and its area is 3. 

14. Find the equation of the line passing through the point  0;0O  and forming the 

angle 45  with the line 2 5y x  . 

15. The point  2; 5A   is a vertex of a square, one side of this square lies on the 

line 2 7 0x y   . Find the area of the square. 

16. Find the smallest angle between the lines 3 4 2 0x y    and 8 6 5 0x y   . 

Prove that the point 
13

;1
14

A
 
 
 

 belongs to the bisector line of this angle.  

Let , ,A B C be the vertices of the triangle ABC . Find: a) the equation of the line

AB ; b)  the equation of the height CH ; c) the equation of the median AM ; d) the point of 

intersection of the lines CH and AM ; e) the equation of the line passing through the point

C  parallel to the line AB ; f) the distance from the point C  to the line AB ; g) the equation 

of the bisector of the inner angle ABC ; h) the centroid of the triangle ABC ; i) the area 

of the triangle ABC . 

17. (2;5), ( 3;1), (0;4)A B C  

18. ( 5;1), (8; 2), (1;4)A B C   

19. (1; 3), (0;7), ( 2;4)A B C   

20. (7;0), (1;4), ( 8; 4)A B C    

   4;5 , 2;3M n 


   2; 1 , 1;3M n 
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Additional Problems 

21. Let (3; 1)A   and (5;7)B be the vertices of the triangle ABC  and its heights 

intercept at the point (4; 1)N  . Find the equation of the lines passing through the vertices 

of the triangle. 

22. Find the equation of the bisector of the angle from
 1 : 3 5 0L x y   ; to

2 : 3 2 0L x y    

23. The sides of the triangle ABC : : 2 3 6 0AB x y   , : 2 5 0AC x y    and 

the angle
4

ABC


   are given. Find the equation of the height from the vertex A  to the 

side BC . 

24. Find the equation of the bisector of that angle between the lines 7 1 0x y    and 

7 0x y    to which the point  1;1A  belongs. 

25. Find the equations of the triangle sides if  4;2A   is one of its vertices and the lines

3 2 2 0x y   , 3 5 12 0x y    are its medians. 

26. The equations of the parallelogram diagonals 2 0x y  , 1 0x y    and the 

point of its intersection  3; 1M   are given. Find the equations of the parallelogram sides.  

27. Let 3 8 0x y    be the equation of the rhombus side and 2 4 0x y    be 

the equation of its diagonal. Find the equations of the rhombus sides, if the point

 9; 1M    lies at the side parallel to the given. 

28. Find the coordinates of the point Q  symmetrical to the point  1; 9P 
 with 

respect to the line 4 3 7 0x y   .   

Individual Tasks 10 

1. Let , ,A B C be the vertices of the triangle ABC . Find: a) the equation of the 

line AB ; b)  the equation of the height CH ; c) the equation of the median AM ; d) the point 

of intersection of the lines CH and AM ; e) the equation of the line passing through the point

C  parallel to the line AB ; f) the distance from the point C  to the line AB ; g) the equation 

of the bisector of the inner angle ABC ; h) the centroid of the triangle ABC ; i) the area 

of the triangle ABC . 

2. Find the coordinates of the point Q  symmetrical to the point  1 1 1;P x y
 with 

respect to the line . 

I.    

1. ( 1;7), (3; 1), (1;6)A B C   

II.   

1. (3;9), ( 3; 1), ( 2;4)A B C    

0Ax By C  
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2.  3; 1P  , 8 6 5 0x y    2.  2; 3P  , 5 12 3 0x y    

III.   

1. ( 2;4), (3;1), (10;7)A B C  

2.  3; 1P  , 2 6 1 0x y    

IV.   

1. ( 3; 2), (14;4), (6;8)A B C   

2.  1; 3P   , 5 2 3 0x y    

2.2.2 Parabolas 

Definition A parabola is the set of points in the plane that are equidistant from a 

fixed line (the directrix) and a fixed point (the focus) which are not on the directrix. 

The line that passes through the focus and is perpendicular to the directrix is called 

the axis of symmetry of the parabola. The midpoint of the line segment between the focus 

and the directrix on the axis of symmetry is the vertex of the parabola (see Figure 2.3). 

Using the definition of parabola, we can determine the equation of a parabola. 

Suppose that the coordinates of the vertex of a parabola are  0;0  and the axis of 

symmetry is the x -axis. The equation of the directrix is / 2, 0x p p   . The focus lies 

on the axis of symmetry and is the same distance from the vertex as the vertex is from the 

directrix. Thus the coordinates of the focus are  / 2;0p . 

 

 

 

Figure 2.3 Figure 2.4 Figure 2.5 

Let  be any point on the parabola. Then, using the distance formula and the 

fact, that the distance between any point on the parabola and the focus is equal to the 

distance from the point M  to the directrix, we can write the equation

   , ,d M F d M N (see Figure 2.4). 

By the distance formula, . 

Now squaring each side and simplifying, 

 

(1) 

This is an equation of a parabola with a vertex at the origin and a horizontal axis 

 ;M x y

 
2

2
0

2 2

p p
x y x

 
     

 

2 2y px
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of symmetry. The equation of a parabola with a vertical axis of symmetry is derived in a 

similar manner (see Figure 2.5). 

Standard Form of the Equation of a Parabola with a Vertex at  ;a b  

1. Vertical Axis of Symmetry. The standard form of the equation of a parabola with 

a vertex  ;a b  and a vertical axis of symmetry is    
2

2x a p y b   . The focus is

;
2

p
a b

 
 

 
, and the equation of the directrix is / 2y b p  . 

2. Horizontal Axis of Symmetry. The standard form of the equation of a parabola 

with a vertex  ;a b  and a horizontal axis of symmetry is    
2

2y b p x a   . The focus 

is ;
2

p
a b

 
 

 
, and the equation of the directrix is / 2x a p  . 

Example 1 Find the equation of the directrix and the coordinates of the vertex and 

focus of the parabola given by the equation 23 2 8 4 0x y y    . 

Solution Rewrite the equation and then complete the square. 

 

2

2

2

3 2 8 4 0

2 8 3 4

2 4 3 4

x y y

y y x

y y x

   

   

   

 

 

 
   

2

2

2 4 4 3 4 8

2 2 3 4

y y x

y x

     

   
 

Complete the square. Note, that 8 is 

added to each side. 

             
2 3

2 4
2

y x     
Write the equation in a standard form. 

Comparing this equation to    
2

2y b p x a   , we have a parabola that opens to 

the left with the vertex  4; 2  and 2 3 / 2p   . Thus, 3 / 4p   . The coordinates of the 

focus are
3 13

4 ; 2 ; 2
4 4

     
       
    

. The equation of the directrix is
3 19

4 .
4 4

x
 

   
 

 

Choosing some values for y  and finding the corresponding values for x , we plot a 

few points. We use the fact that the line 2y    is the axis of symmetry. Thus, for a point 

on one side of the axis of symmetry, there is a corresponding point on the other side. Two 

points are  2;1  and .  2; 5 
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Exercise Set 11 

In Exercises 1 to 20, find the vertex, the focus and the directrix of the parabola given 

by each equation. Sketch the graph. 

1. 2 4x y   2. 22y x  

3.    
2

2 8 3x y    4.    
2

1 6 1y x    

5.    
2

4 4 2y x     6.    
2

3 2x y     

7.  
2

1 2 8y x    8.  
2

2 3 6x y    

9.  
2

2 4 8 16x y    10. 2 8 6 0x x y     

11.  
2

3 6 18 36x y    12. 2 6 10 0x x y     

13. 22 6 1 0x y y     14. 23 8 4 0x y y     

15. 22 8 4 3 0x x y     16. 26 3 12 4 0x y y     

17. 22 4 8 5 0x y y     18. 24 12 12 7 0x x y     

19. 23 6 9 4 0x x y     20. 26 3 9 5 0x y y     

In Exercises 21 to 26 find an equation for the parabola that satisfies the given 

condition(s): 

21. With the vertex at the origin and the focus  0; 4 . 

22. With the vertex at the origin and the focus  5;0 . 

23. With the vertex at  1;2  and the focus  1;3 . 

24. With the vertex at  2; 3  and the focus  0; 3 . 

25. With the vertex  4;1 , the axis of symmetry parallel to the y-axis, and passing 

through the point  2;2 . 

