УДК 512.643

О ПОЛНОЙ СИСТЕМЕ ИНВАРИАНТОВ ИНВОЛЮЦИЙ

Пирштук Д.И.

Белорусский государственный университет, г. Минск Научный руководитель: Дубров Б.М., к. физ.-мат. н., доцент

Пусть V — конечномерное векторное пространство над алгебраически замкнутым полем K, $W \subseteq V$ — некоторое подпространство, а линейное отображение $\varphi: V \to V$ — некоторая инволюция ($\varphi^2 = \mathrm{id}$). Настоящая статья посвящена описанию полной системы инвариантов троек (V, φ, W) с точностью до изоморфизма векторного пространства V.

Полученный результат (теорема о полной системе инвариантов инволюций), с одной стороны, имеет самостоятельный, чисто алгебраический характер, но с другой стороны, как следует из принципа Нагано [1, с. 81–85], он является также критерием локальной эквивалентности пары векторных полей с точностью до перестановки. Именно в рамках исследования по геометрической теории оптимального управления и возникла постановка данной задачи.

Инварианты пар (V, φ) . Опишем сначала полную систему инвариантов пар (V, φ) , то есть найдем такую систему инвариантов, которая характеризует, что пары (V, φ) и (V', φ') эквивалентны (другими словами, построим критерий эквивалентности в терминах инвариантов).

Утверждение 1. Полная система инвариантов пар (V, φ) есть тройка чисел (n, n_{\perp}, n_{-}) , где $n = \dim V$, $n_{\perp} = \dim \ker(\varphi - \mathrm{id})$, $n_{-} = \dim \ker(\varphi + \mathrm{id})$.

Доказательство. Первым инвариантом является $\dim V$, иначе бы даже между V и V' не существовало бы изоморфизма. Пусть $\dim V = \dim V' = n$. В силу теоремы об эквивалентности конечномерных пространств, не теряя общности, можно считать, что $V = V' = K^n$. Кроме того, все собственные значения оператора φ должны быть равны ± 1 , т.к. если $\varphi(v) = \lambda v$, то $v = \varphi(\varphi(v)) = \lambda^2 v$. Таким образом, жорданова форма матрицы оператора φ состоит из блоков из 1 или -1. Непосредственным возведением такого блока в квадрат легко проверить, что оператор φ будет инволюцией тогда и только тогда, когда его жорданова нормальная форма — диагональная матрица с ± 1 на диагонали, т.е. матрица оператора φ диагонализируема с собственными значениями ± 1 . Такие матрицы подобны тогда и только тогда, когда совпадают размерности собственных подпространств, соответствующих 1 и -1.

Положим далее $V_{\scriptscriptstyle +} = \ker(\varphi - \mathrm{id})$ и $V_{\scriptscriptstyle -} = \ker(\varphi + \mathrm{id})$.

Утверждение 2. Если пары (V, φ) и (V', φ') эквивалентны, то их собственные подпространства, отвечающие одному и тому же собственному значению, также изоморфны. Доказательство. Пусть $\varphi(v) = \lambda v$, а ϕ — изоморфизм. Тогда

$$\varphi'(\phi(v)) = \phi(\varphi(v)) = \phi(\lambda v) = \lambda \phi(v),$$

(1)

То есть s(v) — собственный вектор φ' , отвечающий тому же собственному значению λ .

Инварианты троек (V, φ, W) . Наложим теперь на эквивалентность более строгое требование, а именно оно будет требовать не только существования такого изоморфизма $\phi: V \to V'$, что $\phi(\varphi(v)) = \varphi(\phi(v))$ для всех $v \in V$, но и чтобы сужение изоморфизма ϕ на W было изоморфизмом между подпространствами W и W'. Таким образом, имеем, что наша задача — построить полную систему инвариантов троек (V, φ, W) с точностью до изоморфизма векторного пространства V.

