CnHCOK MCI0/1b30BAHHBIX HCTOYHHKOB
1. CoBpemeHHbIe MPOOIEMbl MaTEeMaTUKW M BBIYUCIUTENbHOW TexHMkH. — bpect : Bpl' TV,

2003. — 298 c.

2. Neptune.ai [DnextpoHHbIii pecypc]. — Pexxum mocryma: https://neptune.ai/blog/anomaly-
detection-in-time-series. — [lara nocryna: 30.10.2022.

3. l'onoBko, B. A. HelipoceTeBbie TexHONMOTHMH 00pabOTKM JaHHBIX : yueOHOe mocobue / B. A.
INonosko, B. B. KpacHonpomun. — MuHck : benopycckuii rocynapcTBeHHbI yHUBEpcuTeT, 2017. —
263 c. — (Knaccuueckoe yauBepcuterckoe usnanue). — ISBN 978-985-566-467-4. — EDN GLVGIE.

4. TonmoBko B. A. HeiipocereBble MeTOIbI 00paboTKK xaoTuueckux mpoieccos //VII Beepoc-
cuiickas HaydyHO-TexHHuYeckast koHpepeHus «Helpounndopmaruka. — 2005. — C. 43-91.

UDC 004.942

A COMPARISON OF THE COVID-19 MACHINE LEARNING
AUTOMATION MODEL AND SPSS TIME SERIES

Hongxu Zhu, D.O. Petrov, V.S.Razumeichik
Brest State Technical University, Brest, Belarus, zhuhongxu08@gmail.com

This paper uses publicly available data on the prediction process of Covid-19
transmission in the world to attempt to predict the time series using the SPSS expo-
nential Holt model and the Python ARIMA model. model model to predict the epi-
demic development trend and key nodes, quantitative analysis of the scale of the epi-
demic, scientific and reliable interval estimation of the original base and effective
transmission rate of the epidemic and comparative analysis of different algorithms,
providing an effective basis and guide for analysis, command and decision making in
the prevention and control of the epidemic.

Predicting data at a range of points in time is a common activity in real life, and
research fields such as agriculture, business, climate, military and medicine all con-
tain large amounts of time series data. Time series forecasting refers to making pre-
dictions about the likely future values of a series based on the historical data of the
series, as well as other relevant series that may have an impact on the outcome. There
are many real-life time series forecasting problems, including voice analysis, noise
cancellation and analysis of stock and futures markets, where the essence is to derive
the value of the time series at T + 1 based on observations at the previous T moments.
For time series prediction, we can use the traditional ARIMA model, or we can use
the Holt model or other models based on time series. Nowadays, machine learning
methods such as deep learning can also be used for time series prediction. We are go-
ing to introduce how to implement the covide-19 prediction of time series based on
two different models.

In this paper, two types of time-series data software were used for fitting:

— Holt Model (SPSS);
— ARIMA Model (Python3.7).

There were 187,801 training samples prepared, and the sample data was split into
a training set and a test set with 67 test indicators. The actual training data is in 3 col-
umns (841 items filtered according to the test specified mediation and 822 items fil-
tered for missing values):

65

Date: Time span 1 February 2020 - 19 May 2022;
Cases: Number of new diagnoses;
Cases_smoothed: number of new confirmed cases (7-day average).

ARIMA model

ARIMA model (full name: Autoregressive Integrated Moving Average model),
also known as an Autoregressive Integrated Moving Average model, is one of the
time series forecasting analysis methods.

widehat{y t} = mu + phi_1*y {t-1} + ... + phi_p*y {t-p} + + heta_1*e {t-1} +
... + heta_g*e_{t-q}

where phi denotes the coefficient of AR
heta denotes the coefficient of MA

p - represents the number of lags of the time series data itself used in the predic-
tion model, also known as the AR/Auto-Regressive term

d - represents the number of orders of differencing required for the time-series da-
ta to be stable, also known as the Integrated term.

q - represents the number of lags of the prediction error used in the prediction
model (lags), also called the MA/Moving Average term.

The Holt model is simple, reliable and easy to use and is a type of exponential
smoothing model. It is particularly suitable for data that varies continuously over time
and often tends to be used as a general model for trend series

St=aXt+(1-a)(St-1+Tt-1), 1)
Tt=yp(St-St-1)+(1-y)Tt-1, 2
Xt' (m) = St + mTt. (3)

Packages to be loaded (Python environment):

import pandas as pd

from pandas i1mport datetime

from pandas import read csv

from pandas import DataFrame

from statsmodels.tsa.arima.model import ARIMA

from pmdarima import auto arima

from matplotlib import pyplot

import numpy as np

import warnings

from sklearn.preprocessing import MinMaxScaler

from pandas import read csv

from pandas import datetime

from matplotlib import pyplot

from statsmodels.tsa.arima.model import ARIMA

from sklearn.metrics import mean squared error

import warnings

from statsmodels.tools.sm exceptions import Conver-
genceWarning

66

warnings.simplefilter ('ignore', ConvergenceWarning)
from math import sqgrt
from sklearn import metrics