26. With the vertex  3; 5 , the axis of symmetry parallel to the x-axis, and passing 

through the point  4;3 . 

In Exercises 27 to 29, use the following definition of latus rectum: the line segment 

with endpoints on the parabola, through the focus of a parabola and perpendicular to the 

axis of symmetry is called the latus rectum of the parabola. 

27. Find the length of the latus rectum for the parabola 2 4x y . 

28. Find the length of the latus rectum for the parabola 2 8y x  . 

29. Find the length of the latus rectum for any parabola in terms of p , the distance 
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from the vertex of the parabola to the focus. 

30. Show that the point on the parabola closest to the focus is the vertex. (Hint: 

Consider the parabola 2 2x py  and a point on the parabola  ;a b . Find the square of the 

distance between the point  ;a b  and the focus. You may want to review the technique of 

minimizing a quadratic expression.) 

31. By using the definition for a parabola, find the equation in standard form of the 

parabola with  0;0V ,  ;0F c  and the directrix x c . 

32.  Sketch a graph of    4 2 1y x x   . 

Individual Tasks 11 

1. Find the vertex, the focus, and the directrix of the parabola given by each equation. 

Sketch the graph. 

2. Identify the graph of the equation as a parabola. Sketch the graph. 

3. Find an equation for the parabola that satisfies the given condition(s). 

I.    

1. 2 3 4 0x y y     

2. 5 3 21y x      

3. With the focus  3; 3  and the directrix

5y   .  

 

4.  
22 1 4x y    

5. 23 4 8 2 0x y y     

6. 2 24 9 8 12 144 0x y x y      

7. 2 2 6 8 25 0x y x y      

II.   

1.

 

2 4 9 0x y y     

2. 4 3 5x y     

3. With the vertex  3; 5 , the axis of 

symmetry parallel to the x-axis, and 
passing through the point  4;3 . 

4.  
224 1 16x y    

5. 23 2 4 7 0x y y     

6. 2 24 6 8 3 0x y x y      

7. 2 2 6 8 7 0x y x y      

III.   

1. 2 3 3 1 0x x y     
2. 3 2x y     

3. With the vertex  4;1 , the axis of 

symmetry parallel to the y-axis, and 
passing through the point  2;2 . 

4. 2 16( 3)y x   

IV.   

1. 2 5 4 1 0x x y     
2. 1 2 1y x     

3. With the focus  2;4  and the directrix

4x  . 

4.  
224 1 16x y    
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5. 2 29 4 36 8 4 0x y x y      

6. 2 211 25 44 50 256 0x y x y      

7. 2 2 6 8 29 0x y x y      

5. 2 23 4 12 24 36 0x y x y      

6. 24 28 32 81 0x x y     

7. 2 2 4 8 20 0x y x y      

2.2.3 Ellipses 

Definition An ellipse is a set of all points in the plane, and the sum of its distances 

from two fixed points (foci) is a positive constant (see Figure 2.6). 

This definition can be used to draw an ellipse using a piece of string and two. Tack 

the ends of the string to the foci, and trace a curve with a pencil held tight against the 

string. The resulting curve is an ellipse. The positive constant is the length of the string. 

Ellipse with the center at  0;0  

The graph of an ellipse is oval-shaped, with two axes of symmetry. The longer axis 

is called the major axis. The foci of the ellipse are on the major axis. The shorter axis is 

called the minor axis. It is customary to denote the length of the major axis as  and the 

length of the minor axis as . The length of the semiaxes is one-half the axes. Thus the 

length of the semi major axis is denoted by  and the length of the semi minor axis by

. The center of the ellipse is the midpoint of the major axis. The endpoints of the major 

axis are the vertices (plural of vertex) of the ellipse. 

 

 

 

Figure 2.6 Figure 2.7 Figure 2.8 

 

 
(1) 

The Equation 1is called the equation of the ellipse in the standard form. 

Standard forms of the equation of an ellipse with the center at the origin 

1. Major Axis on the x-axis. The standard form of the equation of an ellipse with 

the center at the origin and the major axis on the x-axis is given by 

2a

2b

a b

2 2

2 2
1

x y

a b
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. 

The coordinates of the vertices are  and , and the coordinates of the foci 

are  and , where  (see Figure 2.7). 

2. Major Axis on the y-axis. The standard form of the equation of an ellipse with 

the center at the origin and the major axis on the y-axis is given by 

. 

The coordinates of the vertices are  and , and the coordinates of the foci 

are  and , where (see Figure 2.8). 

Standard form of the equation of an ellipse with the center at  

1. Major Axis Parallel to the -axis. The standard form of the equation of an ellipse 

with the center at  and the major axis parallel to the x-axis is given by 

. 

2. Major Axis Parallel to the y-axis.The standard form of the equation of an ellipse 

with the center at  and the major axis parallel to the y-axis is given by 

. 

Eccentricity of an Ellipse 

The graph of an ellipse can be very long and thin, or it can be much like a circle. The 

eccentricity of an ellipse is a measure of its « roundness». 

Definition The eccentricity  of an ellipse is the ratio of  to , where  is the 

distance from the center to the focus and  is the length of the semi major axis.  

 (3) 

Because , for an ellipse, . If , then  and the graph will be 

almost like a circle. 

If  then  and the graph will be long and thin. In Figure 2.9 we show a 

number of ellipses to demonstrate the effect of varying the eccentricity . 

2 2

2 2
1 ,

x y
a b

a b
  

 ;0a  ;0a

 ;0c  ;0c 2 2 2c a b 

2 2

2 2
1,

x y
a b

b a
  

 0;a  0; a

 0;c  0; c 2 2 2c a b 

 0 0;x y

x

 0 0;x y

   
2 2

0 0

2 2
1 ,

x x y y
a b

a b

 
  

 0 0;x y

   
2 2

0 0

2 2
1 ,

x x y y
a b

b a

 
  

e c a c

a

c
e

a


c a 0 1e  0c  0e 

,c a 1e 

e
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Figure 2.9 

Recall that a parabola has a directrix that is a line perpendicular to the axis of 

symmetry. An ellipse has two directrixes, both of which are perpendicular to the major 

axis and outside the ellipse. For an ellipse with the center at the origin and which major 

axis is the -axis, the equations of the directrixes are . 

Exercise Set 12 

In Exercises 1 to 16, find the vertices and foci of the ellipse given by each equation. 

Sketch the graph. 

1.  2.  

3.  4.  

5.  6.  

7.  8.  

9.  10.  

11.  12.  

13.  14.  

15.  16.  

In Exercises 17 to 26, find the equation in the standard form of each ellipse, given 

the information provided.  

17. The center , the major axis of length 10, foci at  and . 

18. The center , the minor axis of length 6, foci at  and . 

19. Vertices , ; the ellipse passes through  and . 

20. Vertices , , the ellipse passes through  and . 

21. The major axis of length 12 on the -axis, the center at , and passing 

through . 

x 2 /x a c 

2 2

1
16 25

x y
 

2 2

1
49 36

x y
 

2 2

1
9 4

x y
 

2 2

1
64 25

x y
 

2 23 4 12x y  2 25 4 20x y 
2 225 16 400x y  2 225 12 300x y 
2 264 25 400x y  2 29 64 144x y 

2 25 9 20 54 56 0x y x y     2 29 16 36 16 104 0x y x y    
2 216 9 64 80 0x y x    2 216 9 36 108 0x y y   
2 225 16 50 32 359 0x y x y     2 216 9 64 54 1 0x y x y    

 0;0  4;0  4;0

 0;0  0;4  0; 4

 6;0  6;0  0;4  0; 4

 5;0  5;0  0;7  0; 7

x  0;0

 2; 3
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22. The minor axis of length 8, the center at , and passing through . 

23. The center , vertices  and , foci  and . 

24. The center , the minor axis of length 4, foci  and . 

25. The center , the major axis parallel to the -axis and of length 10, the 

ellipse passes through the point . 

26. The center , the minor axis parallel to the -axis of length 8 and the 

ellipse passes through the point . 

In Exercises 27 to 34, use the eccentricity of the ellipse to find the equation in the 

standard form of each of the following ellipse. 

27. Eccentricity 2/5, the major axis on the -axis of length 10, and the center at

. 

