Pucynok 7 — /lenenue kapmunwt «Maoonuna c mnadenyem, uiecmuto anzenamu u Hoannom Kpe-
cmumenemy 30710MbIM RAMUY20abHUKOM 6 npuioxcenuu GeoGebra

Pa3paboTanHbie 3a7aHus MO3BOJISIIOT yYalllUMCSl MPUOOPECTH HABBIK padOTHI B
npwioxxkeHnn GeoGebra, ocBouTh Maremarudeckue pacdeTsl MO MPaBHIY 30JI0TOTO
CEYEHUs1, IOBBICUTh YPOBEHb 3HAHUI O cepax MpUMEHEHMs MpaBuiIa 30JI0TOro ce-
YEeHUS.

Cnmcok HCIO/Ib30BAHHBIX HCTOYHUKOB

1. Conponenxo JI. I1., I'puropresa S1. M. AHaiin3 30J10TOrO CEYEHUSI C IIOMOILBIO CPEICTB KOM-
netoTepHoi rpaduku. Yausepcurer UTMO, 2015. — 50 c.

2. TpyminukoBa, M. [IpaBuio 3010TOro ceyeHus AJisd CO3/1aHUsl TAPMOHUYHON KapTUHBI [DIek-
TpoHHBIN pecypc| — Pexxum nocryna: https://izo-life.ru/pravilo-zolotogo-secheniya.html — /lara no-
cryna: 25.10.2022.

3. llleBenes, U. L., Mapyraes M.A., [lImenes WU.I1. 3onotoe ceuenue : Tpu B3risina Ha Mpu-
poxy. Mockga : Ctpoiiuznar, 1990. — 339 c.

4. lllykuna, .. AKTUBU3aNNS TIO3HABATEILHOW JCATEILHOCTH yUaIIUXCs B y4eOHOM IpoIiec-
ce. M.: Ilpoceemenue, 1979. — 160 c.

UDC 004.94

TEACHING CONTAINER VIRTUALIZATION AND THE BASICS OF THE
KUBERNETES CONTAINER ORCHESTRATOR

D.A. Kostiuk, P.N. Lutsiuk
Brest State Technical University, Brest, Belarus, d.k@list.ru

The experience of developing a course on the basics of using the Kubernetes con-
tainer orchestrator is presented. The course includes the principles of container vir-
tualization, architectural features and key components of the Kubernetes platform,
deploying and scaling applications based on it. The ways to overcome the high input
threshold of Kubernetes are discussed. The structure of the theoretical and practical
parts of the course, measures to ensure the operability of the studied software in an
isolated network segment are given.

97

Containerization of applications is an essential part of the current approach to sys-
tems engineering, which involves the integration of the software systems develop-
ment and operation when building complex applications. It is based on the use of a
complex of such modern software technologies as virtualization, automatic audit and
performance control, solving problems using heterogeneous systems that include sev-
eral different platforms (for example, GNU/Linux and Microsoft Windows).

One of the increasingly popular platforms to implement this approach is Kuber-
netes — an open-source, complex container orchestration system developed by
Google, that ensures the performance of containerized applications.

Kubernetes objects deploy and scale applications based on their memory, CPU,
and other requirements. Any container virtualization system that complies with the
Open Container Initiative (OCI) is supported. Kubernetes provides scaling and load
balancing, automatic service discovery, and secrets management. Containers of one
or more applications are isolated from each other until the developer/devops engineer
decides to connect them, allowing more important applications to be used without the
risk of interference. The platform takes care of the technical complexity of transpar-
ent container interaction and service auto-discovery by providing the appropriate ca-
pabilities through the API.

The scope of the Kubernetes usage 1s determined by the following reasons:

e the platform 1s very well suited for scale-in/scale-out systems and stateless sys-
tems;

e it is popular as a foundation for microservices;

e it proposes a number of benefits being used as a basis for various kinds of clus-
ters that need reachability, auto-discovery and/or self-repair.