1) Define the function that transforms a time series prediction problem into a super-
vised learning problem. The essence of time series forecasting is essentially the ex-
trapolation of the value of the time series at time T + 1 from the observations at the
previous T moments.

def series to supervised(in data, tar data, n in=1,
dropnan=True, target dep=False):

n vars = 1in data.shape[1l]
cols, names = list (), list ()
if target dep:

1 start =1
else:

1 start = 0

for 1 in range(i start, n in + 1):
cols.append(in data.shift (1))

names += [('$s(t-%d)' $ (in data.columns[]J],
1)) for j in range(n vars)]

if target dep:
for 1 in range(n in, -1, -1):
cols.append(tar data.shift(i))

Q

names += [('%s(t-%d)' % (tar data.name,

else:
put it all together
cols.append(tar data)
names.append (tar data.name)
agg = pd.concat (cols, axis=1)
agg.columns = names
drop rows with NaN values
if dropnan:
agg.dropna (inplace=True)
return agg

2) Define functions for preparing data.
- Create a dataset:

dataset=series_to_supervised(pd.DataFrame(y_dataset),
y dataset, 14)

- Slice and dice the training and test data:

X train, X test, y train, y test =
train test split(scaled x, scaled y, test size=0.29,
shuffle=False)

67

3) Define the fitted ARIMA model and plot the residual error.

auto_arima_model = auto_arima(y_train,trace=True, supress_warnings=True)
arima_model_202 = ARIMA(y_train, order=(3,1,3)).fit()

Performing stepwise search to minimize aic

ARIMA(2,1,2)(0,0,0)[0] intercept AIC=-3064.971, Time=0.48 sec
ARIMA(0,1,0)(0,0,0)[0] intercept AIC=-3014.956, Time=0.04 sec
ARIMA(1,1,0)(0,0,0)[0] intercept AIC=-3024.640, Time=0.07 sec
ARIMA(O0,1,1)(0,0,0)[0] intercept AIC=-3025.882, Time=0.12 sec
ARIMA(0,1,0)(0,0,0)[0] AIC=-3016.924, Time=0.03 sec
ARIMA(1,1,2)(0,0,0)[0] intercept AIC=-3021.891, Time=0.30 sec
ARIMA(2,1,1)(0,0,0)[0] intercept AIC=-3031.345, Time=0.47 sec
ARIMA(3,1,2)(0,0,0)[0] intercept AIC=-3065.792, Time=0.63 sec
ARIMA(3,1,1)(0,0,0)[0] intercept AIC=-3080.621, Time=0.55 sec
ARTMA(3,1,0)(0,0,0)[0] intercept AIC=-3032.006, Time=0.12 sec
ARIMA(4,1,1)(0,0,0)[0] intercept AIC=-3031.987, Time=0.71 sec
ARTMA(2,1,0)(0,0,0)[0] intercept AIC=-3023.618, Time=0.15 sec
ARIMA(4,1,0)(0,0,0)[0] intercept AIC=-3033.011, Time=0.17 sec
ARIMA(4,1,2)(0,0,0)[0] intercept AIC=-3060.117, Time=0.75 sec
ARIMA(3,1,1)(0,0,0)[0] AIC=-3077.909, Time=0.25 sec

D L

T TR TR TRy

Best model: ARIMA(3,1,1)(0,0,0)[0] intercept
Total fit time: 4.854 seconds

Figure 1 - ARIMA Data Fitting Results

SARIMAX Results

Dep. Variable: y No. Observations: 583
Model: ARIMACG, 1, 3) Log Likelihood 1594.842
Date: Sun, 30 Oct 2022 AIC -3175.683
Time: 14:15:37 BIC -3145.118
Sample: o] HQIC -3163.768
- 583
Covariance Type: opg
coef std err z P=|z] [0.025 0.975]
ar.L1 0.5294 0.015 35.174 0.000 0.500 0.559
arl2 -0.5359 0.017 -31.751 0.000 -0.569 -0.503
ar.l3 0.9551 0.014 66.928 0.000 0.927 0.983
ma.L1 -0.4419 0.026 -17.021 0.000 -0.493 -0.391
ma.L2 0.4998 0.030 16.477 0.000 0.440 0.559
ma.L3 -0.7977 0.028 -28.214 0.000 -0.853 -0.742

sigma2 0.0002 7.01e-06 34.835 0.000 0.000 0.000

Ljung-Box (L1) (Q): 0.97 Jarque-Bera (JB): 2257.09

Prob(Q): 0.32 Prob(JB): 0.00
Heteroskedasticity (H): 9.82 Skew: -0.56
Prob(H) (two-sided): 0.00 Kurtosis: 12.58