28. Eccentricity 3/4, foci at . 

29. Eccentricity 2/5, foci and . 

30. Eccentricity 1/4, foci  and . 

31. Eccentricity 2/3, the major axis of length 24 on the -axis, the center at . 

32. Eccentricity 3/5, the major axis of length 15 on the -axis, the center at . 

33. Explain why the graph of the equation  is or is not 

an ellipse. 

34. Explain why the graph of the equation  is or is not an 

ellipse. Sketch the graph of this equation. 

In Exercises 35 and 37 find the latus rectum of the given ellipse. The line segment 

with endpoints on the ellipse that is perpendicular to the major axis and passes through 

the focus is the latus rectum of the ellipse. 

35. Find the length of the latus rectum of the ellipse given by

. 

36. Find the length of the latus rectum of the ellipse given by

. 

37. Show that for any ellipse, the length of the latus rectum is . 

38. Let  be a point on the ellipse . Show that the distance from 

 0;0  2;2

 2;4  6;4  2;4  5;4  1;4

 0;3  0;0  0;6

 2;4 y

 3;3

 4;1 y

 0;4

x

 0;0

 9;0

 1;3  3;3

 2;4  2; 2 

y  0;0

x  0;0

2 24 9 8 36 76 0x y x y    

24 9 16 2 0x y x   

   
2 2

1 1
1

9 16

x y 
 

2 29 16 36 96 36 0x y x y    
22 /b a

 ;P x y
2 2

1
12 8

x y
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the point  to the focus  divided by the distance from the point  to the directrix

 equals the eccentricity. 

39. Let  be a point on the ellipse . Show that the distance from 

the point  to the focus  divided by the distance from the point to the directrix

 equals the eccentricity. 

Individual Tasks 12 

1. Find the vertex, the focus, and the directrix of the ellipse given by each equation. 

Sketch the graph. 

2. Identify the graph of equation as an ellipse. Sketch the graph. 

3. Find an equation for the ellipse that satisfies the given condition(s). 

I.    

1.  

2.  

3. Foci at  and , 

 eccentricity 2/3. 

II.   

1.

 

 

2.  

3.

 

Vertices at  and , 

 foci at  and . 

III.   

1. 2 24 24 8 48 0x y x y      

2. 22 6 4 2y x x      

3. Vertices at  5;6  and  5; 4 , foci 

at  5;4  and  5; 2 . 

IV.   

1. 2 24 9 24 18 44 0x y x y      

2. 23 2 3 6x y y     

3. Foci at  0; 3  and  0;3 , 

eccentricity 1/ 4. 

2.2.4 Hyperbolas 

Definition A hyperbola is a set of all points in the plane, the difference of its 

distances from two fixed points (foci) is a positive constant (see Figure 2.10). 

Hyperbolas with the center at  

The transverse axis is the line segment joining the intercepts through the foci of a 

hyperbola. The midpoint of the transverse axis is called the center of the hyperbola. The 

conjugate axis passes through the center of the hyperbola and is perpendicular to the transverse 

axis. The hyperbola consists of two parts called its branches. 

The length of the transverse axis is customarily denoted by , and the distance 

P  2;0 P

6x 

 ;P x y
2 2

1
25 16

x y
 

P  3;0

25 / 3x 

2 28 25 48 50 47 0x y x y    

24
1 6

3
y x x   

 0; 4  0;4

2 29 6 36 36 0x y x y    

22 5 6x y y     

 7; 1   5; 1

 5; 1   3; 1

 0;0

2a
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between the two foci is denoted by . The length of the conjugate axis is denoted by

. 

The vertices of a hyperbola are the points where the hyperbola intersects the 

transverse axis. 

 

 

Figure 2.10 Figure 2.11 

 

Standard forms of the equation of a hyperbola with the center at the origin 

1. Transverse axis on the x-axis. The standard form of the equation of a hyperbola 

with the center at the origin and the transverse axis on the -axis is given by 

 
(1) 

The coordinates of the vertices are  and , the coordinates of the foci are

 and , where (see Figure 2.11). 

2. Transverse axis on the y-axis. The standard form of the equation of a hyperbola 

with the center at the origin and the transverse axis on the -axis is given by 

 
(2) 

The coordinates of the vertices are  and , the coordinates of the foci are

 and , where . 

Remark By looking at the equations, note that it is possible to determine the transverse 

axis by finding which term in the equation is positive. If the  term is positive, then the 

transverse axis is on the -axis. When the  term is positive, the transverse axis is on the

-axis. 

The asymptotes of the hyperbola are a useful guide to sketching the graph of the 

hyperbola. Each hyperbola has two asymptotes that pass through the center of the 

2c

2b

x

2 2

2 2
1

x y

a b
 

 ;0a  ;0a

 ;0c  ;0c 2 2 2c a b 

y

2 2

2 2
1

y x

a b
 

 0;a  0; a

 0;c  0; c 2 2 2c a b 

2x

x 2y

y
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hyperbola. 

Asymptotes of a Hyperbola with the Center at the Origin 

The asymptotes of the hyperbola  are given by the equations . 

The asymptotes of the hyperbola  are given by the equations . 

Remark One method for remembering the equations of the asymptotes is to write 

the equation of a hyperbola in the standard form but replace 1 by 0 and then solve for

. 

  or   

 

 or  

To sketch the graph, we draw a rectangle with its center at the origin that has 

dimensions equal to the lengths of the transverse and conjugate axes. The asymptotes are 

extensions of the diagonals of the rectangle (see Figure 2.12). 

 

Figure 2.12 

Standard form of hyperbolas with the center at  

1. Transverse Axis Parallel to the x-axis. The standard form of the equation of a 

hyperbola with the center  and the transverse axis parallel to -axis is given by 

. 

2. Transverse Axis Parallel to the y-axis. The standard form of the equation of a 

hyperbola with the center  and The center transverse axis parallel to the -axis is 

2 2

2 2
1

x y

a b
 

b
y x

a
 

2 2

2 2
1

y x

a b
 

a
y x

b
 

y

2 2

2 2
0

x y

a b
 

2
2 2

2

b
y x

a


b
y x

a
 

2 2

2 2
0

y x

a b
 

2
2 2

2

a
y x

b


a
y x

b
 

 0 0;x y

 0 0;x y x

   
2 2

0 0

2 2
1

x x y y

a b

 
 

 0 0;x y y
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given by 

. 

Example 1 Find the vertices, foci, and asymptotes of the hyperbola given by the 

equation .  

Solution Write the equation of the hyperbola in the standard form by completing the 

square. 

 

 

 Rearrange terms 

 Factor 

 Complete the square 

 

Factor 

 

Divide by  

The coordinates of the center are (2; 3). Because the term containing  is 

positive, the transverse axis is parallel to the -axis. We know  thus . The 

vertices are (2; 5) and (2; 1). . The foci are  and

. We know , thus . The equations of the asymptotes are 

 and . 

Eccentricity of a hyperbola 

The graph of a hyperbola can be very wide or very narrow. The eccentricity of a 

hyperbola is a measure of its “wideness”. 

Definition The eccentricity  of a hyperbola is the ratio of  to , where  is the 

distance from the center to a focus and  is the length of the semi-transverse axis

. 

For a hyperbola,  and therefore . As the eccentricity of the hyperbola 

increases, the graph becomes wider and wider. 

A hyperbola has two directrixes that are perpendicular to the transverse axis and 

outside the hyperbola. For a hyperbola with the center at the origin and the transverse axis 

on the -axis, the equations of the directrixes are . 

   
2 2

0 0

2 2
1

y y x x

a b

 
 

2 24 9 16 54 29 0x y x y    

2 24 9 16 54 29 0x y x y    
2 24 16 9 54 29x x y y   

 2 24( 4 ) 9 6 29x x y y   

   2 24 4 4 9 6 9 29 16 81x x y y       

   
2 2

4 2 9 3 36x y    

   
2 2

3 2
1

4 9

y x 
  36

 
2

3y 

y 2 4;a  2a 

2 2 2 4 9c a b    13c   2;3 13

 2;3 13 2 9b  3b 

2 5

3 3
y x 

2 13

3 3
y x  

e c a c

a /e c a

c a 1e 

x
2 /x a c 
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Exercise Set 13 

In Exercises 1 to 20, find the center, vertices, foci, and asymptotes for the hyperbola 

given by each equation. Sketch the graph. 