Очевидно, что одним из инвариантов наряду с тройкой (n,n_+,n_-) , известной из предыдущего пункта, является условие $\dim W = \dim W'$, как условие существования изоморфизмов. Пусть $\dim W = \dim W' = m$.

Выберем в V и V' такие базисы, чтобы матрицы линейных отображений φ и φ' в них были равны $A=\mathrm{diag}\{1,1,...,1,-1,-1,...,-1\}$. Тогда условие (1) переписывается в виде матричного уравнения $\Phi A=A\Phi$, где $\Phi\in K^{n\times n}$ — матрица перехода от одного базиса к другому.

Для решения данного уравнения перепишем Φ и A в блочном виде:

$$A=egin{pmatrix} E_{n_+} & 0 \ 0 & -E_{n_-} \end{pmatrix}, \ \Phi=egin{pmatrix} \Phi_1 & \Phi_3 \ \Phi_4 & \Phi_2 \end{pmatrix}$$
. Тогда уравнение $\Phi A=A\Phi$ перепишется в виде

системы
$$\Phi_3=0, \Phi_4=0$$
 . Следовательно, $\Phi=\begin{pmatrix} \Phi_1 & 0 \\ 0 & \Phi_2 \end{pmatrix}$.

Выберем в W и W' некоторые базисы. Их матрицы в ранее выбранных базисах V и V' также будем обозначать через W и W'.

Итак, имеем уравнение $\Phi W = W'T$. Т.к. собственные подпространства W и W' изоморфны (см. утверждение 2), то $\dim W \cap V_+$ и $\dim W \cap V_-$ – инварианты тройки (V, φ, W) .

Считая последние 2 инварианта выполненными, можно, не теряя общности, перейти от исследования троек (V, φ, W) и (V', φ', W') к исследованию троек $(V, \varphi, W) / ((W \cap V_+) \oplus (W \cap V_-))$ и $(V', \varphi', W' / ((W' \cap V_+') \oplus (W' \cap V_-'))$.

Перепишем матрицы W и W' в блочном виде: $W = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, $W' = \begin{pmatrix} w_1' \\ w_2' \end{pmatrix}$, где $w_1, w_1' \in K^{m \times n_+}$ и $w_2, w_2' \in K^{m \times n_-}$.

В силу сделанных выше предположений имеем, что $\operatorname{rank} w_1 = \operatorname{rank} w_1' = m$ и $\operatorname{rank} w_2 = \operatorname{rank} w_2' = m$ (блоки имеют полный ранг).

Действительно, если, например, $\operatorname{rank} w_1$ был бы меньше m, то можно было бы перейти от выбранного базиса в W к другому, такому, что w_1 имел бы нулевой столбец, а, значит, $\dim W \cap V_+ > 0$, что противоречило бы сделанному выше предположению. Значит, для новых троек (V, φ, W) и (V', φ', W') имеют место неравенства $n_+ \geq m$ и $n_- \geq m$.

В силу блочно-диагонального вида матрицы Φ уравнение $\Phi A = A\Phi$ переписывается в виде системы

$$\begin{cases}
\Phi_1 w_1 = w_1' T \\
\Phi_2 w_2 = w_2' T
\end{cases}$$
(2)

Покажем, что эта система уравнений всегда разрешима. Для этого положим $\left\{ egin{align*} \Phi_1 = \Phi_{11}\Phi_{12} \\ \Phi_2 = \Phi_{21}\Phi_{22} \end{array}
ight.$, где $\Phi_{11}, \Phi_{12} \in K^{n_+ imes n_+}$, $\Phi_{21}, \Phi_{22} \in K^{n_- imes n_-}$. Заметим, что при i=1,2 умножение w_i слева на Φ_{i2} есть составление невырожденных линейных комбинаций из строк матрицы w_i . Так как $\operatorname{rank} w_i = m$, то существуют такие невырожденные Φ_{i2} , что

$$\Phi_{12} w_1 = \begin{pmatrix} E_m \\ 0 \end{pmatrix}, \ \Phi_{22} w_2 = \begin{pmatrix} E_m \\ 0 \end{pmatrix}.$$
(3)