Figure 2 - ARIMA Predicted Results

4) Defining functions to visualise predictions.

print ("R-Square",r2_score(y_test, predictions))

print("Correlation train", np.corrcoef(res_test, predictions)[0,1])
print("Correlation train", np.corrcoef(y_test, predictions)[0,1])

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, predictions))
print('Mean Squared Error:', metrics.mean_squared error(y_test, predictions))

R-Square 0.987090118011517

Correlation train 0.9940699440018747
Correlation train 0.9940699440018748
Mean Absolute Error: 0.009938543636197363
Mean Squared Error: 0.0004559192498476831

Figure 3 - ARIMA Indicator of Prediction

df 2 = pd.DataFrame ({'Actual test':

predictions, })

y test, 'ARIMA':

df 2.index = dataset.index[len(dataset)-len(res test) :]

df 2.plot()

predicted=0.
predicted=0.
predicted=0.
predicted=0.
predicted=0.
predicted=0_

006911,
004994,
005440,
003931,
003830,

005664

expected=0.
expected=0.
expected=0.
expected=0.

expected=0.

expected=0.

006005
005316
003788
004416
005708
005454

Test RMSE: 6.021

Figure 4 — ARIMA Indicator of RMSE

—— Actual test

;6: IJ\ ARIMA

0.4 1 F 4
0.2 1 \
b
\
‘.
Pt s R .
004 i ~—]
T T T T T T T T
Oct Nov Dec Jan Feb Mar Apr May

2022
date

Figure 5 — ARIMA Prediction

The ARIMA model gives a result of 0.987 for R-Square, 0.0099 for MAE (Mean
Absolute Error), 0.00046 for MSE (Mean Squared Error) and 0.021 for RMSE (Root
Mean Squard Error).

Holt Model
1) Analysis of the original sequence diagram.
The graph shows that as the new cases are serially smooth and there are seasonal
fluctuations.

nnnnnnnn

nnnnnnnn

new_cases

uuuuuuuu

T w E &

§ § § § ® & 3 5 = 5 &§ ¥ ¥ ¥ & a s
~ 58

NN o NoNRE S B g 8NN NN RS

S 8 8 B

= ~
S = 3 B a2 s = N S & B 2 B =B = o

Figure 6 — Spss Diagram of sequence
2) Creating a model for fitting.
Forecasting the T+30 time of the Indian epidemic using the exponential Holt
model.
69

Fit Statistic Mean SE Minimum Maximum
Stationary R- 0.381 0.381 0.381
R-squared 0.990 0.990 0.990
RMSE 8013.992 8013.992 8013.992
MAPE 48.773 48.773 48.773
MaxAPE 23621.334 23621.334 23621.334
MAE 4229.124 4229.124 4229.124
MaxAE 57438.106 57438.106 57438.106
Notrmalized BIC 17.994 17.994 17.994
Model Fit
Percentile
5 10 25 50 75 90 95
0.381 0.381 0.381 0.381 0.381 0.381 0.381
0.990 0.990 0.990 0.990 0.990 0.990 0.990
8013.992 8013.992 8013.992 8013.992 8013.992 8013.992 8013.992
48.773 48.773 48.773 48.773 48.773 48.773 48.773
23621.334 23621.334 23621.334 23621.334 23621.334 23621.334 23621.334
4229.124 4229.124 4229.124 4229.124 4229.124 4229.124 4229.124

3)Forecast data

Number

The R-squared

57438.106 57438.100
17.994 17.994

57438.106 57438.106

17.994

17.994

57438.100 57438.106

17.994

17.994

Figure 7 — Holt Model Fitting Results

150000.00

100000.00

50000.00

.00

-50000.00

-100000.00

57438.1006
17.994

— Full
ucL
LCL

T i gi-Sased mau

-150000.00

Figure 8 — Holt Model Prediction

in the graph is 0.99 (close to ‘1’°, good fit) and the RMSE

8013,992.
Comparative results
Models Holt ARIMA
R-Square 0.987090118 0.990104793
RMSE 8013.992 0.021
Figure 9 — Comparing Results
Conclusions

IS

Both of the above approaches were able to make and fit the time-series data for
the new coronary pneumonia well, and a comparison of the two results between the
R-squared and RMSE clearly shows that the ARIMA model fits relatively well and
that the predicted data deviates less from the true data.

Reference

1. Cai Jie et al, Forecasting the development trend of novel coronavirus pneumonia epidemic in
Wuhan based on SEIR model, Shandong Medicine
2. Jin Qixuan, Modeling and rational assessment for prediction of novel coronavirus pneumonia
epidemic in China, Statistics and Decision Making

70