1.  2.  

3.  4.  

5.  6.  

7.  8.  

9.  10.  

11.  12.  

13.  14.  

15.  16.  

17.  18.  

19.  20.  

In Exercises 21 to 32, find the equation in the standard form of the hyperbola 

satisfying the stated conditions. 

21. Vertices at  and , foci at and . 

22. Vertices at  and  foci at and . 

23. Foci at  and  asymptotes . 

24. Foci at  and , asymptotes . 

25. Vertices at  and , passing through . 

26. Vertices at  and , passing through . 

27. Vertices at  and , foci at  and . 

28. Vertices at  and , foci at  and . 

29. Foci at  and , slope of an asymptote . 

30. Foci at  and , slope of an asymptote 1. 

31. Passing through , slope of an asymptote , center at , transverse 

axis parallel to the -axis.  

2 2

1
16 25

x y
 

2 2

1
16 9

x y
 

2 2

1
4 25

y x
 

2 2

1
25 36

y x
 

   
2 2

3 4
1

16 9

x y 
 

 
2 23

1
35 4

x y
 

   
2 2

2 1
1

4 16

y x 
 

   
2 2

2 1
1

36 49

y x 
 

2 2 9x y  2 24 16x y 
2 216 9 144y x  2 29 25 225y x 

2 29 36 4y x  2 216 25 9x y 
2 2 6 8 3 0x y x y     2 24 25 16 50 109 0x y x y    

2 24 32 6 39 0x y x y     2 216 8 64 16 0x y x y    
2 24 9 8 18 6 0x y x y     2 22 9 8 36 46 0x y x y    

 3;0  3;0  4;0  4;0

 0;2  0; 2  0;3  0; 3

 0;5  0; 5 2y x

 4;0  4;0 y x

 0;3  0; 3  2;4

 5;0  5;0  1;3

 6;3  2;3  7;3  1;3

 1;5  1; 1   1;7  1; 3 

 1; 2  7; 2 5 / 4

 3; 6   3; 2 

 9;4 1/ 2  7;2

y
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32. Passing through , slope of an asymptote 2, center at , transverse axis 

parallel to the -axis. 

In Exercises 33 to 36, use the eccentricity to find the equation in the standard form 

of a hyperbola. 

33. Vertices at  and , eccentricity 2. 

34. Vertices at  and , eccentricity . 

35. The center at , conjugate axis length 4, eccentricity . 

36. The center at , conjugate axis length 6, eccentricity 2. 

In Exercises 37 to 56 identify the graph of each equation as a parabola, ellipse, or 

hyperbola. Sketch the graph. 

37.  38.  

39.  40.  

41.  42.  

43.  44.  

45.  46.  

47.  48.  

49. . 50.  . 

51.  . 52.  . 

53.  . 54. . 

55. . 56. . 

57. Let  be a point on the hyperbola . Show that the distance from 

the point  to the focus  divided by the distance from the point  to the directrix

 equals the eccentricity. 

 6;1  3;3

x

 1;6  1;8

 2;3  2;3 5 / 2

 4;1 4 / 3

 3; 3 

4 3 5x y    23
7 6 13

2
y x x   

23
5 4 12

4
x y y    5 3 21y x    

24
1 6

3
y x x   

22 5 6x y y     

22
7 6 16

5
y x x      22

5 8 2
3

x y y    

3 4 1y x   2 6 2x y  

5x y   22
25

5
y x 

2 24 9 16 36 16 0x y x y     22 3 8 2 0x y x   

25 4 24 11 0x y y    2 29 25 18 50 0x y x y   

2 2 8 0x y x   2 29 16 36 64 44 0x y x y    

2 225 9 50 72 56 0x y x y          
2 2 2

3 4 1x y x    

 ;P x y
2 2

1
9 16

x y
 

P  5;0 P

9 / 5x 
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58. Let  be a point on the hyperbola . Show that the distance from 

the point  to the focus  divided by the distance from the point to the directrix

 equals the eccentricity. 

Individual Tasks 13 

1. Find the vertex, the focus, and the directrix of the hyperbola given by each 

equation. Sketch the graph. 

2. Identify the graph of equation as a hyperbola. Sketch the graph. 

3. Find an equation for the hyperbola that satisfies the given condition(s). 

4-7. Determine the type of the curve. Sketch the graph. 

I.    

1. 
2 29 4 36 8 68 0x y x y      

2. 22
1 4 5

3
y x x      

3. Eccentricity 2, foci at 4;0  and

 4;0 . 

II.   

1.

 

 
2 22 9 12 18 18 0x y x y      

2. 29 2 4 8x y y     

3.

 

Asymptotes
2

3
y x  , vertices 

at  6;0  and  6;0 . 

III.   

1. 
2 29 16 36 64 116 0x y x y      

2. 22
2 6 10

3
y x x     

3. Asymptotes
1

2
y x  , vertices 

at  0;4  and  0; 4 . 

IV.   

1. 
2 216 9 32 54 79 0x y x y      

2. 23 2 6 10x y y      

3. Eccentricity 4 / 3, foci at 0;6  and

 0; 6 . 

2.2.5 Parametric Equations and Polar Coordinates 

So far we have described plane curves by giving  as a function of   or

 as a function of  or by giving a relation between  and  that define  implicitly as 

a function of  . In this chapter we discuss two new methods for describing 

curves. 

Some curves, such as the cycloid, are best handled when both  and  are given in 

terms of a third variable  called a parameter . Other curves, such as 

the cardioid, have their most convenient description when we use a new coordinate 

system, called the polar coordinate system. 

 ;P x y
2 2

1
7 9

x y
 

P  4;0

7 / 4x 

y x  ( )y f x

x y x y y

x  ( , ) 0f x y 

x y

t  ( ), ( )x f t y g t 
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Curves defined by parametric equations 

Imagine that a particle moves along the curve  shown in Figure 2.13. It is 

impossible to describe  by an equation of the form  because  fails the Vertical 

Line Test. But the - and -coordinates of the particle are functions of time and so we 

can write  and . Such a pair of equations is often a convenient way of 

describing a curve and gives rise to the following definition. 

 

 

 

Figure 2.13 Figure 2.14 Figure 2.15 

Suppose that and  are both given as functions of a third variable  (called a 

parameter) by the equations  

( ), ( )x f t y g t   (1) 

 (called  parametric equations). Each value of  determines a point , which we can 

plot in a coordinate plane. As  varies, the point   varies and traces 

out a curve  , which we call a parametric curve. The parameter  does not necessarily 

represent time and, in fact, we could use a letter other than  for the parameter. But in 

many applications of parametric curves,  does denote time and therefore we can interpret

 as the position of a particle at time . 

Example 1 Sketch and identify the curve defined by the parametric equations 
2 2 , 1x t t y t     

Solution Each values of  gives a point on the curve, as shown in the table. For 

instance, if , then , and so the corresponding point is . In Figure 

2.14 we plot the points  determined by several values of the   parameter and we join 

them to produce a curve. 

 
-2 -1 0 1 2 3 4 

 
8 3 0 -1 0 3 8 

 -1 0 1 2 3 4 5 

C

C ( )y f x C

x y

( )x f t ( )y g t

x y t

t ( ; )x y

t  ( ; ) ( ); ( )x y f t g t

C t

t

t

 ( ; ) ( ); ( )x y f t g t t

t

0t  0, 1x y  (0;1)

( ; )x y

t

x
y
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A particle which position is given by the parametric equations moves along the curve 

in the direction of the arrows as  increases. Notice that the consecutive points marked 

on the curve appear at equal time intervals but not at equal distances. That is because the 

particle slows down and then speeds up as  increases. 

It appears from Figure 2 that the curve traced out by the particle may be a parabola. 

This can be confirmed by eliminating the parameter  as follows. We obtain

from the second equation and substitute it into the first equation. This gives  

 

and so the curve represented by the given parametric equations is the parabola

. 

No restriction was placed on the parameter  in Example 1, so we assumed that  

could be any real number. But sometimes we restrict  to lie in a finite interval. For 

instance, the parametric curve 
2 2 , 1, 0 4x t t y t t       

shown in Figure 2.15 is the part of the parabola in Example 1 that starts at the point  

and ends at the point  . The arrowhead indicates the direction in which the curve is 

traced as  increases from 0 to 4.  