Тогда, так как матрица T — невырожденная, а $\mathrm{rank}\ w_i' = m$, то и $\mathrm{rank}\ w_i'T = m \ (i=1,2)$. Поэтому из (2) и (3) следует, что в качестве Φ_{i1} можно положить матрицу, первыми m столбцами которой является $w_i'T$, а остальные столбцы — произвольное дополнение линейно-независимыми столбцами, такое, чтобы матрица Φ_{i1} была невырожденной (i=1,2).

Следовательно, найденные нами инварианты, действительно, образуют полную систему. Это завершает доказательство следующей теоремы.

Теорема (О полной системе инвариантов инволюций). Полная система инвариантов троек (V, φ, W) с точностью до изоморфизма векторного пространства V есть шестерка $(n, n_+, n_-, m, \dim V \cap V_+, \dim V \cap V_-)$, где $n = \dim V$, $n_+ = \dim V_+, m = \dim W$, $n_- = \dim V_-, V_+ = \ker(\varphi - \mathrm{id}), V_- = \ker(\varphi + \mathrm{id})$.

Список цитированных источников

1. Аграчев, А.А. Геометрическая теория управления / А.А. Аграчев, Ю.Л. Сачков. – М.: Физматлит, 2005. – 392 с.

УДК. 511

ИССЛЕДОВАНИЕ НЕРАВЕНСТВА НЕСБИТТА

Пригун Р.В.

Командно-инженерный институт МЧС РБ, г. Минск Научный руководитель: Шамукова Н.В., к. физ.-мат. н., доцент

В 1905 г. английский математик Несбитт поставил следующую задачу: доказать, что для всех x>0, y>0, z>0 выполняется неравенство $\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\geq \frac{3}{2}$.

Неравенство Несбитта доказывается с использованием простейших алгебраических преобразований и теоремы Мюрхеда; неравенства Коши-Буняковского-Шварца; теоремы Йенсена; связи между средним арифметическим, средним геометрическим и средним гармоническим.

На математических олимпиадах различных уровней участникам предлагается доказать неравенства, являющиеся аналогами неравенства Несбитта. Также аналоги неравенства Несбитта, их доказательства и обобщения публикуются в различных математических журналах.

Теорема 1. [1] Пусть x > 0, y > 0, z > 0

Тогда
$$\sqrt{\frac{x}{x+y}} + \sqrt{\frac{y}{y+z}} + \sqrt{\frac{z}{z+x}} \le \frac{3\sqrt{2}}{2}$$

В статье [2] приводится доказательство неравенства, если $x > 0, y > 0, z > 0, \alpha \le \frac{1}{2}$,

TO
$$\left(\frac{x}{x+y}\right)^{\alpha} + \left(\frac{y}{y+z}\right)^{\alpha} + \left(\frac{z}{z+x}\right)^{\alpha} \le \frac{3}{2^{\alpha}}$$
.

Также выдвигается предположение, что справедливо неравенство:

$$\left(\frac{x_1}{x_1+x_2}\right)^{\alpha} + \left(\frac{x_2}{x_2+x_3}\right)^{\alpha} + \dots + \left(\frac{x_n}{x_n+x_1}\right)^{\alpha} \le \frac{n}{2^{\alpha}}.$$

Были попытки доказать данное предположение, однако нам удалось доказать неравенство, состоящее из четырех слагаемых, но с менее точной оценкой:

$$\sqrt{\frac{x}{x+y}} + \sqrt{\frac{y}{y+z}} + \sqrt{\frac{z}{z+t}} + \sqrt{\frac{t}{t+x}} \le 3\sqrt{2} - 1$$
, где $x > 0, y > 0, z > 0, t > 0$.