A problem that is regularly encountered when learning Kubernetes is a high barri-
er to entry. On the one hand, the reason is a fairly large set of entities of this platform,
thanks to which the Kubernetes-based cluster acts as a single unit; on the other hand,
a significant number of software components which the platform includes (and some
of which are completely interchangeable) plays the role. In fact, a cluster is function-
ing as a single organism (automatically performing updates, scaling and self-healing)
and therefore has rather high internal complexity.

For this reason, despite the high demand, studying Kubernetes by students often
turns out to be more of an experiment.

It is also necessary to mention the difficulties of presenting its theory in languages
other than English. The platform's documentation uses a large number of new con-
cepts referenced with capitalized words to emphasis their specific meaning different
from those outside of Kubernetes. The problem is well illustrated by the poor adapta-
bility to the Russian language: it is obvious that there are currently no well-
established Russian terms for the platform, and in some cases, a literal translation
turns out to be the worst option. A typical example is the term "Deployment", which
in Kubernetes denotes not only the process of deploying software, but also a cluster
object responsible for deploying a component. The literal translation is unsuccessful
in the case of a group of objects, at least because in Russian this word does not occur
in the plural. The solution used in our course presented here was to use non-translated
terms capitalized as in original documentation.

98

In our case, a course was developed to study Kubernetes by senior students who
are already familiar with a number of necessary technologies, including computer
networks, elements of GNU/Linux system administration, and development of client-
server applications [2].

The developed course is designed for the first stage of higher education, and in-
volves further continuation within the second stage.

The theoretical part of the first-stage course covers the concepts of Node (a sepa-
rate computer or virtual machine on which containers are running), Pod (a separate
unit containing at least 1 container, that the Kubernetes Scheduler operates to start
any work), Replication Controller (whose task is to maintain a given number of cop-
ies of the Pod according to the Label Selector), as well as Service (an entry point that
gives the client application access to the Pods it needs). Less detailed coverage was
chosen for Load balancer, Secrets (objects to securely store passwords, encryption
keys and other similar sensitive data), Probes (which are the way for Kubernetes to
detect malfunction of the cluster components), isolation with Namespace, influencing
Pods to be created on specific nodes with taints/tolerations and affinity/antiaffinity,
and using Volumes to create stateful applications.

The practical part of the course was built on the basis of Minikube, a specialized
Kubernetes distribution designed to be deployed on a local machine with a combina-
tion of hardware and container virtualization. Minikube has a number of limitations
related primarily to its local nature. However, the practical part of the course, due to
time constraints, does not affect a number of aspects of the platform that are incom-
patible with it; topics such as, for example, the implementation of affinity and anti-
affinity are covered only by the theoretical part.

One of the tasks needed to be solved for the laboratory workshop included in the
course was the functioning of Minikube in an isolated segment of the local network,
with limited access to external Internet resources (the reason for the restriction was
both saving external traffic and considerations of the internal security policy of the
local network with personalized Internet access via VPN).

The need for good Internet access is caused by two reasons:

e Minikube downloads a ready-made installation image with Docker and Kuber-
netes components, as well as the latest versions of the kubelet and kubeadm tools;

e When deploying applications to a Kubernetes cluster, application containers
are downloaded by the Docker virtualization system.

Two options for using Kuberbnetes with limited external access were considered
and tested:

e creating a private Docker registry and reconfiguring the system to use it exclu-
sively, as well as deploying a private image repository for Minikube;

e running Minikube and deploying educational applications with Internet access
enabled, followed by cloning the resulting profile to classroom workstations: this op-
tion solves both deploying images for Minikube and importing Docker images
through the file system instead of getting them over the network.

In practice, after experimenting with both options, we settled on the second one,
as the least time-consuming (taking into account the existing image replication sys-
tem for workstations) [3, 4].