In general, the curve with parametric equations  

( ), ( ) ,x f t y g t a t b     

has the initial point  and the terminal point . 

 

 

Figure 2.16 Figure 2.17 

The curve traced out by a point  on the circumference of a circle as the circle rolls 

along a straight line is called a cycloid (see Figure 2.16). If the circle has a radius  and 

rolls along the -axis and if one position of  is the origin, parametric equations for the 

cycloid are 

   sin , 1 cosx r t t y r t     (2) 

The curve defined by the parametric equations 

t

t

t 1t y 

   22 22 1 2 1 4 3x t t y y y y        

2 4 3x y y  

t t

t

(0;1)

(8;5)

t

 ( ); ( )f a g a  ( ); ( )f b g b
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3 3cos , sinx a t y a t   (3) 

is called a hypocycloid of four cusps, or an asteroid  (See Figure 2.17).  

Polar coordinates 

A coordinate system represents a point in the plane by an ordered pair of numbers 

called coordinates. Usually we use Cartesian coordinates, which are directed distances 

from two perpendicular axes. Here we describe a coordinate system introduced by 

Newton, called the polar coordinate system, which is more convenient for many 

purposes. 

We choose a point in the plane that is called the pole (or origin) and is labeled as

. Then we draw a ray (half-line) starting at called the polar axis. This axis is usually 

drawn horizontally to the right and corresponds to the positive -axis in Cartesian 

coordinates. 

 

 

Figure 2.18 Figure 2.19 

If  is any other point in the plane, let  be the distance from  to  and let  be 

the angle (usually measured in radians) between the polar axis and the line  as in 

Figure 2.18. Then the point is represented by the ordered pair  and numbers ,  

are called polar coordinates of . We use the convention that an angle is positive if 

measured in the counterclockwise direction from the polar axis and negative in the 

clockwise direction. If  , then  and we agree that  represents the pole 

for any value of  .  

We extend the meaning of polar coordinates  to the case in which  is negative 

by agreeing that, as in Figure 2.19, the points  and  lie on the same line 

through  and at the same distance  from , but on opposite sides of . If  , the 

point  lies in the same quadrant as  ; if , it lies in the quadrant on the opposite 

side of the pole. Notice that point  represents the same point as . 

The connection between polar and Cartesian coordinates can be seen from Figure 

2.20, in which the pole corresponds to the origin and the polar axis coincides with the 

O

O

x

P r O P 

OP

P ( ; )r  r 

P

P O 0r  (0; )



( ; )r  r

( ; )r  ( ; )r 

O r O O 0r 

( ; )r   0r 

( ; )r  ( ; )r  
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positive -axis. If the point has Cartesian coordinates  and polar coordinates

 , then, from the figure, we have 

 (4) 

Although Equations 4 were deduced from Figure 2.20, which illustrates the case 

where  and  , these equations are valid for all values of  and . 

 

 
 

Figure 2.20 Figure 2.21 Figure 2.22 

Equations 4 allow us to find the Cartesian coordinates of a point when the polar 

coordinates are known. To find  and  when  and are known, we use the equations 

 (5) 

The graph of a polar equation  or more generally  , consists 

of all points  that have at least one polar representation whose coordinates satisfy 

the equation. 

Example 2 (a) Sketch the curve with the polar equation  . 

(b) Find a Cartesian equation for this curve. 

Solution  

(a) In Figure 2.22 we find the values of  for some convenient values of  and plot 

the corresponding points . Then we join these points to sketch the curve, which 

appears to be a circle. We have used only the values of  between 0 and , since if we 

let  increase beyond , we obtain the same points again. 
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2   1 0 -1 -  -  -2 

 

x P ( ; )x y

( ; )r 
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sin .

x r

y r










0r  0 / 2   r 

r  x y
2 2 2 ,

/ .
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tg y x
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(b) To convert the given equation to a Cartesian equation we use Equations 4 and 

Equations 5. From  we have , so the equation  

becomes  , which gives 

 

Completing the square, we obtain  

 

which is an equation of a circle with center  and radius 1. 

Note The curve  or  is called cardioid, because it’s 

shaped like a heart (See Figure 2.23   ). 

The curve  is called the n-leaved rose (See Figure 2.24  

 ). 

 

 

Figure 2.23 Figure 2.24 

Exercise Set 14 

In Exercises 1 to 4 plot the point whose polar coordinates are given. Find the 

Cartesian coordinates of the point. 

1.  2.  3.  4.  

In Exercises 5 to 12 sketch the curve with the given polar equation. Identify the curve 

by finding a Cartesian equation for the curve.  

5.  6.  7.  8.  

9.  10.  11.  12.  

In Exercises 13 to 15 sketch the curve  

cosx r  cos /x r  2cosr 

2 /r x r

2 2 2 2 22 2 0x r x y x x y      

 2 21 1x y  

(1;0)

 1 cosr a    1 sinr a  

1 sinr  

sin ,r a n n N 

cos 2r a 

1 2;
6

M
 

 
 

2

3
1;

4
M

 
 
 

3

5
3;

4
M

 
 
 

4

5
2;

6
M

 
 
 

5r  3


  r a cos3r a 

cos 2r  
2 2 cos 2r a 
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1 cos
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13. 
 

 14. 
 

 15.  

Individual Tasks 14 

1. Plot the point whose polar coordinates are given. Find the Cartesian coordinates 

of the point. 

2-3. Sketch the curve with the given polar equation. Identify the curve by finding a 

Cartesian equation for the curve. 

I.    

1.       2.  

3.  

II.   

1.

 
    

2.  

3.  

III.   

1. 
    

2.  

3.  

IV.   

1.       2.  

3.  

2.3 Planes, Lines in Space, Cylinders and Quadric Surfaces 

2.3.1 Planes 

Although a line in space is determined by a point and a direction, a plane in space is 

more difficult to describe. A single vector parallel to a plane is not enough to convey the 

“direction” of the plane, but a vector perpendicular to the plane does completely specify 

its direction. Thus a plane in space is determined by a point  in the plane and 

a vector that is orthogonal to the plane. This orthogonal vector  is called a 

normal vector. 

Equations of a plane 

1. Vector equation of the plane 

Let be an arbitrary point in the plane, and let  and  be the position 

vectors of and . Then the vector is represented by  (see Figure 3.1). The 

normal vector  is orthogonal to every vector in the given plane and so we have 

 

(1) 

Equation 1 is called the vector equation of the plane. 

 
32 2 2 24x y x y   

22 2 2x y y   
3

2 2 2 2 23x y x y  

1 3;
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Figure 3.1 Figure 3.2 

2. Equation of the Plane Passing through the Point  and 

Perpendicular to .  

To obtain a scalar equation for the plane, we write , , and

. Then the vector equation (1) becomes 

 

(2) 

3. General Linear Equation  

By collecting terms in Equation 2, we can rewrite the equation of a plane as 

 

(3) 

Equation 3 is called a linear equation of the plane. 

Theorem 1 Let , and  be constants such that not all  and are 0. Then 

the equation  describes a plane. Moreover, the vector

 is perpendicular to this plane. 

4. Three-Point Equation of a Plane 

Let points ,  and  are any three distinct 

fixed points on the plane. The equation of the plane passing through these points can be 

described by the following formula 

 (4) 

Equation 4 is called the three-point equation of a plane. 

5. Equation of a plane in the «intercept form» 

 Let  be any plane, which makes an intercept « » on the axis, an intercept    «

» on the axis and an intercept « » on the  axis ( ).  

 0 0 0 0; ;P x y z

 ; ;n A B C


 ; ;n A B C


( ; ; )r x y z


 0 0 0 0; ;r x y z


     0 0 0 0A x x B y y C z z     

0Ax By Cz D   

, ,A B C D ,A B C

0Ax By Cz D   

 ; ;n Ai B j Ck A B C   
   

 1 1 1 1; ;M x y z  2 2 2 2; ;M x y z  3 3 3 3; ;M x y z

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0

x x y y z z

x x y y z z

x x y y z z

  

   

  

 a x 

b y  c z  0, 0, 0a b c  
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 (5) 

Equation 5 is called the «intercept form» of the equation of a plane. 

The distance from the point to the plane 

Theorem 2 The distance from the point  to the plane

 is the number calculated by the formula (see Figure 3.2): 

 (6) 

Relations between the planes 

Definition The angle between two planes is the angle between their normal vectors. 

The following results can be obtained, depending on the planes are given by the 

general linear equation. 

  
 

The angle between  to   

Perpendicular planes ( )  

Parallel planes ( )  

Exercise Set 15 

In Exercises 1 to 4 find the general linear equation for planes. 

1. The plane through  perpendicular to . 

2. The plane through  perpendicular to . 

3. The plane through  parallel to . 

4. The plane through  parallel to . 

5. Explain why a plane cannot: 

a) contains  1;2;3  and  2;3;4  be perpendicular to n i j 
  

; 

b) be perpendicular to n i j 
  

 and parallel to m i k 
  

; 

1
x y z

a b c
  

 1 1 1 1; ;P x y z

: 0Ax By Cz D    

  1 1 1
1 2 2 2
;

Ax By Cz D
d P

A B C

  
 

 

1 1 1 1: 0A x B y C z D    

2 2 2 2: 0A x B y C z D    

1 2
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

cos
A A B B C C

A B C A B C


 


   

1 2   1 2 1 2 1 2 0A A B B C C  

1 2||  1 1 1 1

2 2 2 2

A B C D

A B C D
  

 1;2; 1 n i j 
  

 1;5; 1 2n i j k  
   

 1;0;1 2 0x y z  
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c) contains  1;0;0 ,  0;1;0 ,  0;0;1  and  1;1;1 ; 

d) passes through the origin and have the equation 1ax by cz   . 

6. Find the equation of a plane if: 

a) it is parallel to the plane  and passes through the point ; 

b) it passes through the  and through the point ; 

c) it is parallel to the  and passes through the points

; 

d) it passes through the point  and has the  normal vector ; 

e) it is parallel to the vectors  and passes through the point

; 

f) it passes through the points  and is perpendicular to the 

plane . 

7. Find the angle between  and: 

 a) ; b) ; c) . 

8. How far is the plane  from  and also from ? Find 

the nearest points. 

9. Determine whether the planes are parallel, perpendicular, or neither. If neither, 

find the angle between them. 

a) ;  

b) ;  

c) ;  

d) ;  

10. Find the distance between the planes  and . 

11. Find the distance between the planes and . 

12. A plane passes through the points ,  and . A second 

plane passes through ,  and . 

a) Find a normal line to each plane; 

b) Find the cosine of the angle between the two planes; 

c) Find the angle between the planes. 

13. Find the distance from the point  to the plane that passes through

 and has the normal vector . 

OXZ  0 7; 3;5M 

z axis  0 3;1; 2M  

x axis    1 24;0; 2 ; 5;1;7M M

 0 2;1; 1M   1; 2;3n  


   3;1; 1 ; 1; 2;1a b   
 

 0 3;4; 5M 

   1 21;1;1 ; 2;3;4M M

2 7 5 9 0x y z   

2 2 0x y z  

2 0x z  2 5x z  0x 

1x y z    0;0;0  1;1; 1

3 2 2 0x y z    6 4 2 1 0x y z   

3 2 0x z   2 6 7 0x z  

3 5 12 0x y z    2 6 3 0x z  

2 3 8 0x y z    4 6 3 7 0x y z   

2 2 1x y z   2 2 3x y z  

5 7x y z   3 2 1x y z  

 1;1;2  1;3;4  2;1; 1

 2;1; 1  1;0;2  3;4;1

 2;2; 1M 

 1;4;3 2 7 2i j k 
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14. Find the distance from the point  to the plane that passes through

 and is perpendicular to the vector . 

15. Find the coordinates of a point symmetrical to the point with 

respect to the plane .  

In Exercises 16 to 18 find the equation of the bisector plane of the angle from  to 

. 

16. ; ; 

17.  ; ; 

18.  ; . 

Individual Tasks 15 

1. Find the general linear equation for planes. 

2. Find the angle between  and the given plane. 

3. Determine whether the planes are parallel, perpendicular, or neither. If neither, find 

the angle between them. 

4. Find the coordinates of a point symmetrical to the point with respect 

to the plane . 

5. Find the equation of the bisector plane of the angle from  to . 

I.    

1. The plane through  

 parallel to . 

 

2.  

3. ,  

 

4. ,  
 

5. ,  

II.   

1.

 

Find the equation of the plane 

, where 

 

2.  

3. , 

 

4.

 

,  

5. ,  

III.   IV.   

1. The plane through  1;0; 1  parallel  

to 2 3 1 0x y z     . 

 0;0;0M

 4;1;0 i j k 
  

Q  3;1; 9P  

4 3 7 0x y z   

1 2

3 7 4 0x y z    5 3 5 2 0x y z   

2 5 3 0x y z    2 10 4 2 0x y z   

5 2 5 3 0x y z    2 7 2 0x y z   

2 3 5 0x y z   

Q  1 1 1 1; ;P x y z
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1. Find the equation of the plane 

, where 

 

2.  

3. ,  

 

4. ,  

5. ,  

. 

 

2.  

3. ,  

 

4. ,  

5. , 

 . 

2.3.2 Lines in Space 

A line in the -plane is determined when a point on the line and the direction of 

the line (its slope or angle of inclination) are given. The equation of the line can then be 

written using the point-slope form. 

Equations of a line 

1. Vector equation 

Likewise, a line in three-dimensional space is determined when we know a point 

on  and the direction of . In three dimensions the direction of a line is 

conveniently described by a vector, so we let  be a vector parallel to . Let

be an arbitrary point on  and let and  be the position vectors of  and  (that is, 

they have representations and ). If is the vector with representation , as 

in Figure 3.3, then the Triangle Law for vector addition gives . But, since and

 are parallel vectors, there is a scalar such that . Thus 

 

(1) 

which is a vector equation of . 

1 2 3A A A

 1 2;1;7 ;A  2 3;3;6 ;A

 3 1;2;5 .A

2 4 2 0x y z   

3 6 2 15 0x y z   

3 6 2 13 0x y z   

 2;1;0P  3 6 2 13 0x y z   

2 7 5 9 0x y z   

62 2 22 42 0x y z    

5 2 1 0x y z   

2 7 5 9 0x y z   

62 2 22 42 0x y z    

 2;1;0P  2 7 5 9 0x y z   

2 2 3 0x y z   

3 4 5 0x y  

xy

L

 0 0 0 0; ;P x y z L L

s
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L 0r
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0P P

0OP
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Figure 3.3 

2. Parametric equation  

If the vector  that gives the direction of the line  is written in the component form 

as , then we have the three scalar equations: 

 (2) 

These equations are called parametric equations of the line  through the point

 and parallel to the vector . 

3. Symmetric Equation 

Another way of describing a line  is to eliminate the parameter from Equation 2. 

If none of  is 0, we can solve each of these equations for , equate the results, 

and obtain 

 (3) 

These equations are called symmetric equations of . Notice that the numbers

 that appear in the denominators of Equations 3 are direction numbers of , 

that is, components of a vector parallel to . If one of  is 0, we can eliminate .  

4. Two - point equation of a line 

In general, direction numbers of the line  through the points and

are
 
and so symmetric equations of  are

 

 (4) 

This equation is called two - point equation of a line. 

5. General linear equation 

v


L

1 2 3 1 2 3( ; ; )v a i a j a k a a a   
   

0 1

0 2

0 3

x x a t

y y a t

z z a t

 


 
  

L

 0 0 0 0; ;P x y z 1 2 3( ; ; )v a a a


L

1 2 3, ,a a a t

0 0 0

1 2 3

x x y y z z

a a a

  
 

L

1 2 3, ,a a a L

L 1 2 3, ,a a a t

L  0 0 0 0; ;P x y z

 1 1 1 1; ;P x y z 1 0 1 0 1 0, ,x x y y z z   L

0 0 0

1 0 1 0 1 0

x x y y z z

x x y y z z
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A line  can be defined as the intersection line of two planes 

 and . 

 (5) 

This equation is called the general linear equation. Using the cross product, 

directional numbers of  can be determined as scalar components of vector , 

where  and  are normal vectors of corresponding planes. 

Relations between the lines 

Definition The angle between two lines is the angle between their directional 

vectors. 