99

The structure of the developed practical workshop for students of the first stage of
higher education includes 4 laboratory works [1]. The first work is exploratory in na-
ture: it talks about Minikube and virtualization systems that it can use on various
hardware platforms, as well as installation features if used on personal devices. The
second one discusses the features of accessing a Kubernetes cluster using the com-
mand line (kubectl), including minimal access configuration (kubectl proxy), and a
web interface (Kubernetes Dashboard). The third one deploys a minimal web applica-
tion to the cluster, including checking the created Deployment, ReplicaSet and Pods,
as well as the Service accessed via NodePort. The fourth work allows students to
study the deployment of a multi-component application with a prepared client part
based on web technologies and a server subsystem based on the MongoDB database
management system.

References

1. Kacmrok [[.A., JIymrok I1.M. [IpakteidyHae BEIByYdHHE CPOAKAY KaHTIWHEpPHAH BipTyasizaibli
1 argopmel Kubernetes // lecsita HaykoBo-npaktuyHa koHpepeniis FOSS Lviv 2021: 36ipHuk
HayKoBHX mpailb. — JIbBiB, 17-19 uepBus 2021 p. — C. 19-21.

2. Kocrrok JI.A., Unbsmeud JI.A. OnbiT BHenApeHus cBoooaHoro 10 B yueOHbII mpoltiece s
CHEIMAILHOCTEH MHMOPMATHKU U panodieKTponrkn // CBOOOIHOE MporpaMMHOE 00eCIieueHUE B
BeICIIel 1mikoie: Te3uchl jaokianoB Il Kondepenmmu., 2—4 despans 2008 r. — Ilepecnaisb-
Banecckui, 2008. — C. 48-51.

3. Komanenko B.1O., Koctiok /[.A. Bupryanu3oBanHas ¢epma aisi TECTUPOBAHHS U JIEMOH-
cTpauuu mpunoxenuii miardgopmel Android ¢ BeG-moctynom // BectHuk bpectckoro rocymap-
CTBEHHOT'O TeXHUYecKoro yHusepcurera. 2015. No5 dusuka, maremaruka, nnpopmaruka - C. 45-48.

4. Tloiira II. C., Koctiok /. A., lepeuennuk C. C., Jlymtok I1. H. IloBeiienue cereBoit 6e3-

OIMAaCHOCTH B KOMITBIOTEPHOM IapKe By3a 3a cdyeT Oydepusanuu u U30JSIHH PeCcypcoB // DIeKTpo-
Huka uHdpo. — 2013. — No.6 (96). — C. 111-113.

YK 004.9

TEXHUKA TMHAMHWYECKOU BU3YAJIM3AIINHU B 3AJIAUE
OPI'AHU3AIMU OBYYEHUS B OBJIACTH KOMIIBIOTEPHBIX
NHOOPMALMOHHBIX TEXHOJIOI'MA

A 1O. CaBunkas

bpecTtcknii rocy1apCTBEHHBIN TEXHUYECKUN YHUBEpPCUTET, bpect, benapyce,
stendur6@gmail.com

The features of the application of dynamic visualization techniques in the con-
struction of training systems in the field of computer information technologies are
considered. The key stages of a systematic approach to the design and development
of such systems are given.

OpHUM 13 TPUOPUTETHBIX HAMpPABIEHUH B 00JIACTH MOBHIIICHHS KauecTBa o0yde-
HUS TEXHUYECKUM JHUCIMIUIMHAM SIBJISETCS pa3padOTKa W BHEAPEHHWE WHHOBAIIMOH-
HBIX 00pa3oBaTEIbHBIX TEXHOJIOTMI, OCHOBAaHHBIX HA MPUMEHEHWU COBPEMEHHBIX
arnmapaTHO-IIPOTPAMMHBIX CPEJICTB KOMITBIOTEPHON TEXHUKH. [IpakTuka npumMeHeHus
KOMITBIOTEPHBIX OOYYaIONUX CHUCTEM COBMECTHO C TPAAUIIMOHHBIMU CPEJICTBAMHU
100