Definition The lines  and  are called the skew lines if they do not intersect and 

are not parallel (and therefore do not lie in the same plane). 

The following results can be obtained, depending on the lines are given by the 

symmetric equation of the line. 

 
 

 

The angle from  to   

Perpendicular lines ( )  

Parallel lines ( )  

Skew lines ( )  

L

1 1 1 1: 0A x B y C z D     2 2 2 2: 0A x B y C z D    

1 1 1 1

2 2 2 2
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A x B y C z D

A x B y C z D

   


   

L 1 2n n
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1L 2L
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1
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1L 2L
1 2 1 2 1 2
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1 1 1 2 2 1
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s s
m n p m n p
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1 2||L L 1 1 1

2 2 2

m n p
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Distance between skew 

lines 

 

Distance from the point  

to the line  
 

Relations between the line and the plane 

Definition The angle between a line  and a plane  is the angle between the line 

and its projection onto the plane. 

The following results can be obtained, depending on the line is given by the 

symmetric equation of the line and the plane is given by the general linear equation. 

 
 

 

Angle between  and   

Line  perpendicular to the plane 

  ( ) 
 

Line  parallel to the plane  

( ) 
 

Line intersects the plane  
 

Line  belongs to the plane   

1 1 22

1 2
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Exercise Set 16 

1. The line is given by the general equation  Find its symmetric 

equation. 

2. Give the symmetric equation for the line through the point  and parallel 

to the vector . 

3. Give sthe ymmetric equation for the line through the point  and parallel 

to the to the line  

4. Give the symmetric equation for the line through the points  and

. 

5. Give the symmetric equation for the line through the points  and

. 

6. a) How far is the point  from the line through the points  and

? 

b) Find the point on the line nearest to . 

7. Let  be the line in which the planes  and  intersect. 

a) Find the vector parallel to ; 

b) Find a point on ; 

c) Find parametric equations for . 

8. Where does the line of intersection of the planes  and  

meet the plane ? 

9. The planes  and  intersect in a line : 

a) Find the vector parallel to ; 

b) Find a point on ; 

c) Find parametric equations of ; 

d) Find symmetric equations of . 

In Exercises 10 to 16 find the point at which the line intersects the given plane. 

10. 
    

 

11. 

    

 

2 4 0;

3 5 8 0.

x y z

x y z

   


   

 2;0; 3

 2; 3;5s  


 2;0; 3

2 3 11 0;

5 4 8 0.

x y z

x y z

   


   

 1;0;3  2;1; 1

 7; 1;5  4;3;2

 1;1;1  2;1;3  1;4;5

 1;1;1

L 3 5x y z   2 2x y z  

L

L

L

2 4x y z   2 1x y z  

3 2 6x y z  

2 3 6x y z   2 3 4 8x y z   L

L

L

L

L

1 3 2
:

2 1 5

x y z
L

  
 


:4 3 3 0x y z    

2 3 4 0,
:

2 3 0.

x y z
L

x y z
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12. 

   

 

13.            

14.     

15. 
   

  

16. 
    

  

In Exercises 17 to 21 determine whether the lines  and  are parallel, skew, or 

intersecting. If they intersect, find the point of intersection. If they skew, find the distance 

between them. 

17.   ;  

18.   ;  

19.   ;  

20.   ;  

21.   ;  

22. Find the coordinates of a point  symmetrical to the point  with 

respect to the line . 

23. Find the coordinates of a point  symmetrical to the point  with 

respect to the line .    

24. Find the angle between the line  and the plane

. 

2 3 3 9 0,
:

2 3 0.

x y z
L

x y z

   


   
: 2 1 0x y z    

1 3
:

2 4 3

x y z
L

 
  :3 3 2 5 0x y z    

13 1 4
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8 2 3

x y z
L

  
  : 2 4 1 0x y z    

7 4 5
:

5 1 4

x y z
L
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1 2 2
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x y z
L
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1L 2L

1
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x y z
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  2
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:
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x y z
L

  
 

1

2 2 1
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1 3 2

x y z
L

  
 

 
2

1
:

1 1 1

x y z
L


 

1

2 3 4
:

1 2 3

x y z
L

  
 


2

4 3
:
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x y z
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1
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:
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x z
L

y z

  


  
2

12 49 0,
:

4 37 148 0.

x z
L

y z

  


  

1

3 1,
:

5 7.

x z
L

y z

 


  
2

2 5,
:

7 2.

y x
L

z x

 


 

Q (6; 5;5)P 

2 1
:
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x y z
L

 
 

Q (2; 1;3)P 
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25. Find the equation of a plane passing through the line  and 

perpendicular to the plane . 

26. Find the distance between parallel lines  and

. 

27. Are the lines  and  intersect?  

28. Find the equation of projection of a line  to the plane

. 

Let  be the points of space. In Exercises 29 and 30 find: a) the equation 

of the line ; b)  the equation of the line  perpendicular to the plane ; c) the 

equation of the line  parallel to ; d) the equation of the plane passing through  

perpendicular to the line ; e) the angle between the line  and the plane . 

29.  ; 

30.  . 

Individual Tasks 16 

1. Give symmetric and parametric equations for the line passing through the given 

points. 

2. Find the point at which the line intersects the given plane. 

3. Determine whether the lines  and  are parallel, skew, or intersecting. If they 

intersect, find the point of intersection. If they skew, find the distance between them. 

4. Find the coordinates of a point symmetrical to the point with respect 

to the plane . 

5. Let  be the points of space. Find: a) the equation of the line ; b)  

the equation of the line  perpendicular to the plane ; c) the equation of the line

 parallel to ; d) the equation of the plane passing through  perpendicular to the 

line ; e) the angle between the line  and the plane . 

I.    

1.  

II.   

1.  

2 3 1

5 1 2

x y z  
 

4 3 7 0x y z   

2 1

3 4 2

x y z 
 

7 1 3

3 4 2

x y z  
 

2 3 4

1 2 3

x y z  
 



4 3

3 2 5

x y z 
 

2 1 5

6 5 4
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3 2 7 0x y z   
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       1 2 3 40; 4; 5 , 3; 2; 1 , 4; 5; 6 , 3; 3; 2A A A A 

       1 2 3 42; 1; 7 , 6; 3; 1 , 3; 2; 8 , 2; 3; 7A A A A 

1L 2L

Q  1 1 1 1; ;P x y z

: 0Ax By Cz D    
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4A M 1 2 3A A A
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2.  , 

 

3. ,  

 

4. ,  

5.  

2.  , 

 

3. , 

 

4.

 

,  

5.  

III.   

1.  

2.  , 

 

3. ,  

 

4. ,  

5.  

IV.   

1.

 

 

2.  , 

 

3. , 

 

4.

 

,  

5.  

2.3.3 Cylinders and Quadric Surfaces 

In order to sketch the graph of a surface, it is useful to determine the curves of 

intersection of the surface with the planes parallel to the coordinate planes. These curves 

are called traces (or cross-sections) of the surface. 

2 3 1
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x y z
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A cylinder is a surface that consists of all lines (called rulings) that are parallel to a 

given line and pass through a given plane curve. 

Example 1 Sketch the graph of the surface . 

Solution Notice that the equation of the graph  doesn’t involve . This means 

that any vertical plane with the equation  (parallel to the -plane) intersects the 

graph in a curve with the equation . So these vertical traces are parabolas. Figure 

3.4 shows how the graph is formed by taking the parabola  in the -plane and 

moving it in the direction of the -axis. The graph is a surface, called a parabolic 

cylinder, made up of infinitely many shifted copies of the same parabola. Here the rulings 

of the cylinder are parallel to the -axis. 

 
 

 

Figure 3.4 Figure 3.5 Figure 3.6 

We noticed that the variable  is missing from the equation of the cylinder in 

Example 1. This is typical of a surface whose rulings are parallel to one of the coordinate 

axes. If one of the variables  or  is missing from the equation of a surface, then the 

surface is a cylinder. 

Example 2 Identify and sketch the surfaces    (a) ;  (b) . 

Solution (a) Since  is missing and the equations ,   represent a 

circle with radius 1 in the plane , the surface   is a circular cylinder whose 

axis is the -axis (see Figure 3.5). Here the rulings are vertical lines. 

 (b) In this case  is missing and the surface is a circular cylinder whose axis is the 

-axis (see Figure 3.6). It is obtained by taking the circle ,  in the -

plane and moving it parallel to the -axis. 

2z x
2z x y

y k xz
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Note When you are dealing with surfaces, it is important to recognize that an 

equation like  represents a cylinder and not a circle. The trace of the cylinder

 in the -plane is the circle with equations . 

A quadric surface is the graph of a second-degree equation in three variables  

and . The most general such equation is 

 (1) 

where  are constants, but by translation and rotation it can be brought into one 

of the two standard forms 

 or . 

Quadric surfaces are the counterparts in three dimensions of the conic sections in the 

plane. 

The idea of using traces to draw a surface is employed in three-dimensional graphing 

software for computers. In most such software, traces in the vertical planes  and 

 are drawn for equally spaced values of  , and parts of the graph are eliminated 

using hidden line removal. Table 2 (see Appendix) shows computer-drawn graphs of the 

six basic types of quadric surfaces in standard form. All surfaces are symmetric with 

respect to the -axis. If a quadric surface is symmetric about a different axis, its equation 

changes accordingly. 

Example 3 Classify the quadric surface . 

Solution By completing the square we rewrite the equation as 

. 

Comparing this equation with Table 2, we see that it represents an elliptic 

paraboloid. Here, however, the axis of the paraboloid is parallel to the -axis, and it has 

been shifted so that its vertex is the point . The traces in the plane  are 

the ellipses 

. 

The trace in the -plane is the parabola with the equation , . 

 Examples of quadric surfaces can be found in the world around us. In fact, the world 

itself is a good example. Although the earth is commonly modeled as a sphere, a more 

accurate model is an ellipsoid because the earth’s rotation has caused a flattening at the 

poles. Circular paraboloids, obtained by rotating a parabola about its axis, are used to 

collect and reflect light, sound, and radio and television signals. In a radio telescope, for 

instance, signals from distant stars that strike the bowl are reflected to the receiver at the 

2 2 1x y 

2 2 1x y  xy 2 2 1, 0x y z  
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focus and are therefore amplified. Cooling towers for nuclear reactors are usually 

designed in the shape of hyperboloids of one sheet for reasons of structural stability. Pairs 

of hyperboloids are used to transmit rotational motion between skew axes. 

Exercise Set 17 

In Exercises 1 to 4 use traces to sketch and identify the surface. 

1.  2.  

3.  4.  

In Exercises 5 to 12 reduce the equation to one of the standard forms, classify the 

surface, and sketch it. 

5.  6. 

7.  8.  

9. 10.  

11. 12.  

In Exercises 13 to 18 sketch the region bounded by the given surfaces  

13. ,  for . 

14. ,   

15.  , , , ,  

16. , , ,  

17.  , , ,  

18.  ,  

19. Find an equation for the surface obtained by rotating the parabola   about 

the -axis. 

20. Find an equation for the surface obtained by rotating the line   about the 

-axis. 

Individual Tasks 17 

1. Reduce the equation to one of the standard forms, classify the surface, and sketch 

it. 

2. Sketch the region bounded by the given surfaces. 

3. Find an equation for the surface obtained by rotating the given curve about the 
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indicated axis. 

 

I.    

1.  

2. , , ,  

3. 
3, 0y x x  ,  

II.   

1.

 

 

2. , , ,  

3.

 

2, 0x y y  ,  

III.   

1.  

2. , , , 0, 1z z   

3. ,  

IV.   

1.

  

 

2. ,  

3. ,  
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APPENDIX 

Table 1 
Cartesian coordinates Polar coordinate system Parametric equations 

Line passing through the 
origin y kx  

tg k   
x t

y t





 

Circle: 
2 2 2x y a   

 
2 2 2x a y a    

 
22 2x y a a    

 
r a  

 

2r acos  

2 sinr a   

cos

sin

x a t

y a t




  
cos

sin

x a t a

y a t

 


  
cos

sin

x a t

y a t a




 
 

Parabola 
2 2y px  1 cos

a
r





, a   some 

number 

2

2

y t

t
x

p








 

Ellipse 
2 2

2 2
1

x y

a b
   

1 cos

a
r

e 



, where 

1e   eccentricity, a   
some number 

cos

sin

x a t

y b t





 

Hyperbola 
2 2

2 2
1

x y

a b
   1 cos

a
r

e 



, where 

1e   eccentricity, a   
some number 

c

s

x a ht

y b ht





 

Cardioids 

 

    

  

 

 

 

     
22 2 2 2 21 2 4 0

2 cos cos2

2 sin sin 2

r a cos x y ax a x y

x a t a t

y a t a t

        

 
 

 

(1 cos )r a   (1 cos )r a   (1 sin )r a   (1 sin )r a  
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Roses 

 

 

 

 

 

 

 

 

 

 

Asteroid 

 

Cycloid 
 

 

 

 

Spirals 

Spiral of Archimedes 

 
Hyperbolic spiral  

 

Logarithmic spiral  

 

 

 

Lemniscates 

 

 

  

cos2r a  sin2r a  cos3r a  sin3r a 

2 2 2 3

3 3 3
3

cos

sin

x a t
x y a

y a t

 
   



 
 

sin

1 cos

x a t t

y a t

  


 

r a
a

r


 r a

2 2 sin 2r a     
22 2 2 2 2 2 2cos 2r a x y a x y    
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Limacons 

 

Cardioid is a special kind of limacons family of related curves. Limacon equations:   
 (horizontal)                   or                    (vertical) 

 
 

 
 

looped 

 
 

dimpled 

 
 

convex 

 

Table 2 
Surface Equation 

Ellipsoid 
 

 
 

 

All traces are ellipses. 
If   , the ellipsoid is a sphere. 

Elliptic Paraboloid 
 

 
 

 

Horizontal traces are ellipses. 
Vertical traces are parabolas. 
The variable raised to the first power 

indicates the axis of the paraboloid. 

cosr b a   sinr b a  

b a 2a b a  2a b

2 2 2

2 2 2
1

x y z

a b c
  

a b c 

2 2

2 2

z x y

c a b
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Hyperbolic Paraboloid 
 

 
 

 

Horizontal traces are hyperbolas. 
Vertical traces are parabolas. 
The case where is   illustrated. 

Cone 

 
 
 

 

Horizontal traces are ellipses. 
Vertical traces in the planes  and 

 are hyperbolas if   but are 

pairs of lines if  . 

Hyperboloid of One Sheet 

 
 

 

Horizontal traces are ellipse. 
Vertical traces are hyperbolas. The axis 

of symmetry corresponds to the variable 

whose coefficient is negative. 

Hyperboloid of Two Sheets 

 
 

 

Horizontal traces in  are ellipses 
if   or . 
Vertical traces are hyperbolas. The two 

minus signs indicate two sheets. 

 

2 2

2 2

z x y

c a b
 

0c 

2 2 2

2 2 2

z x y

c a b
 

x k

y k 0k 

0k 

2 2 2

2 2 2
1

x y z

a b c
  

2 2 2

2 2 2
1

x y z

a b c
   

z k
k c k c Ре

по
зи
то
ри
й Б
рГ
ТУ



97 
 

УЧЕБНОЕ ИЗДАНИЕ 
 
 

Составители: 
Дворниченко Александр Валерьевич 
Крагель Екатерина Александровна 

Лебедь Светлана Федоровна 
Бань Оксана Васильевна 
Гладкий Иван Иванович 

 
 
 
 
 

Elements of Algebra and 

Analytic Geometry 
 

учебно-методическая разработка на английском языке  

по дисциплине «Математика» 
 
 
 
 
 
 

 
Ответственный за выпуск: Лебедь С.Ф. 

Редактор: Боровикова Е.А. 
Компьютерная вёрстка: Дворниченко А.В. 

 
__________________________________________________________________ 

 
Подписано к печати 29.12.2018 г. Формат 60x84 1/16. Гарнитура Times New Roman. 

Бумага «Performer». Усл. п. л. 5,69. Уч. изд. л. 6,12. Заказ № 1599. Тираж 24 экз. 

Отпечатано на ризографе учреждения образования «Брестский государственный 

технический университет». 224017, г. Брест, ул. Московская, 267. 

Ре
по
зи
то
ри
й Б
рГ
ТУ




